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Preface 
 
 
This volume contains papers presented at the one-day Second Workshop on Spatio-
Temporal Database Management, STDBM’04, co-located with the 30th International 
Conference on Very Large Data Bases, VLDB 2004. 
 
Managing spatially and temporally referenced data is becoming increasingly important, 
given the continuing advances in wireless communications, ubiquitous computing 
technologies and the availability of real datasets to be managed. The goal of this 
workshop is to bring together leading researchers and developers in the area of spatio-
temporal databases in order to discuss and exchange state novel research ideas and 
experiences with real world spatio-temporal databases. 
 
The workshop received 18 submissions, from 9 different countries in Europe, Asia, 
South and North America.  All papers were evaluated by at least three of the forty-one 
members of the Program Committee, and, at the end, 10 papers were accepted and are 
included in these Proceedings.  
 
We wish to thank Philippe Rigaux for allowing us to use the MyReview conference 
management system and Alex Coman for helping us to manage it locally. We also 
express our appreciation to the members of the Workshop’s steering committee for their 
guidance and advice throughout the whole process, from proposing the workshop to the 
final technical program.  As well, we acknowledge the support provided by the VLDB 
organization.   
 
 
Jörg Sander  and Mario Nascimento 
STDBM'04 Organizers and PC co-chairs 
Edmonton, Canada, July 2004 

 iii



Contents 
 
 
 Page 
Mobility patterns 
C. du Mouza, P. Rigaux ................................................................................................. 1 
 
Extracting Mobility Statistics from Indexed Spatio-Temporal Datasets 
Yoshiharu Ishikawa, Yuichi Tsukamoto, Hiroyuki Kitagawa ........................................... 9 
 
Utilizing Road Network Data for Automatic Identification of Road Intersections 
from  
High Resolution Color Orthoimagery 
Ching-Chien Chen, Cyrus Shahabi, Craig A. Knoblock ................................................ 17 
 
Distributed Spatial Data Warehouse Indexed with Virtual Memory Aggregation 
Tree 
Marcin Gorawski, Rafał Malczok .................................................................................. 25 
 
Continuous K-Nearest Neighbor Queries in Spatial Network Databases 
Mohammad R. Kolahdouzan, Cyrus Shahabi .............................................................. 33 
 
Managing Trajectories of Moving Objects as Data Streams 
Kostas Patroumpas, Timos Sellis ................................................................................. 41 
 
Indexing Query Regions for Streaming Geospatial Data 
Quinn Hart, Michael Gertz ............................................................................................ 49 
 
Condition Evaluation for Speculative Systems: a Streaming Time Series Case 
X. Sean Wang, Like Gao, Min Wang ............................................................................ 57 
 
Continuous Query Processing of Spatio-temporal Data Streams in PLACE 
Mohamed F. Mokbel, Xiaopeng Xiong, Moustafa A. Hammad, Walid G. Aref .............. 65 
 
Towards A Streams-Based Framework for Defining Location-Based Queries 
Xuegang Huang, Christian S. Jensen .......................................................................... 73 

  

 iv



Mobility Patterns

Cédric du Mouza Philippe Rigaux

lab. CEDRIC LRI
CNAM - Paris Orsay - Paris Sud

FRANCE FRANCE
dumouza@cnam.fr rigaux@lri.fr

Abstract

We present a data model for tracking mobile
objects and reporting the result of continuous
queries. The model relies on a discrete view of
the spatio-temporal space, where the 2D space
and the time axis are respectively partitioned in
a finite set of user-defined areas and in constant-
size intervals. We define a query language to
retrieve objects that match mobility patterns de-
scribing a sequence of moves and discuss evalua-
tion techniques to maintain incrementally the re-
sult of queries.

1 Introduction

In the database community, several data models have been
proposed to enable novel querying facilities over collec-
tions of moving objects. A common feature of most of
these models is the strong focus on the geometric properties
of trajectories. Indeed, in most cases, the data representa-
tion and the query language are considered as extensions
of some existing data model previously designed for (and
limited to) 2D geometric data handling. The modeling of
moving objects has been therefore strongly influenced by
the existing spatial models, and relies usually on a set of
data structures providing support for geometric operations
(e.g., geometric intersection) [21, 10, 8, 9].

An assumption commonly adopted by all the above
mentioned models is to consider a dense embedding space
and to model trajectories as continuous functions in this
space. While this property allows several suitable computa-
tions (for instance the position of an object can be obtained
at any instant), it is not well adapted to some common re-
quests. Let us consider the tracking of objects with contin-
uous queries, i.e., queries whose result must be maintained
during a given (and possibly unbounded) period of time.
When asking, for instance, for all the objects that belong to

Copyright held by the author(s).
Proceedings of the Second Workshop on Spatio-Temporal
Database Management (STDBM’04),
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a given rectangle
�

during the next 3 days, the initial re-
sult is subject to vary by considering the objects that leave
of enter

�
. Managing incrementally the evolutions of the

result (i.e., without recomputing periodically the entire re-
sult) is a hard task with a geometric-based query language
because the dense-space assumption of the data model of-
ten contradicts with the discrete nature of the observation.

In the present work we investigate an alternative ap-
proach, namely the management of continuous queries as
a discrete process relying on events related to the moves
of objects over the underlying space. Intuitive examples of
events are, for instance, an object enters a zone, an object
stays in a zone, and an object leaves a zone. A query in
such a setting is a sequence of primitive events which can
be specified either by explicitely referring to the zones of
interest (“Give all the objects currently in a which arrived
5 minutes ago, coming from b”), or by more generic pat-
terns of mobility such as, for instance, “Give these objects
that moved from a to another zone and came back to a”.

We propose in the current paper a data model for rep-
resenting trajectories as sequences of moves in a discrete
spatio-temporal space, and study the languages to query
such sequences of events. Essentially, the languages that
we consider allow to construct expressions, or mobility pat-
terns, to express search operations. We focus specifically
on the family of patterns that satisfy the following prop-
erties (i) we do not need the past moves of an object � to
determine whether � matches or not a given pattern and
(ii) the amount of memory required to maintain a query
result is small. These properties are essential in the con-
text of continuous queries since they guarantee that a large
amount of queries can be evaluated efficiently with limited
resources by just considering the last event associated to
an object. We define a class of queries which provides an
appropriate balance between expressiveness and the fulfill-
ment of these requirements.

Related work

Expressing sequences of moves as proposed in the present
paper is close in spirit to the area of sequence databases [20,
15, 18, 22]. The SQL-TS language of [18] and [19] allows
to express sequences of conditions and describes an effi-
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cient algorithm for query evaluation. The idea of represent-
ing temporal sequences as strings and to rely on pattern-
matching algorithms is also present in [6] and [5]. In [17]
sequences are considered as sorted relations, and each tu-
ple gets a number that represents its position in the se-
quence. All these approaches are significantly different
from ours. In particular there is nothing similar to the con-
cept of mobility pattern, featuring variables, proposed in
our data model.

The notion of continuous queries, described as queries
that are issued once and run continuously, is first proposed
in [24]. The approach considers append-only databases
and relies on an incremental evaluation on delta relations.
Availability of massive amounts of data on the Internet has
considerably increased the interest in systems providing
event notification across the network. Some representative
works are the Active Views system [1], the NiagaraCQ sys-
tem [4], and the prototypes described in [14, 7]. In the area
of spatio-temporal databases, the problem is explicitely ad-
dressed in several works [16, 3, 13, 23, 11, 25]. [3] for in-
stance describes a web-based architecture for reducing the
volume and frequency of data transmissions between the
client and the server. [13] presents a system that indexes
queries in order to recompute periodically the whole result
of each query. This is in contrast with the incremental com-
putation advocated in the current paper.

In the rest of this paper we first develop an informal pre-
sentation of our work (Section 2) with examples of mobility
patterns that illustrate the intuition behind the model and
its practical interest from the user’s point of view. The data
model is presented in Section 3. Finally Section 4 con-
cludes the paper and discusses future work. A long version
is available at http://www.lri.fr/� rigaux/DOC/MR04b.pdf.

2 Introduction to mobility patterns

Figure 1 shows a map partitioned in several zones identi-
fied with simple labels (a, b, c, ...). Over this map
we consider a set of mobile objects, each of them coupled
with a localization device which periodically provides their
position. The minimal period between two events related to
the same object defines the time unit. For the sake of con-
creteness we shall assume in the following that objects are
tracked by a GPS system giving the location of an object,
and that the time unit is 1 (one) minute.

Consider now a traffic monitoring application support-
ing tracking of the mobile objects, and the following
queries:

1. Give all the objects that traveled from a to f, stayed
more than 10 minutes in f and then traveled from f to
c.

2. Give all the objects traveling from f to d or c through
another, third, zone of the map.

3. Give all the objects that left a given zone, went to c
and came back to the first zone.

The common feature of these examples is a specifica-
tion of the successive zones an object belongs to during its
travel, along with temporal constraints. We call mobility
pattern this specification. The geometric-based approach
used in most of the spatio-temporal data models so far is
not really adapted for expressing queries based on mobility
patterns. Actually we do no longer need an interpolation or
extrapolation mechanism to infer the position of an object
at each instant since the discrete succession of events pro-
vided by the GPS server is naturally suitable to serve as a
support for evaluating these patterns.

Each GPS event provides the position of an object, and
this suffices to compute the zone where the object resides
when the event is received. It is therefore quite easy to con-
struct a discrete representation of the trajectory of an ob-
ject as a sequence of the form

����������	�
 �
��������	�
�������
 �
��������	
featuring the list

�������
����
�
�
����
�
of successive zone labels as

well as the time spent in each zone. For instance the tra-
jectory of �

�
in Figure 1, assuming that �

�
spent 2 min-

utes in f, 4 minutes in a, 3 minutes in d and 6 min-
utes in c, will be represented in our model as a sequence
[f

�
2

	
.a

�
4

	
.d

�
3

	
.c

�
6

	
]. Note that each new event ei-

ther increments the time component of the last label if the
object remains in the same zone, or appends a new label to
the trajectory’s representation.

Let us now turn to mobility patterns. Basically, they
constitute a specific kind of regular expression, featuring
variables which can be instantiated to any of the labels of
the map. As a first example, assume that we want to re-
trieve all the objects that started from a or b, moved to e,
crossing one of the zones c, d, or f (see Figure 1), and fi-
nally went back from e to a via the same zone. This class
of trajectories is represented by the following mobility pat-
tern:

(a|b).@x � .e � .@x � .a
In a pattern, a zone is represented either by its label (here

a, b, e) or by a variable (here @x) if it is left undetermined
by the user. A variable is here necessary to represent the
zone where an object moved after leaving a or b, and ex-
pressing that the object must come back to a via the same
zone. Each occurrence of a variable in a pattern must be in-
stantiated to the same value. Labels or variables can be con-
catenated (for instance @x.a in our example) to describe a
path, or grouped in sets (for instance (a|b)) to describe a
union of zones. The “+” operator expresses the fact that the
object can stay an undetermined time in a given zone, but
at least one time unit. Alternatively, one can associate to
each label simple temporal constraints of the form

�
min,

max
	

where min and max denote respectively the minimal
and maximal number of time units spent in the zone.

Intuitively, an object � matches a pattern � if the fol-
lowing conditions hold:

1. one can find a word in the language ��� �"! which is
equal to a suffix of the trajectory of � , modulo an as-
signment of the variables in � .
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Figure 1: Objects moving over a partitioned map

2. the time spent in each zone complies with the temporal
constraint expressed in the pattern.

For instance an object whose trajectory is represented
by the sequence [f.d.c.b.a.d.e.d.a] (we omit the
temporal information for simplicity) matches the pattern
above where the value of the variable @x is set to the la-
bel d. The suffix in boldface is then a word in the language
denoted by the pattern.

The suffix represents here the most recent part of the tra-
jectory received from the continuous stream of GPS events.
It determines whether an object belongs or not to the result
set of a query. Note also that, since the trajectory repre-
sentation evolves as new events are received, the matching
must be evaluated periodically – almost continuously. Our
goal is to perform this evaluation with minimal space and
time consumption.

Patterns can easily be introduced in a SQL-like query
language, as illustrated by the following examples which
will be used throughout the rest of the paper. The syntax of
regular expression is that of the Perl language [26].

� Q1. Give all the objects that traveled from a to f,
stayed at least 2 minutes in f and then traveled from
f to c.

SELECT *
FROM Mob
WHERE matches(traj,’a.f

�
2, � .c’)

The matches function checks whether a suffix of the
spatio-temporal attribute traj matches the mobility
pattern a.f.c. An additional temporal constraint
states that the object must spend at least 2 time units
(e.g., 2 minutes) in f.

� Q2. Give all the objects that stay in a or b all the
time except for one minute when they were in another,
third, zone.

SELECT *
FROM Mob
WHERE matches (traj,’(a|b)+.@x.(a|b)+’)
AND @x != ’a’ AND @x != ’b’

This example requires a variable @x which expresses
a move not assigned to a specific label but instantiated
to the choice of a moving object when it leaves a or b.
It is possible to express additional constraints on the
instantiations allowed for a variable, using equalities
or inequalities. The user requires in this example the
object to leave a or b for a third, distinct, area.

� Q3. Give all the objects that went throughf to another
zone then went to d or c, and came back to f using
the same zone.

SELECT *
FROM Mob
WHERE matches (traj,’f.@x+.(d|c)+.@x+.f’)
AND @x != ’f’

Let us turn now to the query evaluation process, and in
particular to the continuous evaluation which maintains a
result by adding or removing objects. We consider two es-
sential criteria for measuring the easiness and efficiency of
this evaluation:

1. Do we need to consider the past moves of an object to
evaluate a query?

2. What is the amount of memory required to maintain a
query result?

Consider first the case of patterns without variable.
Evaluating a pattern � is then a standard operation which
simply requires to build the Finite State Automata (FA) that
recognizes the language ��� 
 ��� , where

���
is the regular

language denoted by � and � is the set of labels of the
map.

In the general case, the FA associated to a regular ex-
pression is non-deterministic. Then an object � might be
associated to several states at a given time instant, and we
must record the list of current states for � . This list can be
represented as a mask of bits, one bit for each state of the
FA. The value 1 (resp. 0) for a bit means that � is (resp.
is not) in the associated state. This gives a rather compact
structure: for a pattern with 8 symbols, a mask of 8 bits
(one byte) must be recorded for each object. One can track
a database of one million objects with only one megabyte
in main memory.

The pseudo-code of the procedure HandleEvent(q, id, x,
y) summarizes how to actualize the result of a query 	 when
a GPS event is received, giving a new location ��
 �
� ! for the
object � . The reference map is a set of zones denoted by � .

HandleEvent (q, o, x, y)
begin

// Compute the current zone, �
� = PointInPolygon(M, x, y)
// Get the label of ��

= label( � )
// For each bit set to 1 in the status of � ,
// compute the transition

�

3



for each bit � with value 1 in ���������	��

Compute �
����� ������� � ��� ��� !
Set the bit � to 1 and the bit � to 0 in ������������


end for
end

The result set of 	 can then be updated according to the
new status of object � . Essentially, if at least one of the new
states is an accepting one, � will be in the result set, else it
will be out of this result set. In this simple case we obtain
a direct answer to the two questions above:

1. It is not required to maintain historical information
on a trajectory, since, it suffices to know the current
state(s) of the FA, reached by taking account of the
events received so far.

2. The space required to maintain a query result is, in the
worst case, the set of all states in the FA (which might
be non-deterministic) and is therefore proportional to
the size of the query1.

If we consider now patterns with variables, the language
is much more expressive, but some care is required for ex-
ecuting queries. Take for instance the example Q3 above.
Each time an object leaves the zone f for another one, a
new label is bound to the variable @x. One must then store
this value in order to check for the consistency of any fur-
ther occurrence of @x.

The next section is devoted to the data model, and fo-
cuses on the evaluation of queries with variables. We show
that we can still avoid to rely on historical information on
trajectories, and study more specifically the memory re-
quirements for several classes of queries.

3 The model
We consider an embedding space partitioned in a finite set
of zones, each zone being uniquely labeled with a symbol
from a finite alphabet � . The time axis is divided in con-
stant size units. For concreteness we still assume in the
following that the time unit is 1 minute. We also assume
a set � of variables with ����� �"! and denote as # the
union �%$&� . In the following, letters a, b, c, . . . will de-
note symbols from � , and @x, @y, @z, . . . variables. We
assume the reader familiar with the basic notions of regular
expressions and regular languages, as found in [12].

3.1 Data representation and query language

We adopt a standard extended relational framework for the
database, with ' denoting the relation of moving objects,
and �


 ��(���� the trajectory of an object � . The representation
of trajectories is then defined as follows:

Definition 1 (Representation of trajectories) A trajec-
tory is represented by an expression of the form

� � ��� � 	�
 � � ��� � 	 
�������
 � � ��� � 	
1It is possible, for any regular expression ) , to construct a FA whose

number of states is equal to the number of symbols in ) .

where �*� � �+�-, ��
�
�
��/. are symbols from � and
� � repre-

sents the number of time units spent in the zone ��� .
Hereafter, we shall use the term “trajectory” to mean its

representation. For convenience, we shall often omit the
temporal components and use a simplified representation
of a trajectory as a word 0 � ��
 � � 
�������
 � ��1 in � � .

A natural choice is to build mobility patterns as regular
expressions on #2� �3$4� , and to search for the suffix
of trajectories that match the expression for some value of
the variables. Consider for example the regular expression5 � a.@x+.b+.@x. The trajectory ��� f.d.a.c.b.c
matches

5
because we can find a word 67� a.@x.b.@x

in the language denoted by
5

( 6 is called a witness in the
following) and an instantiation 879 �

@x 9:�<; 	 such that
8���6�! is a suffix of � . However this approach raises some
ambiguities regarding the role of variables. Consider the
following examples:

1. Let
5

be the regular expression b.(a|@x)+.c.
Then the trajectory b.a.c has two witnesses in the
regular language denoted by

5
: b.@x.c and b.a.c.

In the first case @xmust be instantiated to a, but in the
second case any value of @x is acceptable.

2. Let
5

be the regular expression
a.(@x|@y).b.(@x|@y). The variables @x
and @y can be used interchangeably, which makes the
role of variables undetermined.

As shown by the previous examples, if we build mo-
bility patterns with unrestricted regular expressions over
# , the assignment of variables is non deterministic, and
sometimes meaningless. For safety reasons, when read-
ing a word 6 and checking whether 6 matches a mobility
pattern � , we require each variable in � to be explicitely
bound to one of the symbols in 6 . We thus adopt a more
rigorous definition of the language by considering only un-
ambiguous regular expressions on # such that each variable
always plays a role in the evaluation of the query. We need
first to introduce marked regular expressions.

Definition 2 (Marked expressions [2]) Let
5

be a regu-
lar expression over the alphabet # . We define the marking
of
5

as the regular expression
5>=

where each symbol of #
is marked by a subscript over ? , representing the position
of the symbol in the expression.

For instance the marking of the regular expression
a � .@x.((b.a)|(c.b)).c.@x � .a is the expression
a �� .x �

.((b @ .a A )|(c B .b C )).c D .@x E .a F . We can
now define mobility patterns as the class of regular expres-
sions that satisfy the following property:

Definition 3 (Mobility patterns) A mobility pattern is a
regular expression � over # such that each variable of � =
appears in each word of the language ����� = ! .

4



This property ensures that each variable in any pattern
is always assigned to a relevant label during query evalu-
ation. The expression � = (a|b)+.@x.(a|b)+ is for
instance a mobility pattern because @x appears in all the
words of the language ��� �"! . Any successful matching of� with a trajectory t results therefore in an assignment of
@x to one of the symbols of t. It can be tested whether a
regular expression matches the required condition, and thus
can be used as a mobility pattern.

Proposition 1 There exists an algorithm to check whether
a regular expression is a mobility pattern.

In the following we shall denote as ����( ���"! the set of
variables in a pattern � . The query language and its se-
mantics are now defined as follows.

Definition 4 (Syntax of queries) A query is a pair ��� ��� !
where � is a mobility pattern and

�
is a set of constraints

of the form � ������ � , for � ��� � ��� ��$�� � ( � �"!
Let 	 � � � ���	� ����
�
�

��� 	 ! be a query. The answer to

of 	 over ' , denoted � . ��� 	�! , is a subset of ' defined as
follows:

Definition 5 (Semantics of queries) An object �
� ' be-

longs to � . ��� 	�! if there exists a mapping 8 9 ��
 � , called
a valuation, with the following properties:

1. 8 satisfies all the constraints
� � � � � , ��
�
�
����

2. �

 ��( ��� belongs to � � 
 ��� 8 ���"! ! .

The constraints in a query can be used to forbid ex-
plicitely a variable to take a value (e.g., @x

�� a). The
domain of a variable @x for a given query 	 , denoted�

��� � � @x ! , represents the set of possible values for @x
given the constraints of 	 .

Example 1 The following queries correspond to the 3 ex-
amples given in Section 2.

1. 	 � � � � 
�� ��� ��	�
 ; � ! !
2. 	 � � ������� ��! � 
�� 
 
 ����� ��! � ���	� 
 ��3� ��� 
 ���� 	 !
3. 	�@�� � ��
�� 
�� 
 � ;�� � ! � 
�� 
�� 
 �����	� 
 �� � 	 !

3.2 Query evaluation

We describe now an algorithm for evaluating a query 	 .
First we show how to obtain an automaton which, given a
mobility pattern � , accepts the trajectories that match � .
This automaton also provides the valuation of variables in� . In a second step we explain how the automaton can
be used at run time, and discuss the size of the memory
used to store the relevant information. For simplicity, we
consider the automata that accept the language � ���"! : their
extension to automata that accept ��� 
 ��� �"! is trivial and
can be found in any specialized textbook.

Since a mobility pattern � is a regular expression over
the alphabet # , we can build a non-deterministic finite state
automaton (NFA) ��� that accepts the language of # � de-
noted by � . Starting from ��� we can build a new automa-
ton, �� , which checks whether a trajectory � of ��� belongs
to 8��������"!�! , and delivers the valuation 8 .

Essentially, �� is � � with a management of variable
bindings based on the following extensions: (i) a transition
labeled with a variable @x on a symbol ! sets the value of
@x to ! if @x was not yet bound and (ii) with each state
one maintains the bindings of the variables met so far. The
definition of �  is as follows.

� The set of states of �  , �������#"�� �$�  ! , is �������#"����%��� !�&
�(' )+*�,.- �0/ ' , i.e., all the possible associations of a state
of �1� with a valuation 8 of the variables in � . A state
of �  is denoted 243 � 865 .

� The set of accepting states of �  , � ;
;+"87 ���%�  ! is
� ;
;+"87 ���%�1� !9& �(' )+*�,.- �0/ ' .

� The transition function of �: , �; , is drawn from the
transition function of � � , � � , as follows:

– if �+� �<3�� � ! ! �=3 � is a transition of ��� with! � � , then �  �#2>3�� � 8?5 � ! !���2@3 � � 8?5 . In
other words the transition has no effect on vari-
able bindings.

– if � � �<3 � ��� 
�! �A3 � is a transition of �� with� 
 � � , then �. �#243 � � 8�5 � ! ! �BCCCD CCCE
243 � � 8�F � 
 9:��!G5

if 8�� � 
 ! is undetermined and the binding
of
� 
 with ! is allowed by the constraints.243 � � 8�5 if 8�� � 
 ! ��! .

is undefined otherwise.

Whenever an accepting state 2H3 � 8�5 of �  is reached,
the input trajectory is accepted and the valuation 8 defines
the instantiations of all the variables (recall that, by defini-
tion, any word in a language defined by a mobility pattern
contains all the variables).

In order to check at run time whether an object �
matches a mobility pattern, we do not need to fully con-
struct the automaton described above. Instead, we start
with a minimal representation, and build in a progressive
way, according to the symbols appended to the trajectory of

� , the instantiation of the variables which potentially leads
to an accepting state. Here is an example that illustrates the
process (more details can be found in the long version).

Example 2 Consider the mobility pattern � ������ ��! � 
�� 
 
 ����� ��! � . Figure 2 shows an NFA automa-
ton �1� which recognizes the words of ��� �"! , 30I being the
initial state and 3�A � 3 B the final states.

Assume that one receives successively the following
events for an object � : a, a, b, b, c and a. Each row
in the table of the figure 3 shows the states of the NFA �J 
after reading a symbol, as well as the possible valuations
of variable @x. The accepting states are in bold font and
mean that the trajectory belongs to the query result set.
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Figure 2: An automaton for the mobility pattern (a|b) � .@x.(a|b) �
Input Reached states in ���
a �����	� @x 
���

a[2] �����	� @x 
���
���������� @x 
 a 

a[2].b ������� @x 
���
���������� @x 
 b 
���������� @x 
 a 

a[2].b[2] ������� @x 
���
���������� @x 
���
���������� @x 
 a 
��	������� @x 
 b 

a[2].b[2].c ����� � @x 
�!"

a[2].b[2].c.a ����#$� @x 
 c 


Figure 3: Evaluation of a undeterministic query

Example 2 shows that we might have to maintain, dur-
ing the analysis of an input trajectory, several valuations
associated to a same state. In the worst case one might
have � �������#"�� �$� � !.� &G� � % � simultaneous states to maintain,
representing all the possible instantiations of variables that
lead to an accepting state.

Depending on the application, the size of the database
and the number of queries, maintaining a large amount of
informations to continuously evaluate a query might be-
come costly. In some cases we might therefore want to
restrict the expressive power of the language to obtain very
low memory needs. Consider for instance a web server
providing a subscribe/publish mechanism over a (possibly
large) set of moving objects. In such a system, web users
can register queries, waiting for notification of the results.
The performance of the system, and in particular its abil-
ity to serve a lot of queries under an intensive incoming of
events, depends on the efficiency of the query result main-
tenance, and therefore on the size of the data required to
perform this maintenance. We define below a fragment
of the query language which meets the requirement of this
kind of application.

3.3 Deterministic queries

The class of deterministic queries is such that, at any in-
stant, there is only one possible instantiation for each vari-
able of the mobility patterns. Deterministic queries are de-
fined by the following property:

Definition 6 (Deterministic queries) A query 	 � � �#�
is

deterministic iff &	� � � � � � $ � ! � � & @x � � � � 
 @x 
 � �
��� �"!(' � ) ! � � ��� � � @x ! � � ) 6 � � � $�� ! � � � ! 6 � �����"! .

The intuition is that when it becomes possible to instan-
tiate a variable during the analysis of a trajectory, then this
transition is the only possible choice. This makes the bind-
ing of variables deterministic, and ensures that, for a given
word, there is only one (if any) possibility to instantiate a
variable.

Example 3 The following examples illustrate determinis-
tic queries.
� The query 	 � f.@x.(c|d).@x.f � ! ! is determinis-

tic. Whenever a f symbol has been read, the only pos-
sible choice is to bind @x to the symbol that follows
immediately f.

� The query 	 � � ��� ��! � 
�� 
 
 � � � ��! � � ! ! is non-
deterministic since the words a.@x.a.b and
a.b.@x.b both belong to � ���"! . However
	 = � � � � ��! � 
�� 
 
 � ��� ��! � ��� � 
 �� � �
� 
 �� � 	 ! is
deterministic.

We state the following properties of deterministic
queries without the proofs which can be found in the long
version.

Proposition 2 Let 	 ��� �#� ! be a deterministic query. Then,
for each word 6 of � � , there is at most one witness of 6 in��� �"! .

Consider again the queries of Example 3. In the first
example an accepted word can only have one single wit-
ness, either f.@x.d.@x.f or f.@x.c.@x.f. In the
second example, with constraints

�
@x
�� a �

@x
�� b 	

, any wit-
ness consists of two words of

�
a

�
b

	 � , separated by a sym-
bol distinct from a or b. It follows that if 	 � � �#� ! is a
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deterministic query, the memory space required to check
whether a word matches 	 is � � � F6� ����( ���"!;� , where � � � rep-
resents the number of symbols in � . Essentially, we need
one FA for 	 , plus a storage for each variable, and we can
build an FA with a number of states equal to the number of
symbols in the expression.

When evaluating a continuous query, we need to main-
tain for each object � the set of its current states, as well
as the binding of variables and this suffices to determine, at
each GPS event, whether � enters, stays or quits the query
result.

Example 4 Let us consider again the query 	 ��� ��� ! , with� � � ��� ��! � 
�� 
 
 � ��� ��! � and
� � �	� 
 �� � �
� � ��>� 	 . The

automaton remains identical (see Figure 2) but the evalu-
ation on input a[2].b[2].c.a is now as presented in
the table of the figure 4.

The properties of deterministic queries ensure that the
required amount of memory is independent from the size
of � , and thus of the underlying partition of space used to
describe the trajectories of moving objects. This property
might be quite convenient if the space of interest is very
large, or if the number of queries to maintain is such that
the memory usage becomes a problem.

4 Conclusion and further work
We described in this paper a new approach for querying a
moving object database by means of mobility patterns. Our
proposal is based on a data model which allows to retrieve
objects whose trajectory matches a parameterized sequence
of moves expressed with respect to a set of labeled zones.
We investigated the applicability of the model to continu-
ous query evaluation, showed how to maintain incremen-
tally the result of a query, and identify a fragment of the
query language such that the amount of space required to
maintain this result is very low.

A version of the language can easily be introduced as
complement of a geometric-based extension of SQL, as
shown by the query samples proposed in Section 2. The
properties of the language make it a convenient candidate
for mobile object tracking based on sequences patterns, and
its simplicity leads to an easy implementation.

We are currently developing a prototype to assess the
relevancy of this approach in a web-based context where a
lot of clients can register queries, receive an initial result
set, and wait for notification of updates to this result set.
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Abstract

With the recent progress of spatial information
technologies and mobile computing technologies,
spatio-temporal databases that store information of
moving objects have gained a lot of research in-
terests. In this paper, we propose an algorithm
to extract mobility statistics from indexed spatio-
temporal datasets for interactive analysis of huge
collections of moving object trajectories. We focus
on mobility statistics called the Markov transition
probability, which is based on a cell-based organi-
zation of a target space and the Markov chain model.
The algorithm computes the specified Markov tran-
sition probabilities efficiently with the help of an R-
tree spatial index. It reduces the statistics computa-
tion task to a kind of constraint satisfaction problem
and uses internal structure of an R-tree in an efficient
manner.

1 Introduction
The wide use of digitized geographic data has increased the
demand for the spatial database technology to manage huge
volume of spatial information. Moreover, effective data man-
agement for mobile users has become more important as the
spreading use of mobile devices. Development of spatio-
temporal database technologies to support moving objects is
one of the important database research areas [5].

In the research field of moving object databases, devel-
opment of efficient indexing techniques is one of the impor-
tant issues and there exist many proposals of spatio-temporal
indexes [5]. Additionally, there are some proposals for
the extraction of statistical information from spatio-temporal
databases [3, 8, 11, 12]. Statistics concerning spatio-temporal
data is not only useful for the efficient query processing but
also in mobility analysis [13] to analyze the movement pat-
terns of objects from accumulated spatio-temporal trajectory
data. Since accumulated trajectory data may have huge vol-
ume, we need an efficient method to calculate statistics.

In this paper, we propose an algorithm for extracting mo-
bility statistics from moving object trajectories with the sup-
port of spatial indexes. Especially, we consider the mobil-

Copyright held by the author(s).
Proceedings of the Second Workshop on Spatio-Temporal
Database Management (STDBM’04),
Toronto, Canada, August 30th, 2004.

ity statistics based on the Markov chain model. The Markov
chain model in spatio-temporal data analysis is used for an-
alyzing movement tendency of moving objects such as how
population moves from a certain region to other regions while
a specified period [13]. Using such statistical information, we
can estimate with high probability whether an object at some
region will move to another region in the next period.

In this paper, we assume that trajectories of moving ob-
jects are accumulated in a spatial index such as an R-tree and
aim to estimate Markov transition probabilities efficiently us-
ing the index. The problem of estimating a transition prob-
ability from an R-tree is formulated as a kind of constraint
satisfaction problem (CSP). This paper describe the frame-
work, the algorithms, and the evaluation results.

This paper is organized as follows. Section 2 introduces
the notion of mobility statistics based on the Markov chain
model. Section 3 describes the related work. Section 4 shows
a general trajectory indexing approach based on R-trees; it
is used as the basic assumption to construct our algorithms.
Section 5 presents the naı̈ve algorithm for extracting mobil-
ity statistics from an R-tree, and Section 6 describes a more
efficient algorithm that is based on the constraint satisfaction
paradigm. Section 7 shows an illustrative example of query
processing of the proposed algorithm. Section 8 presents the
experimental setup and the results. Finally, Section 9 con-
cludes the paper.

2 Markov chain-based mobility statistics

As shown in Fig. 1, we assume that the entire map is divided
into cells. Each cell must be a rectangle but not necessarily in
a uniform size. A cell number is assigned to each cell so that
we can specify a cell using its number. The figure shows the
situation that object A that was in cell �� at � � � has moved
to cell �� at � � � � �, then moved to cell �� at � � � � �.

t = � t = ��� t = ���

A

A

cell c0
cell c1

cell c2

A

Figure 1: Notion of the Markov chain model

Suppose that we want to estimate the probability���������
that an object existing in cell �� next moves to cell ��, like
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object A, using the trajectory data stored in a spatio-temporal
database. Assume that the database stores a huge volume
of trajectories of moving objects and each trajectory record
starts from � � � and ends at � � � . If we can determine
which objects are located in a given cell at a specified time
(� � �� �� � � � � � ), we can compute the probability as follows:

��������� �

����
��� �	
������ �� � 	
������ �� ���

����
��� �	
������ ���

� (1)

where 	
������ �� is a function that returns the set of objects
that were in cell �� at time �. In this formula, the denominator
is the sum of the number of objects that existed in �� at each
time � � �� � � � � � � �. Among these objects, the ones that
have moved to �� in the next time period are included into the
count of the numerator.

The probability ��������� corresponds to a transition
probability of a first-order Markov chain because the next
state (cell ��) is predicted using the current state (cell ��) only.
We can generalize this formulation to multiple orders. The
probability that an object which was in cells ��� ��� � � � � ����
with this order in each period of unit time interval moves to
cell �� in the next period is denoted as ��������� � � � � �����,
and estimated by the following generalized form:

��������� � � � � ����� �

����
��� �

��

��� 	
������ �� ���
����

��� �
����
��� 	
������ �� ���

� (2)

Note that the set of cells ���� ��� � � � � ��� may contain du-
plicates.

If we can estimate Markov transition probabilities effi-
ciently, we would be able to forecast the cell where a moving
object next moves to. Moreover, given the status of moving
objects at � � � , we can simulate how the movement status
changes as time passes (� � ���� �� � � �). As described later,
our algorithms allow us to specify a cell decomposition of
the target space and to set a unit time interval in an interac-
tive manner, based on the analysis requirement. Therefore,
we can say that the proposed algorithms are suited for inter-
active exploratory mobility analyses.

In this paper, we assume that moving objects obey a sta-
tionary process and do not change their transition behaviors
depending on time. Treatment of the non-stationary case will
be considered in the future work.

3 Related work
3.1 Spatio-temporal data mining

Estimation of statistics from databases is important for the
efficient evaluation of queries. Estimated selectivity value
for a query is often used in query optimization. There are
a few proposals of selectivity estimation methods for spatio-
temporal databases. For example, [3] proposes a selectivity
estimation method for a spatial range query (does not include
a temporal dimension) on a spatio-temporal database which
stores moving point objects. [11] generalizes this approach
and provides a selectivity estimation method for a spatio-
temporal range query which changes the shape of a query
area depending on time.

A Markov transition probability can be seen as a special
kind of an association rule [4], but the probability considers
“sequences” of spatial object movements instead of “sets” of

items in association rule mining. Namely, the Markov tran-
sition probability represents a kind of sequence association
rule in a spatio-temporal environment.

According to sequence mining from spatio-temporal
databases, we can find some approaches. [8] proposes a
method of user moving pattern mining for a mobile envi-
ronment. [12] presents an efficient mining method of spatio-
temporal patterns from environmental data. Both approaches
aim to find frequent spatio-temporal patterns defined as se-
quences of locations. In contrast to our dynamic cell speci-
fication approach, their methods require that a space decom-
position (i.e., the set of sequence items) is fixed beforehand.

Additionally, the use of a spatial index is another char-
acteristics of our research compared with the related papers.
Using the internal information of a spatial index, the pro-
posed algorithm calculates mobility statistics efficiently.

3.2 Solving CSPs using spatial indexes

The purpose of this research, namely, to derive transition
probabilities between cells from moving object trajectories
indexed by a spatial index, can be reduced to a task to enu-
merate groups of objects each of which satisfies a kind of
temporal constraint, as described later. A technique to enu-
merate all groups of objects, each of which fulfills a speci-
fied spatial relationships, using a spatial index R-tree is pro-
posed in [7]. The method aims to solve a constraint satisfac-
tion problem (CSP) defined by spatial constraints. An exam-
ple of a query is “Find all the tuples ��� �� 	� of spatial ob-
jects each of which satisfies the constraint 	
��������� �� and
�	������ 	�”. The proposed algorithm descends a spatial in-
dex from the root toward the leaves by pruning non-necessary
candidates and enumerates the groups of objects that satisfy
the constraints. We extend this technique according to our
context.

The process of enumerating object groups that satisfy the
given constraints from a spatial index can be considered as
a kind of spatial joins with spatial indexes [2]. In contrast
to [7] that searches the object groups satisfying some spatial
constraints, our approach aims to find object groups that sat-
isfy temporal constraints derived from the definition of the
Markov chain model. In our approach, spatial constraints
on cells are used to restrict the search space of the solutions
that satisfy temporal constraints. Although our approach is
an extension of [7] in the sense that we reduce an enumera-
tion problem to CSP, the constraints used are totally different
from [7].

4 Indexing spatio-temporal objects

4.1 Indexing methods for trajectories of moving objects

As described in Section 2, the key point to estimate a transi-
tion probability is to find the set of objects 	
����� �� which
were in cell � at time �. Efficient use of available information
from the underlying spatio-temporal database is indispens-
able for that purpose. In our approach, we assume that the
trajectories of moving objects are indexed by a spatial index
R-tree.

There are some existing approaches to trajectory data in-
dexing based on R-trees. For example, [6] introduces two in-
dex structures; 3D R-trees incorporate a temporal dimension
and represent trajectory data with three dimensions, and 2+3
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R-trees represent the positions of moving objects using two-
dimensional R-trees and represent movement histories using
tree-dimensional R-trees. STR-trees [9] decompose a trajec-
tory into multiple line segments to store them into its R-tree-
based index structure.

Next we introduce an R-tree-based trajectory indexing
method that is based on a simple and general approach. The
algorithm presented later assumes the use of them.

4.2 Illustrative example of trajectory indexing

As an example, let us consider a moving object in one dimen-
sional space. Figure 2 shows that objects A and B move on
the �-axis from � � � to � � � �� ��. A trajectory is ex-
pressed using a curve. Since a real trajectory is complex as
shown, some approximation is necessary for the representa-
tion on a computer. Each point on the curves shown in Fig. 2
represents a sampled point at every time. Using this approx-
imation, the trajectory of each object can be expressed by a
sequence of (time, �-value) pairs. In an environment where
the position of a moving object is detected by a GPS at every
unit time, this representation would be a natural one.

t

A

B

0

x

1 2 3 4 5 6 7 8
(= )T

Figure 2: Representation of trajectories

If the position of a moving object 
 at time � � �
(� � �� �� � � � � � ) is represented as a point ���� � � � � ��� in a
�-dimensional space, we can construct a (���)-dimensional
R-tree and represent information about 
 at each time � as a
(���)-dimensional point ���� � � � � ��� ��, and store it with the
object id of 
 into the R-tree. This is a kind of generalization
of 3D-R trees [6].

5 Naı̈ve algorithm for probability estimation
Here we introduce some notions and present the naı̈ve transi-
tion probability estimation algorithm which is directly based
on the definition of the Markov transition probability.

5.1 Preliminaries

First we introduce some terms. The times � � �� �� � � � � �
for each of which we collect statistics value are called sam-
pling times. The time interval length between two adjacent
sampling times (e.g., one minute) is called a base sampling
period.

Assume that � has the form � � �� and a user can spec-
ify a user-level sampling period �� (� � � 
 �). For exam-
ple, if a user specify the user-level sampling period as �� � �
(� � �), the estimation of a probability is performed using
the items for � � �� �� �� � � � � � . This generalization allows
us to perform coarser mobility analysis if we want. If the
base sampling period is too small for an analysis (e.g., one
second), we can use a longer sampling period (e.g., 64 sec-
onds). Although we only consider the case of � � � in the

following discussion, we can easily extend the proposed al-
gorithms to more general cases.

Next we describe the restrictions on cells. Each cell region
must have a rectangular shape and any pair of cells should not
overlap, but a cell partitioning can contain cells with different
sizes (e.g., Fig. 1). A cell partitioning does not have to cover
the entire space; it should only cover the target area on which
the user has interests. Moreover, we do not have to determine
a cell partitioning beforehand; we can specify a partitioning
dynamically according to the analysis requirement. There-
fore, a user can specify fine cell partitioning for the region on
which the user has high interests and coarse cell partitioning
to other regions. Also, we can set high resolution settings to
high-density regions where the traffic is heavy.

In summary, our approach allows a user to specify a user-
level sampling period and cell decomposition. The features
enable exploratory mobility analyses.

5.2 Formulation of the Problem

Now consider to estimate an order-� Markov transition prob-
ability shown in Eq. (2) using a spatial index R-tree. We gen-
eralize the problem from the problem of a specific combina-
tion of cells ��� � � � � �� to the following more general one:

Definition 1 (Transition Probability Estimation Problem)
Assume that we are given � � � sets of cells
�� � ���� �� � � � � ��� ������ � � � �� � ���� �� � � � � ��� �����. For
a combination of cells ���� ��� � � � � ��� � ������� � ����,
if ��������� � � � � ����� is not undefined, output the value.
Note that �� and �	 (� � �� � � �) may have an overlap.

We say that a probability ��������� � � � � ����� is unde-
fined when there are no moving objects which existed on
��� � � � � ���� at each unit time. It corresponds to the situa-
tion when the denominator of Eq. (2) is 0.

5.3 Naı̈ve algorithm

Consider the program estimating ��������� � � � � ����� for a
specific cell combination ��� � � � � ��. For this purpose, we
need to calculate the following two sets � and �:

	 � is a set of the objects which were in cell �� when � � �
(� � �� �� � � � � � � �), and in cell �� when � � � � �,
� � � and in cell ���� when � � � � �� �:

� � �
 � 
� � ��� �� � � � � � ��� 
 � 	
������ ��

� 
 � 	
������ � � �� � � � �

� 
 � 	
�������� � � �� ���� (3)

	 � is a set of the objects which belong to � and were in
cell �� when � � � � �:

� � �
 � 
 � � � 
 � 	
������ � � ���� (4)

The naı̈ve algorithm is shown in Fig. 3. Assume that the
underlying spatial index can support function range query(�,
�), which receives a rectangle region � and time � and returns
ids of the point objects contained in � at time �.

Lines 2 to 12 are the process to output
��������� � � � � ����� for a combination of cells ��� � � � � ����
and each �� � ��, and iterates ���� � � � � � ������ times.
Lines 3 to 10 are its body and executed � � � � � times.
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Procedure naı̈ve estimation
Output: A list of “defined” ��������� � � � � ����� values
1. for each ���� � � � � ����� � �� � � � � � ���� do
2. ������ �� �; 	������ � �� �
3. for � �� � to 
 � � do
4. for � �� � to �� 	 do ���
� �� �
��
 ��
������ �� ��;
5. ������ += �

����

���
���
��;

6. for each �� � �� do
7. ���
� �� �
��
 ��
������ � � ��;
8. 	��������� += �

��

���
���
��;

9. end
10. end
11. if ������ � � then break;
12. for each �� � �� output(��� � � � � ��� 	����������������);
13. end

Figure 3: The naı̈ve algorithm

Each of the iteration contains � times (line 4) and ����
times (line 7) invocations of range queries. Therefore,
the number of range query invocations of the algorithm is
���� � � � � ������ � ��� � � � �� � �����. When � � �
and � � ���� hold, the value can be approximated as
� � ���� � � � � � ������. Since it is proportional to � , a
huge number of range queries are issued for large � values.

In the following section, we describe a more efficient al-
gorithm which utilizes the internal structure of an R-tree.

6 CSP-based algorithm
6.1 Constraints derived from Markov chain model

In this subsection, we derive constraints to compute Markov
transition probabilities. The algorithm searches all the solu-
tions which satisfy the derived constraints.

Let �� �� � �� � � � � �� be a set of time intervals in which
the trajectory of a moving object 
 and the cell regions of cell
set �� overlap. Note that a trajectory may overlap with a cell
region of � � �� multiple times; in that case �� contains mul-
tiple time intervals for �. Here we assume that the start time
and the end time of a time interval take integer values. Next,
given two time intervals � and �, we denote their overlap by
� 
 �. For example, it holds that ��� �� 
 ��� �� � ��� ��. And
we denote the null time interval by �. For the overlap of a
time interval set �� and a time interval �, we can naturally
extend this idea and define it as

�� 
 � � �� 
 � � � � ��� � 
 � �� ��� (5)

For example, the equation ���� ��� ��� ��� ���� ����
 ��� �� �
���� ��� ��� ��� holds. Additionally, we say that the predicate
� � �� is true when � is contained in some of the time inter-
vals in ��. Last, we define ��������� �� as a set of time in-
tervals which is obtained by shifting each time interval in � �

with � unit times. For example, ���������� ��� ��� ���� �� �
���� ��� ��� ���.

Now consider formulas � (Eq. (3)) and� (Eq. (4)) defined
in Subsection 5.3. The following proposition holds.

Proposition 1 A moving object 
 with associated sets of
time intervals �� satisfies 
 � � when

�� � ��� � � � � ��� �� 
 ��� � � �� �� �� � (6)

and there is an integer � that satisfies

�� � ��� � � � � ��� � � � � �� 
 ��� � � �� ��� (7)

The condition above is equivalent to the following condition:
there is an integer � such that

�� � ��� � � � � ��� �� 
 ��� � � �� �� �� �
� � � ��������� ��� 
 ��� � � ���

(8)

The condition that 
 satisfies 
 � � is also given by replacing
all �’s in Eq. (8) by (�� �)’s.

We explain the meaning of Eq. (6). Let us consider the
case of � � � as an example; the condition of Eq. (6) becomes
�� 
 ��� � � �� �� �. From its definition, �� is a set of time
intervals in which the regions of cell set �� contain object

. The time interval ��� � � �� is a constraint derived from
the fact that object 
 corresponds to the �-th state (cell set
��) of the Markov chain. For the illustration, suppose that
�� � ��� � � � �� � � � � ��� (
 is contained in �� only
when � � � � � � �). In this case, we cannot construct an
(���)-length transition sequence (an order-� Markov chain)
for 
 which begins at � � � � � � �. The maximal � value
for which an (�� �)-length transition sequence may exist is
� � � � �. In this case, there is a possibility that an object 

has moved to each of the specified cell sets ��� ��� � � � � ��

at � � � � �� � � � � ���� � � � � � � � , respectively. Other
cases (� � �� � � � � �) are treated similarly.

Eq. (7) says that we can select an integer � such that � �
� � � is included in the time interval �� 
 ��� � � � � �� for
each �� (� � �� � � � � �). The condition means that object 
 is
contained in ��� ��� � � � � �� at � � �� � � � � �� � � � � � �
� � �, respectively. Namely, it means that 
 � �.

6.2 Search algorithm for CSP solutions

6.2.1 Main routine

The main routine to search constraint solutions is shown in
Fig. 4. At line 1, we assign the reference to the root node of
an R-tree to each element of (�� �)-dimension array �
���.
The role of the array is described later. Function FC count
called in lines 2 to 3 plays the main role in the algorithm.
At line 2, the function receives the cell sets ��� � � � � ����

and enumerates the objects that move according to the speci-
fied order-(�� �) Markov transition sequences. The result of
FC count is returned as an association array ��
���. We can
obtain the number of objects which moves ��� � � � � ���� with
this order as ��
������� � � �������, where ��� � � ������
is the concatenated string of the cell numbers. At line 3, the
occurrences of order-� transition sequences are enumerated
into ��
��� in a similar manner. Using these association ar-
rays, the estimated probabilities are outputted in lines 4 to 7.
The role of ��� ����, given as the argument of FC count, is
described later.

Procedure FC estimation(�, ����, �����, (��� � � � � ���� ��� ��
�)
Input: �: the order of Markov transition
����: the root node of the R-tree
�����: the number of levels of the R-tree
���� � � � � ���: a list of cell sets
��� ��
�: the maximal distance that an object can move in a unit time

Output: An estimated value for each “defined” ��������� � � � � �����
1. for � �� � to � do ����
��� �� ����;
2. ������ �� �� �������� 	� ������ ����
� ���� � � � � ������ ��� ��
��;
3. 	����� �� �� �������� ������ ����
� ���� � � � � ���� ��� ��
��;
4. foreach ���� � � � � ��� � �� � � � � � �� do
5. if ���������� � � ������� � � then
6. ���������� � � � � ���
7. 	��������� � � ���������������� � � ��������;

Figure 4: The main routine

As described below, FC count searches the solutions of
a constraint satisfaction problem from the root toward the
leaves of an R-tree. When the areas corresponding to the
specified cell sets are sufficiently smaller than the entire
space, we can estimate that the algorithm only accesses a
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part of the R-tree. Since FC count is called only twice, ef-
ficient processing can be achieved compared with the naı̈ve
algorithm.

6.2.2 Transition sequence enumeration algorithm

The algorithm FC count is shown in Fig. 5. This function
is an extended version of the algorithm proposed in [7] to
solve a spatial constraint satisfaction problem using an R-
tree. FC count looks for the solutions of constraints from the
root of an R-tree to the leaves using backtrack and pruning.

Function FC count(�, �����, ����
, ���� � � � � ���, ��� ��
�)
Output: �����: a hash table that contains the enumerated results
1. for � �� � to � do // set an initial solution set for each constraint
2. ����� 
�� �� �;
3. foreach � � ����
����������
� do
4. if �� ��
��
���� � �� then // � overlaps spatially with ��
5. ����� 
�� �� ����� 
�� � ����
6. ��������� �� ����� 
��; // insert child node sets
7. end
8. � �� �; // specifies the current target constraint
9. while true do
10. if ������������
 ��� then // no more next candidate
11. if � � � then return �����; // end of the procedure
12. else ���; continue; // backtrack
13. else
14. ��� ��� �� �
� �
!������������� // get next candidate
15. ��
������
��
 �� ��� ���; // assign the candidate for constraint ��
16. if ����� 	 	 then // set a valid time interval which ��
���� value can take
17. ��
�������
��
 �� � ��
��
����� ������
��
� ��� 
 � �� ���;
18. else ��
�������
��
 �� ��� ������
��
;
19. end
20. if � � � then // the constraints are satisfied by the current candidates
21. if ����� 	 	 then // the case of non-leaf nodes
22. for � �� � to � do ���
��� �� ��
������
��
;
23. �� �������� ������ 	� ���
� ���� � � � � ����;
24. else // the case for leaf nodes: increment count for the solution
25. �������
�����
�������
��
�# � � � #�
�����
������
��
����;
26. end
27. else // while the intermediate of constraint satisfaction
28. if check forward(�, �, �����, ���, ��
�, ������ � � � � ���� ��� ��
�)
29. ���; // examine the next constraint ����
30. end

Figure 5: Transition sequence enumeration algorithm

At lines 1 to 7, an initial solution candidate set is set to
�
������� (� � �� � � � � �). If �
������ is a non-leaf node, a
candidate set assigned consists of the child nodes of �
������;
otherwise a candidate set consists of the trajectory entries
(���-dimensional point objects) contained in�
������. Note
that �
� is a set-valued ����������� array, and �
�������
holds the candidate set for�	 while we are examining the sat-
isfaction of the constraints according to ��.

The predicate �� 	
�������	 � �� appeared in line 4 is used
to judge whether � overlaps with any cells contained in � 	 ,
and used to prune the candidates that do not satisfy the spatial
constraints.

Next we explain the while loop. In the loop, an array ����
maintains a partial solution while we are searching for a so-
lution that satisfies the constraints. When we process the �-th
constraint ��, �������� � � � � ������� �� hold a partial solution.

In the loop, we first try to set ������� a candidate which
may satisfy the �-th constraint ��. In line 10, we examine
whether �
������� is empty or not; if it is empty, we can
say that there are no candidates remained. When � � �, the
function terminates because there are no candidates that sat-
isfy the entire � � � constraints (since no candidate remain
for constraint ��, it is impossible to satisfy the entire con-
straints). If � � �, � is decremented and the while loop is

continued. This means that a backtrack occurs and we search
again using other candidates to check constraint � ���.

If �
������� is not empty, a new candidate is assigned to
��������
�� � at line 15. When ����� � �, ��� ����� is an
R-tree node; otherwise it is a trajectory entry. At lines 16
to 18, we set ������������!� the time interval which an ele-
ment assigned to ������� can take to satisfy the �-th constraint.
When ����� � �, ��� ����������!� is the interval which the
minimum bounding box (MBR) of an R-tree node ��� �
��
takes on the temporal dimension. At line 17, we take the in-
tersection of this interval and the time interval ��� � � �� ��
shown in Eq. (8) and assign it to ������������!�. The obtained
time interval represents that the trajectory entries stored in the
descendant of the R-tree node ��� ����� must satisfy this
temporal constraint to become solutions. When ����� � �,
we simply assign the value of ��� ����� on the temporal
dimension to ������������!�. In this case, the time interval
������������!� takes a 0-length period such as ��� ��.

At line 20, it is checked whether the current tar-
get is the �-th condition or not. When ����� � �,
FC count is called recursively taking the nodes bounded to
��������
�� �� � � � � ��������
�� � as the arguments and decre-
menting �����. When ����� � �, the entry of association
array �
��� is incremented because a new solution is found.
Function cell returns the id of the cell to which the given point
object belongs.

If � 
 �, function check forward called at line 28 is used
to check the current partial solution �������� � � � � ������� has
a possibility to generate a solution which satisfies all the fol-
lowing constraints. Such an examination is called forward
checking [7], a popular strategy for the efficient search of CSP
solutions. If check forward returns true, we increment � and
go to check the next (�� �)-th constraint. Otherwise, we can
safely say that the current partial solution �������� � � � � �������
does not produce a constraint satisfaction solution. In this
case, we back to line 9, then perform similar process for the
next candidate of �������.

6.2.3 Forward checking processing

Figure 6 shows function check forward. Based on the partial
solution �������� � � � � �������, the function checks whether
there is any solution candidates for the (� � �)-th to the �-
th constraints. If the candidates exist, the function assigns the
candidate set to �
��������� �� � ���� � � � � �� then returns
true. Otherwise it returns false.

In the loop from line 1 to 20, a candidate set �
���������
is computed according to each of the �-th constraint �� �
�� �� � � � � ��. In this process, if �
��� � ����� � � holds for
some �, we can say that there is no solution for the current tar-
get �������� � � � � �������, therefore the function returns false at
line 19. We first initialize the candidate set �
��������� then
iterates on the loop from line 3 to 18 by deleting a candidate
which do not satisfy the constraints.

At line 4, we consider the leaf node level. In this case,
��������
�� �� � � � � ��������
�� � holds an (� � �)-length tra-
jectory of a moving object. If the object id (��������
�� ����)
corresponding to the trajectory which we are checking
(��������
�� �� � � � � ��������
�� �) does not equal to the ob-
ject id (���") of the current candidate point data (�), we can
delete � from the candidate list because it does not constitute
a trajectory of a moving object.

At line 8, we calculate the valid time interval for �; note
that if ����� � � then � is an R-tree node, otherwise � is a
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Function check forward(�, �, �����, ���, ��
�, ����� � � � � � ���, ��� ��
�)
Output: if there are candidates ��
���� 	�� � � � � ��
���� for the given

��
����� � � � � ��
���� return ����, otherwise return ���
�
Note: modifies ��� as a side effect
1. for � �� �� 	 to � do // for each unchecked constraint
2. ������ 	���� �� ���������; // initialize the candidate set
3. foreach � � ������ 	���� do // for each candidate
4. if ������ � �� and ���
������
��
��� 
� �����
5. // � is a trajectory for other object
6. then goto line 17;
7. // calculate the valid time interval
8. ������ �� � ��
��
������
��
� ��� 
 � �� ���;
9. if ������ � � then goto 17; // ������ is empty
10. if � ��
��
�����"��������� ���� ��
�������
��
� � �
11. then goto 17; // does not satisfy temporal constraints
12. if not �� ��
��
���� � �� then goto 17;
13. // � does not overlap with the area of cell set ��
14. if �� �������
������
��
� �� � ��� ��
�� �� � �� then goto 17;
15. // we cannot move from ��
������
��
 to � within � � � unit times
16. continue; // since � satisfies the condition, go to the check of next �
17. ����� � 	���� �� ������ 	����� ���; // delete � from the candidates
18. end
19. if ������ 	���� � � then return false; // no remaining candidates of solution
20. end
21. return true;

Figure 6: Forward checking function

(���)-dimensional point constituting a trajectory. At line 10,
we examine an integer value � defined in Eq. (8) can actually
exist or not. At line 12, it is checked whether cell set �	

and � overlap or not. Finally, at line 14, the spatial distance
between the candidate for the �-th constraint ��������
�� � (if
����� � � then it is an R-tree node and if ����� � � then
a point object) and � using function sp dist. Note that when
we compute a spatial distance between R-tree nodes, we use
the minimum distance between their MBRs. If the computed
distance is larger than ��� ����� �� � ��, it is clear that an
object cannot move from the area (or point) of ��������
�� �
to the area (or point) of � within � � � unit times so that we
can delete � from the candidate list.

7 Query processing example
Figure 7 shows an example of an R-tree structure constructed
for the data shown in Fig. 2. MBRs 1 to 6 are on the leaf-
level, and a, b, and c are the parent MBRs of nodes 1 and 2, 3
and 4, and 5 and 6, respectively. The parent node of nodes a,
b, and c is the root node. As shown in the figure, the regions
of cell �� and �� are [1, 3) and [3, 6), respectively.
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Figure 7: Example of an R-tree
Suppose that �� � ����, �� � ���� ���, and �� � ����

and we execute FC estimation(2, root, 2, ���� ��� ���, 2.5).
Namely, we let the order of Markov chains to be estimated be
� � �, the number of levels be ����� � �, and the maximal
distance that a moving object can move within a unit time be
��� ���� � ���.

Consider that FC count is called in FC estimation (Fig. 4).
At lines 1 to 7 in FC count (Fig. 5), we get �
������� �
�
������� � �
������� � ��� 
� #�. After entering the while

loop with � � �, we set ��������
�� � � �, ������������!� �
��� ��, �
������� � �
� #� at lines 14 to 18. Then we call
check forward at line 28. In check forward (Fig. 6), we first
process the case of � � � � � � �. At line 2, the candi-
dates are initialized as �
������� � �
������� � ��� 
� #�.
Since � � � and � � 
 satisfy the following all conditions,
they are not removed from �
������� in the process. How-
ever, when � � #, we get ���� � � ��� �� at line 8 and
since ��������� ��� ��� 
 ��� �� � �, the candidate � � # is
removed at line 10. Therefore, we get �
������� � ��� 
�.
For � � �, we get �
������� � ��� 
� in a similar man-
ner. Namely, even if a trajectory point object which satisfies
the 0-th constraint is inside of ��������
�� � � �, its corre-
sponding trajectory point objects which satisfy the first and
the second constraints are not contained under node �. Fi-
nally, check forward returns true.

After returning to FC count (Fig. 5), we increment � at
line 29 since check forward was true then continue the while
loop. After lines 14 to 18, we next get ��������
�� � �
�, ������������!� � ��� ��, �
������� � �
�. Since
check forward returns true, we get �
������� � ��� 
�.
Then we return to FC count again and increment �. In
the next while loop, $% #	 ����� �� ��!�� ���� ��� ���� is
called recursively at line 23, where ��!���� � �, ��!���� �
�, ��!���� � �.

When FC count is called recursively, we set �
������� �
���, �
������� � ��� ��, �
������� � ��� by con-
sidering the constraints ��� ��� �� then perform simi-
lar process. First, check forward is called by setting
��������
�� � � � then it returns true, and we get
�
������� � ���, �
������� � ���. The reason of dele-
tion of node 1 from �
������� is that a moving object can-
not move from node 2 (��������
�� �) to node 1 within
a unit time (�� ������� �� � ��� ����). Therefore, we
next call $% #	 ����� �� ��!�� ���� ��� ���� recursively,
where ��!���� � �, ��!���� � �, ��!���� � �. Although the
detail is omitted, we cannot obtain a constraint satisfaction
solution in this case (there is no object which was in cell 2 at
� � � , in cell 2 at � � � � �, and in cell 1 at � � � � �).
Therefore, a backtrack occurs finally and the process returns
to level 1.

Next the algorithm searches for the case of
��������
�� � � �� ��������
�� � � �� ��������
�� � � 

and fails again then performs a backtrack. Next an-
other fail occurs for ��������
�� � � �� ��������
�� � �

� ��������
�� � � � then we try the case of ��������
�� � �
�� ��������
�� � � 
� ��������
�� � � 
. In this case, a con-
straint solution ��������
�� � � ��� � &� � � �� � � ����,
��������
�� � � ��� � &� � � �� � � ����,
��������
�� � � ��� � &� � � �� � � ���� is ob-
tained. As a result, #	 ������������ is incremented. By
repeating the above process, we enumerate all the constraint
satisfaction solutions.

Finally note that the result of FC estimation in this exam-
ple produces��������� ��� � �"� � ��� and��������� ��� �
�"� � ���.

8 Experimental results

In this section, we describe the experiments using a dataset
generated by a moving object simulator and the implemented
algorithms on an R-tree package. We compare the perfor-
mance of the naı̈ve algorithm and the proposed CSP-based
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algorithm.

8.1 Dataset generation

In the experiments, we use a moving object simulator de-
veloped by Brinkoff [1]. The system simulates the situation
when moving objects (i.e., cars) move on an actual city road
network. The dataset used in the experiments is generated
from the road network of the center part (2.5 km � 2.8 km)
of German Oldenbuerg city which is offered by the system.
Figure 8 shows the simulated area where objects move.

Figure 8: The simulation area
In the moving object trajectory generation, the number of

initial moving objects is set to five and five moving objects
are generated on every minute randomly on the map. Each
object has its destination and when an object arrives at the
destination, the object disappears from the map. Also, when
a moving object goes outside of the map, it is deleted from the
consideration. As a result, nearly 100 moving objects are on
the map on average. For the experiments, the trajectory data
is generated for the period of � � �� ��� minutes setting the
unit time interval as one minute. Finally, 124,752 tuples with
the form of (object id, time, �-axis value, �-axis value) are
generated. These tuples are registered in an R-tree of three
dimensions.

8.2 Performance comparison and analysis

In this subsection, we show the experimental results per-
formed using the dataset described above. In the experiments,
we utilize a PC with Pentium III (500MHz) with 128 MB
main memory and the Linux operating system. Each experi-
ment starts from a “cold” buffer state.

In the first experiment, the map shown in Fig. 8 is decom-
posed into ��� �� cells. Then we select a � � � cell region
� which consists of 9 cells then compute first-order Markov
transition probabilities ���������� � �� � �� �� � ��.
Namely, we compute probabilities for all the combination
(�� � ��) of cells in �. As described in Subsection 8.1,
the dataset was generated by simulating while � � �� ���
unit times, but we have also constructed its subsets (� �
���� ���� � � � � ���) to examine the scalability of the algo-
rithms. As shown in Fig. 9, the CSP-based algorithm (CSP)
performs well compared to the naı̈ve algorithm (naive) in this
case. Both algorithms have almost linear behaviors according
to � , the size of the dataset.

Figure 10 shows the result of an experiment which obeys
the setting of Fig. 9, except for the order of the Markov chain
is two; namely, we estimate all the �� � '�� transition prob-
abilities ���������� ��� � �� � �� �� � �� �� � ��. Since
the number of transition probabilities to be estimated have
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Figure 9: Estimation of probabilities (� � �� �� �"��� ��)

increased nine times, we can see that the total computation
times also have increased almost nine times, but the overall
behaviors shown in Fig. 10 is quite similar with Fig. 9.
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Fig. 11 also shows the case of the third-order Markov
transition probabilities ���������� ��� ��� � �� � �� �� �
�� �� � �� �� � ��. It shows quite similar tendencies with
Figs. 9 and 10.
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In the experiments shown above, the CSP-based algorithm
highly well performed than the naı̈ve algorithm. As shown
below, however, this tendency does not always hold. Fig-
ure 12 shows the result of an experiment which has the same
setting with Fig. 10 except for the cell decomposition; in this
case, we utilize the setting of a coarser ����� decomposition.
The CSP-based algorithm is still better than the naı̈ve algo-
rithm, but their difference is relatively small. The main rea-
son is that the areas of the target cells are increased due to the
coarse ��� �� decomposition. Although the region used for
the estimation consists of only ��� cells, since the MBRs of
the R-tree non-leaf/leaf nodes overlap each other, the actual
search region almost includes the entire map region. There-
fore, the pruning used in the CSP-based algorithm cannot re-
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duce the number of intermediate solutions effectively until
we reach the leaf level of the R-tree.

We can consider two additional factors concerning the R-
tree implementation. First, conventional R-tree implementa-
tion aims to optimize the processing of a single point/range
query; the internal implementation (e.g., a buffering module)
is tuned according to this type of queries. The buffering mod-
ule of the R-tree program used in the experiments did not
well perform for the CSP-based algorithm which has a dif-
ferent page access pattern. If we use a more sophisticated
page buffering scheme, we would be able to improve the per-
formance of the CSP-based algorithm. Second, the R-tree
implementation that we used in the experiments did not use
an optimized R-tree construction method. If we use a more
optimized R-tree construction method such as packed R-trees
[10] which has less MBR overlaps than the conventional R-
trees, we would be able to reduce the pruning cost.

Based on the above experiments and other experiments
omitted here, we can observe as follows:

	 As the increase of the dataset size � , the costs of two
algorithms increase almost linearly.

	 In both algorithms, even if we use different settings of
orders of Markov chains, the computation time of one
transition probability is almost constant when other pa-
rameters are fixed.

	 When we use small cell decompositions (e.g., ��� ��),
the CSP-based algorithm performs quite well than the
naı̈ve one. On the other hand, the relative performance
of the naı̈ve algorithm is improved when we use coarse
cell decompositions.

Based on the above observations, we can say that the CSP-
based algorithm is best suited to the estimation of transition
probabilities for relatively small “focused” regions. Such an
analysis often occurs in an interactive mobility analysis that
requires the system to focus on a specific region and demands
a quick response. Moreover, the CSP-based approach would
also perform better when the entire map region is relatively
large. In this case, an actual mobility analysis should often
focus on some specific regions so that the CSP-based algo-
rithm would work well.

9 Conclusions and future work
In this paper, we have proposed an approach to extract the
mobility statistics from an indexed spatio-temporal database.
The mobility statistics is formulated based on the Markov
chain model. We have proposed two algorithms. The naı̈ve

algorithm is derived straightforwardly from the definition of
the Markov chain model. The CSP-based algorithm uses the
internal structure of a spatial index R-tree and enumerates
the target items in an efficient manner. For this purpose, we
have extended an algorithm to solve a spatial constraint sat-
isfaction problem with an R-tree. We have compared two
algorithms using a trajectory dataset generated from a mov-
ing object simulator and made the performance comparisons
of two algorithms. Based on the experimental results, we can
say that the CSP-algorithm is well suited to the interactive
mobility analyses which focus on specific regions and issue
pin-point estimation queries.

The work presented here is currently ongoing in our re-
search group. The future work includes 1) improvement of
the buffer maintenance algorithms, 2) an adaptive decompo-
sition of spatial cells based on the density of moving objects,
and 3) an extension of the work to the non-stationary Markov
chain model.
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Abstract 

Recent growth of the geo-spatial information on 
the web has made it possible to easily access 
various and high quality geo-spatial datasets, 
such as road networks and high resolution 
imagery. Although there exist efficient methods 
to locate road intersections from road networks 
for route planning, there are few research 
activities on detecting road intersections from 
orthoimagery. Detected road intersections on 
imagery can be utilized for conflation, city-
planning and other GIS-related applications. In 
this paper, we describe an approach to 
automatically and accurately identifying road 
intersections from high resolution color 
orthoimagery. We exploit image metadata as 
well as the color of imagery to classify the image 
pixels as on-road/off-road. Using these 
chromatically classified image pixels as input, 
we locate intersections on the images by utilizing 
the knowledge inferred from the road network. 
Experimental results show that the proposed 
method can automatically identify the road 
intersections with 76.3% precision and 61.5% 
recall in the imagery for a partial area of St. 
Louis, MO. 

1. Introduction 
Recent advances in remote sensing technology are making 
it possible to capture geospatial orthoimagery (i.e., 
imagery that created so that it has the geometric properties 
of a map) with a resolution of 0.3 meter or better. These 

images are available online and have been utilized to 
enhance real estate listings, military targeting 
applications, and other GIS applications. One of the key 
issues with these applications is to automatically identify 
man-made spatial features, such as buildings, roads and 
road intersections in raster imagery. Computer vision 
researchers have long been trying to identify features in 
the imagery [1].  While the computer vision research has 
produced algorithms to identify the features in the 
imagery, the accuracy and run time of those algorithms 
are not suited for these real-time applications. 

Integrating existing vector data, such as road network 
data, as part of the spatial feature recognition scheme 
alleviates these problems. For example, the spatial 
information of road network data represents the existing 
knowledge about the approximate location of the roads 
and intersection on imagery. In addition, the attribution 
information of road network data, such as road names and 
address ranges, can be utilized to locate and annotate 
buildings on imagery [2]. However, accurately and 
automatically integrating geo-spatial datasets is a difficult 
task, since there are often certain spatial inconsistencies 
between geo-spatial datasets. There are multiple reasons 
why different data products may not align: they may have 
been collected at different resolutions, they may use 
different spheroids, datums, projections or coordinate 
systems, they may have been collected in different ways 
or collected with different precision or accuracy, etc. 
Conflation is often a term used to describe the integration 
or alignment of different geospatial data sets. 

The conflation [3] process can be divided into 
following subtasks: (1) Feature matching: Find a set of 
conjugate point pairs, termed control point pairs, in two 
datasets, (2) Match checking: Detect inaccurate control 
point pairs from the set of control point pairs for quality 
control, and (3) Alignment: Use the accurate control 
points to align the rest of the points and lines in both 
datasets using the triangulation [4] and rubber-sheeting 
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Publisher PubDate OrdinateRes WestCoord EastCoord NorthCoord SouthCoord 
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(a) Sample (partial) metadata of USGS high resolution color orthoimagery 
 

Source AreaCovered Projection Pub-
Date 

CFCC 
classification 

WestCoord EastCoord NorthCoord 

USGS 
1:100k 
DLG 

El Segundo, 
CA 

Lambert 
Conformal 
Conic 

1998 Secondary roads -90.44 -90.423 38.582 

USGS 
1:100k 
DLG 

St. Louis, MO Lambert 
Conformal 
Conic 

1998 Primary roads -118.4351 -118.3702 33.9164 

USGS 
1:100k 
DLG 

St. Louis, MO Lambert 
Conformal 
Conic 

1998 City streets -118.4351 -118.3702 33.9164 

:                :              :                       :                    :                   :                         :                             : 

(b) Sample (partial) metadata of U.S. Census Bureau TIGER/Lines 
 

Table 1: Sample metadata of orthoimagery and road networks 

hniques. One major difficulty with current conflation 
hniques is that they require the manual intervention 
en including identification of a set of control points for 
ture matching to properly conflate two data sets.  
Various GIS researchers and computer vision 

earchers have shown that the intersection points on the 
d networks provide an accurate set of control point 
rs [5, 6, 10]. One cannot rely on a manual approach to 
ate road intersections to perform conflation, as the area 
interest may be anywhere in the world and manually 
ding and filtering road intersections for a large region, 
h as, the continental United States, is very time 
suming and error-prone. Moreover, performing 
flation offline on two geo-spatial datasets is also not a 
ble option in online applications as both datasets may 
obtained by querying different information sources at 
-time. Therefore, an automatic approach to identifying 
d intersections in diverse geo-spatial datasets, 
ecially in orthoimagery, is needed. Moreover, road 

ersections can not only be used for geo-spatial data 
ion, but can also be utilized for transportation-related 
S [7], city-planning and GIS data updating, etc. 
In this paper, we propose an approach to automatically 
ntify and annotate road intersections on high resolution 
or imagery. In particular, we utilize road network data 
 imagery metadata to both improve the accuracy and 
uce the running time of image analysis techniques. 
nsequently, the entire road detection process can be 
ne without any manual intervention in real time. 
perimental results show that our proposed method can 
omatically identify the road intersections with 76.3% 
cision and 61.5% recall in the imagery for a partial 

area of the county of St. Louis, MO. To the best of our 
knowledge, automatically exploiting these auxiliary 
structured data to improve the image recognition 
techniques has not been studied before.  

The remainder of this paper is organized as follows. 
Section 2 describes our overall approach. Section 3 
illustrates the techniques to label image pixels based on 
imagery metadata and Bayes classifier. Section 4 presents 
an image processing technique utilizing knowledge 
inferred from road network data to detect road 
intersections on imagery. Section 5 provides experimental 
results. Section 6 discusses the related work and Section 7 
concludes the paper by discussing our future plans. 

2. Overview 
Recently, metadata (i.e., information about data) is used 
increasingly in geographic information systems to 
improve both availability and the quality of the spatial 
information delivered. Table 1 shows sample metadata 
about USGS high resolution color orthoimagery1 and the 
road network U.S. Census Bureau TIGER/lines2. We 
exploit metadata from both imagery and road network 
data to perform the automatic road intersection detection 
procedure. 

For the imagery, we can exploit the ground resolution 
and geo-coordinates to measure real world distance 
between any two spatial objects or perform image 
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processing techniques (such as edge-detection, region-
segmentation and histogram-based classification) at the 
pixel level to extract primitive entities, such as corners, 
edges and homogeneous regions, etc. For vector data of 
roads, we can exploit metadata about the vectors, such as 
address ranges, road names, or even the number of lanes 
and type of road surface.  In addition, we can analyze the 
road network to determine the location of intersections, 
the road orientations and road shapes around the 
intersections. This inferred knowledge from road network 
data can then be augmented with information retrieved 
from imagery. For instance, we can find the approximate 
location of intersections on the images from the metadata 
of vector data, while the information (such as edges or 
pixel intensity) on imagery can be utilized to locate the 
exact location of intersections nearby the approximate 
locations. In sum, these automatically exploited 
information are dynamically exchanged and matched 
across these geospatial datasets to accurately identify road 
intersections. 

Figure 1 shows our overall approach. Using 
chromatically classified image pixels as input, we locate 
intersections on the images by utilizing the image 
metadata and the information inferred from vector, such 
as approximate location of intersections, road-directions, 
road-widths, and road-shapes. In addition, identified 
intersections could be annotated with the vector 
information, such as road names and zip code. 

3. Labeling imagery using Bayes classifier 
Towards the objective of identifying road intersections, 
the first vital step is to understand the characteristics of 
roads on imagery. On high resolution imagery, roads are 
exposed as elongated homogeneous regions with almost 
constant width and similar color along a road. In addition, 
roads contain quite well defined geometrical properties. 
For example, the road direction changes tend to be 
smooth, and the connectivity of roads follow some 
topological regularities. Road intersection can be viewed 
as the intersection of multiple road axes and it is located 
at the overlapping area of these elongated road regions. 
These elongated road regions form a particular shape 
around the intersection. Therefore, we can match this 

shape against a template derived from road network data 
(discussed next) to locate the intersection. Based on the 
characteristics of roads, the formation of this shape is 
either from detected road-edges or homogeneous regions. 
However, on high resolution imagery, more detailed 
outlines of spatial objects, such as edges of cars and 
buildings, are considered as noisy edges. This makes 
perceptual-grouping based method used for road-edges 
linking a difficult task. 

In contrary to edge-detection, we propose a more 
effective way to identify intersection point on color 
imagery by using Bayes classifier, a histogram based 
classifier [8, 9], to classify images’ pixels around road 
network data as on-road or off-road pixels. The 
classification is based on the assumption of consistency of 
image color on road pixels. That is, road pixels can be 
dark, or white, or have color spectrum in a specific range, 
but still we expect to find the same representative color on 
close by road pixels. We construct the statistical color 
distribution (called class-conditional density) of on-
road/off-road pixels by utilizing histogram learning 
technique as follows. We first randomly select a small 
partial area from the imagery where we intend to identify 
road intersections. Then, we interactively specify on-road 
regions and off-road regions respectively. From these 
large amount of manually labeled training pixels, we learn 
the color distribution (histograms) for on-road and off-
road pixels. Hence, we can construct the on-road and off-
road densities.  

Figure 2 shows the hue probability density and 
saturation probability density3, after conducting the 
learning procedure on nearly 50,000 manually picked 
pixels of 2% of a set of USGS 30cm/pixel imagery 
(covering St. Louis County in Missouri of the United 
States). To illustrate, consider the hue density function on 
Figure2(a). It shows the conditional probabilities 
Prob(Hue/On-road) and Prob(Hue/Off-road), 
respectively. The X-axis of this figure depicts the hue 
value grouped every 10 degrees. The Y-axis shows the 
probability of on-road (and off-road) pixels that are within 
the hue range represented by X-axis. For a particular 
image pixel, we can compute its hue value h. Given the 
hue value h, if the probability for off-road is higher than 
on-road, our system would predict that the pixel is an off-
road pixel. As shown in Figure 2, these density functions 
depict the different distribution of on-road and off-road 
image pixels on hue and saturation dimensions, 
respectively. Hence, we may use either of them to classify 
the image pixels as on-road or off-road. In our 
experiments, we utilized hue density function for 
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Figure 1: Overall approach 

______________________ 
3 Due to lack of space, we eliminated the intensity (i.e., brightness
of HSV model) density function. In fact, there is no obvious
difference between the brightness distribution of on-road and off-
road pixels, since these images were taken at the same time (i.e.,
under similar illumination conditions). 
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Figure 2: Learned density function on HSV color space for On-road/Off-road pixels  
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(a) Layout (left) of the original road network 
data around an intersection point and template 
(right) inferred by using the road network data 

(b) Original image (c) Road-labeled image (White pixels: labeled road 
pixels; Black lines: existing road network data;  

 Black circles: intersections on vector data, implying 
approximate location of intersections on imagery ) 

Figure 3: An example of the localized template matching 
classification. In general, we can utilize the two chromatic 
components, hue and saturation, together. 

Based on the learned hue density functions, an 
automated road-labeling is conducted as follows. A 
particular image pixel whose hue value is h is classified as 
road if 

θ≥
− )/(

)/(
roadnonhp

roadhp , where θ is a threshold. θ 

depends on the application-specific costs of classification 
errors and it can be selected using ROC technique 
discussed in  [9]. 

Since we know the approximate intersection locations 
on the images from the road network data (discussed 
next), the road-labeling procedure is applied only to 
image pixels within a radius of potential intersections. 

Therefore, we do not need to exhaustively label each pixel 
on the entire image. 

4. Analyzing imagery using road network 
data 

Using the classfied image (an example is shown in Figure 
3(b)(c)) as input, we can now match it with a template 
inferered from the road network data to identify 
intersections. We term this procedure as localized 
template matching (LTM). First, our LTM technique finds 
the geo-coordinates of all the intersection points on the 
road network data. Since we also know the geo-
coordinates of the images (from image metadata), we can 
obtain the approximate location of intersections on the 
imagery (as in Figure 3(c)). For each intersection point on 
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the road network data, LTM determines the area in the 
image where the corresponding intersection point should 
be located. The area size can be determined based on the 
accuracy and resolution (such as ground resolution from 
image metadata) of the two datasets. One option is 
conducting experiments using various sizes and selecting 
the size that has better performance (discussed in Section 
5).  

For each intersection point detected from the road 
network data, LTM picks a rectangular area in the image 
centered at the location of the intersection point from the 
road network data. Meanwhile, as an example shown in 
Figure 3(a), a template around an intersection on road 
network data is generated by the presence of regions 
inferred from the road network data using information, 
such as the road directions and road widths. LTM will 
then locate regions in the road-labeled image (see Figure 
3(c)) that are similar to the generated template (as in 
Figure 3(a)) as follows. Given a template T with w x h 
pixels and road-labeled image I with W x H pixels, we 
move the template around each pixel at the image and 
compare the template against the overlapped image 
regions. Our adapted similarity measure is a normalized 
cross correlation defined as: 

 

∑∑ ∑∑

∑∑
= −

=

−

=

−

=

−

=

−

=

−

=

++

++

1

0'

1

0'

1

0'

1

0'

22

1

0'

1

0'

)','()','(

)','()','(

),( h

y

w

x

h

y

w

x

h

y

w

x

yyxxIyxT

yyxxIyxT

yxC  

where T(x,y) equals one, if (x,y) belongs to a road region, 
otherwise; T(x,y) equals zero. I(x,y) equals one, if (x,y) is 
pre-classified as a road pixel, otherwise; I(x,y) equals 
zero. C(x,y) is the correlation on the pixel (x,y). 

The highest computed correlation C(x,y) implies the 
location of the best match between the road-labeled image 
and template. In addition, an intersection will be 
identified, if C(x,y) is greater than a threshold t (0 <= t 
<=1.0). We set the threshold t to 0.5. Hence, the best-
matched point will be characterized as an intersection 
only if it is at least quasi-similar to the vector template.  

The histogram-based classifier as illustrated in 
previous section may generate fragmented results, due to 
some noisy objects, such as cars, tree-clusters and 
building shadings on the roads. Furthermore, some non-
road objects whose color is similar to road pixels might be 
misclassified as roads. However, LTM can alleviate these 
problems by avoiding exhaustive search of all the 
intersection points on the entire image and often locates 
the intersection point on the image that is the closest 
intersection point to the intersection point detected from 
the road network data.  Moreover, this technique does not 
require a classifier to label every pixel for the entire 
region. Only the areas near the intersections on the image 
need to be pre-classified. 

Figure 4 shows an image indicating the intersection 
points on road network data and the corresponding 
intersection points identified on imagery. One of the 
accurately identified intersections is annotated with the 
road network information, such as road names and zip 
code. 

5.   Performance Evaluation 
We conducted several experiments to evaluate our 
approach by measuring the precision and recall of the 
identified road intersections against real road 
intersections. For our experiments, we used a set of 
0.3m/pixel resolution color orthoimagery (covering St. 
Louis County in Missouri of the United States) from 
USGS and road network data from NAVTEQ4 and U.S. 
Census TIGER/Lines. In general, both road network data 
have rich attribution but TIGER/Lines has poor positional 
accuracy and poor road shapes. We learned the histogram 
(as shown in Figure 2) from nearly 50,000 manually 
picked pixels of 2% of these images. Then, we applied 
our approach to identify intersection points on randomly 
selected areas of these images (about 9% of this imagery). 
There are about 1200 intersections in total on these tested 
areas. Figure 5 shows 8% of the NAVTEQ road network 
data and 0.48% of the image area used in our 
experiments. The off-line learning process requires 
manual intervention to obtain conditional density 
functions, but it is performed only when new imagery 
dataset is introduced to the system. In addition, we can 
apply the learned results to automatically identify 
intersections of the area that is much larger than the area 
we learn from. 

We applied a “buffer method” to evaluate recall and 
precision. When multiple elongated road regions merge at 

Road names:
Dougherty Ferry Rd
Applewood Dr
ZipCode: 63122,MO

Road names:
Dougherty Ferry Rd
Applewood Dr
ZipCode: 63122,MO

 
Figure 4: The intersections (circles) on road network data 

and the corresponding intersections (rectangles) on imagery.

________________________________________________ 
4 http://www.navteq.com/ 
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an intersection, their overlapping area at the intersection is 
a polygon (called buffer). Identified road intersections 
that fall within the buffer are considered as “accurately 
identified intersections”. Using this term, we define: 

 

image in the onsintersecti  ofNumber 
onsintersecti identified  accurately ofNumber Recall =

 

onsintersecti identified  ofNumber 
onsintersecti identified accurately ofNumber Precision =

 
For each type of road network data, the area radius, a 
fixed constant used in LTM, was determined by 
conducting experiments using various sizes. An 
experimental result for NAVTEQ data (on an area with 
106 intersections) is shown in Figure 6. In Figure 6, we 
also demonstrate the normalized intersection detection 
running time (with respect to the running time of using 
180m as radius) to show that the detection time 

dramatically increases as area size increases. We selected 
90m as our area radius for the rest of experiments. When 
setting the radius to 90m, we achieved 88% precision. 
Although it is less than the precision obtained using 180m 
as radius, we have much better recall (70% v.s. 40%) and 
20 times better running time. 

For the overall tested area, on the average, we 
obtained 76.3% precision and 61.5% recall with 
NAVTEQ data and 62% precision and 39.5% recall with 
TIGER/Lines. If we exclude the intersections detected on 
highways where the road widths vary and difficult to 
predict, we achieved 83% precision and 65% recall with 
NAVTEQ data. In order to explain our experiments, we 
show the performance of a sub-area (with 106 
intersections) of the larger tested area in Table 2. As 
shown in Table 2(a), there are originally more than 30 
intersection points on the NAVTEQ vector that match 
with the corresponding intersections on images, while 
there are only about four of these intersections on the 
TIGER/Lines. This is because the NAVTEQ vector data 
has a very high accuracy. Nevertheless, we significantly 
improved the precision and recall of both vector data.  

Now, suppose we want to use our detected 
intersections as control points for a matching problem, 
such as the vector to imagery conflation problem 
described in Section 1. The conflation process does not 
require a large number of control point pairs to perform 
accurate alignment. In fact, a smaller set of control points 
with higher accuracy would serve better for the conflation 
process [10].  Therefore, for the conflation process higher 
precision is more important than higher recall. Towards 
this end, we can use a filter to eliminate misidentified 
intersections and only keep the accurately identified 
intersections, hence improving the precision with the cost 
of reducing the recall. VMF [10] is an example of such 
filter. As shown in Table 2, the VMF filter improves the 
precision, although it reduces the recall. 

The VMF filter works based on the fact that there is a 
significant amount of regularity in terms of the relative 
positions of the intersections on the vector and the 
detected (corresponding) intersections on the imagery 
across data sets. More precisely, first the geographic 
coordinate displacement between the intersections on the 
road network and detected (corresponding) imagery 
intersections is modeled as 2D vectors. Next, for a small 

 
(a) Road network (NAVSTREET) 

 

 (b) USGS Orthoimagery 
Figure 5: A partial area of tested data  
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Figure 6: The impact of area radius  

(Radius is increased by 30 meters, i.e. 100 pixels on imagery)

 Precision Recall 
Original NAVTEQ 31.2% 31.5% 
Localized Template Matching (LTM) 88% 69% 
LTM with VMF filter 98% 53% 

(a) Identified Intersections using NAVTEQ road network 
 Precision Recall 
Original TIGER/Lines 4.1% 3.5% 
Localized Template Matching (LTM) 71% 41% 
LTM with VMF filter 91% 27.4% 

(b) Identified Intersection Points using TIGER/Lines 
Table 2: Road Intersection Identification Evaluation 
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area, the vectors whose directions and magnitudes are 
significantly different from the median vector are 
characterized as inaccurate vectors. By eliminating these 
vectors, we can filter out their corresponding 
misidentified intersections. Before applying VMF, there 
are three misidentified intersections (marked as 1, 2 and 
3) of 21 intersections in Figure 7(a). The displacement 
between these 21 road network intersections and detected 
(corresponding) imagery intersections is shown with the 
arrows (Figure 7(b)).  The thickest arrow is the vector 
median among these displacement vectors.  After 
applying VMF, the eleven (half of the identified 
intersections) closest vectors to the vector median were 
kept. As shown in Figure 7(c), the three misidentified 
intersections are filtered out. 
6.   Related work 
Automatic identification of road intersections is a 
complex procedure that utilizes work from a wide rage of 
subjects, such as knowledge discovery from metadata of 
vector and raster data, spatial (geometric) pattern 
recognition and digital image processing. 

Many studies have been focussed on road or man-
made object extractions from images [5, 11]. In particular, 
an on-road/off-road histogram is learned for black-white 
images in [12], while we deal with color images. Flavie et 
al. proposed techniques in [5] to find the junctions of all 
detected lines on images, then matched the extremities of 
the road vector with detected image junctions. Their 
method suffers from the high computation cost of finding 
all possible junctions. Road intersections are salient and 
useful features, particularly in solving matching problems, 
such as conflation [10, 13], GIS data correction [14] and 
imagery registration [15]. Most of the research activities 
in spatial data and GIS are centered around issues such as 
data representation, storage, indexing and retrieval. 
However, recent growth of the geospatial information on 
the web has made geospatial data conflation one of central 
issues in GIS [16]. In addition to efficiently storing and 
retrieving diverse spatial data, the users of these geo-
spatial data products often want these different data 
sources displayed in some integrated fashion. Figure 8 
shows the conflation results utilizing LTM detected 
intersections as control points and the conflation 
techniques proposed in [10]. Moreover, the intersections 
detected on images can match with the intersections 
detected on maps [6, 17] for the measure of the similarity 
of different spatial scenes. In addition, road intersections 
have been utilized for many transportation-related 
systems such as [7]. To the best of our knowledge, 
automatically exploiting these auxiliary structured data to 
improve the image recognition techniques has not been 
studied before. 

7.   Conclusion and future work 
In this paper, we focus on the two commonly used spatial 
data storage and display structures: vector and raster. 
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(a). The intersection points (rectangles) on vector data  and 
the corresponding intersection points (circles) on imagery. 
k control-p oint ve ctors 
Vector median

(b). The distributions of twenty-one displacement vectors 

(c). The intersections left after applying vector median 
filter on Figure 7(a). 

Figure 7: VMF filter 



There have been a number of efforts to efficiently 
determine all intersection points from large number of 
line segments [18] of vector data (e.g., road networks), 
while there is little work on efficiently and accurately 
identifying road intersections from raster data (e.g., 
satellite imagery). The main contribution of this paper is 
the design and implementation of a novel approach to 
automatically identify and annotate road intersections on 
high resolution color orthoimagery. Our approach utilizes 
Bayes classifier, road network data and image metadata to 
detect road intersections. Although our histogram-based 
classifier requires extra operations to learn the conditional 
density functions, we can apply the learned results to 
automatically identify intersections of the area that is 
much larger than the area we learn from. Moreover, our 
approach is the first that exploits the metadata of imagery 
and vector data to take full advantage of all the available 
information from both datasets to achieve the automatic 
road intersection detection. We have also demonstrated 
the utility of our approach through several empirical 
experiments.  

The accurately identified and annotated intersections 
can not only be utilized for geo-spatial data fusion, but 
can also be used for transportation, city planning and 
spatial data mining, etc. For example, the identified 
intersections on image are annotated with vector 
attributes, such as road names, road directions and zip 
codes. We can then build an approximate zip code map on 
the image, using these intersections and the technique 
proposed in [19]. In future, we plan to utilize the similar 
techniques to identify road intersections on maps. 
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Abstract 
In this paper we present a distributed spatial data 
warehouse system designed for storing and 
analyzing a wide range of spatial data. The data 
is generated by media meters working in a radio 
based measurement system. The distributed 
system is based on a new model called the 
cascaded star model. In order to provide 
satisfactory interactivity for our system, we used 
distributed computing supported by a special 
indexing structure called an aggregation tree. We 
provide a detailed description of distributed 
system components and their co-operation. The 
indexing structure operation is tightly integrated 
with the spatial character of the data and the data 
model. Thanks to a memory managing 
mechanism the system is very flexible in the 
field of aggregates accuracy. A final selective 
materialization of indexing structure fragments 
strongly increases the system’s efficiency. 
Basing on the tests results, we compare the 
efficiencies of the distributed and a single-
machine systems, and demonstrate the 
importance of indexing structure materialization. 

1. Introduction  
During the last 3 years deregulation of energy sectors in 
the USA and the EU has laid the foundations for a new 
energy market as well as created new customers for 

electrical energy, natural gas, home heating and water. 
The most crucial issue in this regard is the automated 
metering of utilities customers’ usage and the fast analysis 
of terabytes of relevant data gathered thusly. In case of 
electrical energy providers, the reading, analysis, and 
decision-making is highly time sensitive. For example, in 
order to take stock of energy consumption all meters 
should be read and the data analyzed every thirty minutes 
[7]. This can be achieved by use of the technology called 
Automatic (Integrated) Meter Reading (AMR) in tandem 
with data warehouse-based Decision Support Systems 
(DSS) on the other[9]. Our solution consists of two layers 
(fig 1): the first is a telemetric system of integrated meter 
readings called AIUT_GSM and the second is Distributed 
Spatial Telemetric Data Warehouse (DSTDW). 

The telemetric system of integrated meter readings is 
based on AMR and GSM/GPRS technology. The system 
sends the data from meters located in a huge geographical 
region to the telemetric server using the GSM mobile 
phone net utilizing GPRS technology. AIUT_GSM 
possesses all those features.  

The Distributed Spatial Telemetric Data Warehouse 
System is a decision-making support system. The 
decisions concerning a given medium supply are made 
based on the short-term prognoses of a medium 
consumption. The prognoses are calculated using the 
analysis of the data gathered in DSTDW which, in turn, is 
supplied with data by the telemetric server. In order to 
meet the need for improved performance created by 
growing data sizes in Spatial Telemetric Data Warehouse 
(STDW), parallel processing and efficient indexing 
become increasingly important.  

Copyright held by the author(s). 
Proceedings of the Second Workshop on Spatio- 
Temporal Database Management (STDBM’04), 
Toronto, Canada, August 30th, 2004. 
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Figure 1. Two layers of  a telemetric infrastructure. 

2.   System presentation 
The telemetric system of integrated meter readings 
consists of meters located in a huge geographical region, 
collection nodes and headquarters housing the data 
warehouse and distributed processing structure. The 
collective nodes are the intermediate point of 
communication between the meters and the data 
warehouse. The nodes and meters are located in the same 
region. A single node is a collection point for a specified 
set of meters. The meters and nodes communicate via 
radio wave. Thus it features some restrictions – a single 
collective node can serve but a limited number of meters, 
and  the distance between a node and a meter is limited. 
Those limits determine that the radio wave 
communication structure is akin to a set of circles, whose 
centers are collection nodes surrounded by meters. The 
system presented in this paper is real; it is a working 
system used for reading and storing data from media 
meters. 

We designed our system of gathering, storing and 
analyzing telemetric data in two versions – centralized 
(single-machine) and distributed. Because the system is 
implemented in Java, we were able to separate packages 
common to both system versions. One of the packages is a 
Virtual Memory Aggregation Tree package, hence, the 
functionality of this solution is identical in both system 
versions. 

The interactive system task is to provide a user 
information about utilities consumption in regions 
encompassed by the telemetric system. The interface used 
in both versions of our system relies on maps of the 
regions where the meters are located and is very similar to 
that presented in [8]. A user, using a “rubber rectangle”, 
defines a piece of a region from which the aggregates are 
to be collected. That piece is called an aggregation 
window (fig 2). After setting the lists of aggregation 
windows and selecting those windows which are to be 
evaluated, a user starts a process of evaluating 
aggregation windows list value. A special algorithm splits 

the overlapping windows and transfers them to a function 
which evaluates the aggregates. The function is performed 
separately for every aggregation window. The obtained 
results are presented in form of both tables and graphs, the 
latter are generated by means of JFreeChart package. 

Both centralized and distributed systems provide the 
same functionality, and for a user the system version is 
entirely transparent. However, according to the tests 
results, the distributed system runs much faster. 
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Figure 2. Map of region with aggregation window and 

meters. 

2.1   Details of the distributed system 

The current parallel ROLAP approaches can be grouped 
into two categories: a) work partitioning [13, 4, 5] and b) 
data partitioning [8, 2, 12, 6, 16, 3]. In this paper, we 
study data partitioning methods for the ROLAP case of 
STDW and implement the data distribution in a highly 
scalable DSTDW structure.  In [8] the project creates and 
uses aggregation trees, requiring change to and develop of 
the RAID-3 algorithm-based concept of data warehouse 
stripping used in [2] and introduce two groups of 
distributing data algorithms applied in the new concept of 
distributed data. Using Java, we implemented both the 
distributed system using RMI [17] as well as the system 
running on a single computer. 

The structure of the distributed system is based on the 
well known client-server standard. The distributed system 
client module manages the servers, integrates the partial 
results and provides the user interface. 
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The server module contains implementation of 
database communication and analytical functionality. 
During system operation the servers store data, generate 
the meter reading lists and build aggregation trees. 

The communication between client and server is based 
on Remote Method Invocation (RMI) mechanism. The 
RMI allows Java language remote objects method 
invocation. RMI is making available of services through 
the registry. Each DSTDW server provides the following 
services: 

• server management (checking, connecting, 
shutting down), 

• extraction service (specially designed program 
using this service performs data distribution over 
the servers), 

• access to the server’s data base (connecting, 
disconnecting, query and DDL statements 
execution), 

• access to server’s aggregation trees  (generating a 
tree of specified parameters, evaluating 
aggregates values for a given windows list). 

The distributed system client is a multithread 
application; one thread is assigned to each server. The 
threads operation is coordinated by a main thread. A 
single server thread operation can be divided into the 
following phases: 

• server localization. The server is described with 
name and port number. When the server is 
localized, the thread checks the connection using 
function similar to ping command broadly known 
from many operating systems, 

• aggregation tree creation. The thread provides all 
necessary construction parameters and waits for a 
positive confirmation, 

• connection checking. In case there are no 
aggregation tasks, the thread checks the 
connection, periodically invoking ping function, 

• aggregates evaluating. After a user defined a set 
of aggregation windows, the overlapping 
windows are split and a copy of aggregation 
windows list is delivered to each distributed 
system server. A single server evaluates 
aggregates from its data and returns a partial 
result. Server thread transfers the result to the 
main thread. The result is integrated with other 
partial results and the final outcome is presented 
to a user in form of tables or graphs. 

More detailed information about hardware system 
configuration can be found in a section describing tests. 

3.   Cascaded star 
The data warehouse model consists of facts oriented in a 
set of dimensions, which in turn are organized in 
hierarchical aggregates levels. The models are adapted to 

relational data base environment. The most popular data 
models are star model and snowflake model. 

As mentioned above, both versions of STDW use the 
cascaded star schema. The cascaded star was used for the 
first time by the authors of [1] for storing spatial data. It 
turned out to be useful in the Spatial Data Warehouse 
described in [8]. The necessity of cascaded star usage 
results from the fact that traditional schemas are not 
appropriate for storing spatial data [1]. 

A central point of the cascaded star is a main fact 
table. The main dimensions form smaller star schemas in 
which some dimension tables may become a fact table for 
other, nested star schemas. The cascaded star allows 
convenient modeling of a wide range of spatial data.  

A cascaded star schema used in the presented system 
is illustrated in figure 3. The central fact table describes 
installation and interconnects three main dimensions  
storing information about maps, readings and meters, and 
collecting nodes. 
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Figure 3. A schema of used data model – cascaded star 

 
The first dimension, concerning maps, stores the 

information about maps of the region where the meters 
are located. Map files are described with the following 
information: type of map (vector, bitmap), encompassed 
region characteristics (geographical location, dimensions) 
and date of map creation, which permits exchanging 
obsolete maps for new ones. 

The dimension storing node information contains a 
precise, three-dimensional location of each node, and 
parameters describing a node. As shown in figure 3, there 
is a subdimension with weather information such as 
humidity, temperature, and clouds. We use the data to 
analyze the influence of weather conditions on the utilities 
consumption.  

The most loaded part of the schema stores the meter 
readings. A single reading sent from a meter to a 
collection node contains the following information: a 
precise timestamp, a meter identifier, and the reading 
values. The reading values vary depending on the type of 
meter. There are values of two zones for energy and water 
counters, and gas counters have a value of one zone.  
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NODE 
ID_NODE ID_LOC ID_ATTR ID_DATE 

5 1 10 24 

WEATHER 
ID_WEATH ID_NODE ID_ATTR ID_DATE 

1 5 132 17 

NODE DIMENSION GROUP_OF_READING 
ID_GROUP ID_READ 
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METER 
ID_METER ID_LOC ID_ATTR ID_DATE 

17358 243 1876 2312 

READING 
ID_READ ID_METER ZONE ID_DATE 
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VALUE 

2534 

METER DIMENSION 

INSTALLATION 
ID_NODE ID_MAP ID_GROUP GR_DESC 
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5 1 11 G 
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CENTRAL FACT TABLE 

MAP 
ID_MAP ID_REGION ID_DATE ID_TYPE 

1 2 10 3 

MAP DIMENSION 

 
Figure 4. A hypothetical contents of  the schema’s tables located on a server gathering data of node 

 
In order to connect the dimension with the central fact 

table we use the fact that each collective node serves a 
few types of meters. These types are described by the 
table GROUP_OF_READING that permits identifying a 
group of readings to which a given reading belongs, in 
other words, from which collective node it comes and 
which medium it concerns. The data concerning meters is 
gathered in the form of a subdimension of the meter 
readings dimension. As with collection nodes, a meter is 
described with three-dimensional location and a set of 
attributes like type or radio scope.  

In order to facilitate an understanding of data 
connections in the applied cascaded star, we present the 
hypothetical contents of  the schema tables (fig 4). That 
hypothetical schema exists on a server gathering data 
concerning node number 5. 

3.1   Data distribution 

Very important and requiring special attention is the 
problem of data distribution in the distributed system. In 
our system the data is distributed according to the 
following rules: 

• each server uses the same identical cascaded star 
schema (presented in figure 3), 

• we assign a set of collective nodes to a given 
server. The sets of nodes should contain an 
approximately equal number of meters in order 
to evenly balance the data storing and processing 
load, 

• the data are distributed over the servers 
according to the node they concern. That is true 
for METER dimension and WEATHER 
subdimension. Data from MAP dimension are 
replicated on every server. This dimension does 

not contain much information; such approach 
brings almost no extra costs. 

Our approach to data distribution is very simplified, 
and we are aware that advanced studies on the problem of 
data and load balancing are a pressing need. We are now 
investigating an approach to data balancing during the 
extraction process. We want to estimate the distributed 
system units efficiency and basing on this we want to 
distribute the incoming measure data. Although the results 
are very interesting, they are too tentative to be published. 

4.   Aggregation tree 
The key aspect of data warehouse designing is to provide 
it with sufficient efficiency. One of the best ways to 
improve a system’s efficiency is to use indexing and data 
pre-aggregation. STDW in both versions uses, next to the 
standard data base indices, a spatial index called an 
aggregation tree. The aggregation tree is a dynamic 
structure containing aggregates of spatial data. Its 
structure is based on the most popular aggregates index, 
the aR-tree [14]. As concerns efficiency, the aR-Tree 
significantly surpasses the R-Tree during the process of 
evaluating the value of range queries [10, 11, 15].  

The structure of the aggregation tree is integrated with 
the cascaded star data model. We designed the index in 
such a way that it contains the aggregates of meter 
readings  lightening the load of the most loaded part of the 
data model. Thanks to said approach, the index speeds up 
the execution of the most commonly evaluated queries 
concerning utility usage in a given region.  

In order to save the time spent on the raw data 
processing we decided to introduce an innovative idea of 
partial aggregates materialization. We called the index 
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Virtual Memory Aggregation Tree (VMAT), because the 
aggregation tree uses the database as a place where the 
aggregates are stored. Thanks to this solution we are able 
to overcome the RAM memory limitations when indexing 
huge amounts of data. The tests proved that VMAT works 
effectively even with small amounts of memory. 

The data is distributed in our system. Each server 
manages its own aggregation tree that indexes the data 
located on the server. Below we present how the 
aggregation tree is built and materialized and how the 
queries are evaluated in our system. 

4.1 Aggregation tree structure 

As in the case of aR-tree, the aggregation tree consists of 
connected nodes. The whole region encompassed by the 
data warehouse is divided into units called Minimal 
Bounding Rectangle (MBR). In the proposed approach 
MBR dimensions are defined by a system user when the 
system starts. Thanks to this solution our system is very 
flexible as far as the aggregates precision is concerned (a 
user may define MBRs as small as desired).  The tree 
leaves (the lowest level) are nodes encompassing regions 
that are in MBR size. Upper tree levels are created 
through integration of a few elements from lower level 
into one node in the upper level. Integration operation 
includes merging regions of the lower level nodes and 
aggregation of their values, aggregates lists and quantity 
of meters both. In figure 5 we presented a very simplified 
scheme of the aggregation tree indexing data from a 
region that was divided as shown also in the figure. Also 
shown is the hypothetical contents of three tree nodes, 
illustrating the details of the integration operation.  

4.2 Aggregates collecting  

In our system the queries are defined in the form of 
aggregation windows. Using the client module, a user 
draws an aggregation window selecting the region from 
which the aggregates are to be collected. After setting a 
list of aggregation windows, the overlapping windows are 
split and a sent to the distributed system servers.  

Aggregation collecting operations are performed for 
each aggregation window separately. The aggregates 
collection algorithm, operating identically on each server, 
starts from the tree root and proceed towards the tree 
leaves. For each node the algorithm checks whether the 
node’s region has a common part with the aggregation 
window’s region and, based on the result, the algorithm 
determines the proper action. If the regions share no part, 
the node is skipped. In case the regions overlap a bit, the 
algorithm proceeds recursively to the lower tree level (but 
only if the level considered is not the lowest level) as a 
window region assuming the overlapping part. In case the 
regions entirely overlap, then the algorithm aggregates the 
given node’s aggregates lists. The aggregation operation 
consists of retrieving the node’s aggregates lists and 
aggregates them to the lists of a global collecting element. 

When all the aggregation windows are evaluated, the 
partial results are sent to the client module, which merges 
them and presents to a user.  

4.3 Materialization 

As mentioned above, in our solution we introduced the 
idea of materialization of data stored in the tree nodes. 
The materialization is performed independently on each 
server and is managed by the aggregation tree. 

To store materialized data the aggregation tree uses a 
table with two columns: the first identifies node and the 
second stores the data. During the materialization a given 
tree node retrieves a handle to an input stream of a BLOB 
column from a row identified by its identification number. 
The handle is then transferred to all aggregates objects, 
which stores their values to the stream (fig 6).What nodes 
should be materialized and when is determined by a 
specially designed algorithm described below. 

We materialize only the data and not the tree frame 
because creation of an empty tree structure (i.e., nodes not 
containing aggregates lists) is an operation of short 
duration and is performed each time the tree object is 
created with almost no extra time cost. When a query is 
evaluated, the aggregation tree refers to the table 
containing materialized nodes. In the event that a query 
concerning the same region was already evaluated, the 
data was materialized and then can be easily restored.  

The operation of materialization aggregates lists is 
initialized by the aggregation tree object. There are two 
situations when tree nodes are materialized. The first is 
when the application is being shut down – all the not-
materialized nodes are stored in the database.  

The second situation results from the operation of 
memory managing algorithm during the action of 
aggregates lists retrieval. 
 

 

QArrayList 

WATER 

- timestamp  
  1995-11-01; 23:45:11 
- values 
  zone1:2034, zone2:231 

Database 

Node (ID = 6) 

6 0101001... 
NUMBER BLOB 
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materialization 

- timestamp  
  1995-11-02; 13:23:34 
- values 
  zone1: 2047, zone2: 238 

1995,11,1,…,231

1995,11,2,…,238

binary 
stream 

 
Figure 6. A scheme of aggregates lists materialization 

operation 
 
Every node has a reading counter. When the node’s 
aggregates lists are being retrieved, the reading counter 
increases. If a memory managing algorithm recognizes 
there is not enough memory to store the aggregation tree, 
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Figure 5. A simplified scheme of aggregation tree and the related nodes with their hypothetical contents 

 
it searches for a node whose aggregates lists were least 
frequently read (the reading counter has the least value). 
If the lists have not been stored in the database, the node’s 
aggregates lists are materialized and removed from the 
memory. At the beginning of the operation of aggregates 
collection, the nodes, from which the aggregates lists will 
be retrieved, are marked, to preclude the removal from the 
memory of those nodes’ aggregates lists due to be 
collected in the next step. 

5.   Tests 
We performed the tests of the DSTDW on a set of six 
computers comprising the distributed structure. Five 
computers run the server module. The DSTDW client 
module runs separately on the additional machine. System 
configuration was as follows: servers Pentium 4 2.8 GHz, 
512 MB RAM. The client machine was AMD Athlon 
2GHz with 1024 MB RAM. Tests of the STDW were run 
on the latter machine. The computers were connected with 
a 100 Mb/s LAN. 

The data base was Oracle 9i; the runtime environment 
was Java Sun 1.4.0. The data gathered in the data base 
concerned 20 collection nodes (number of meters 
exceeded 1000). We were collecting the weather 
information and meters readings for over four months 
(from the 1 January to the 1 May of 1995). Each meter 
communicates with its collective node in an appropriate 
frequency. This frequency differs according to type of 
meter. Electricity meters are read every thirty minutes, 
gas meters every two hours, and water meters every five 
hours. Size of the not-distributed data gathered in the data 
base exceeded 0.5 GB; in the MEASURES table, the 
number of rows was about 10 millions.  

The data was evenly distributed. We assigned a set of 
collection nodes to every server (4 nodes per server). 

Then the data (weather information, meters and their 
measurements) were distributed according to the node 
they were connected to. Aggregation windows 
determining the region from which the aggregates were to 
be evaluated were placed on the whole region 
encompassed by the data warehouse, hence the servers 
were evenly loaded. In the tested system a single 
collection node served only about 50 meters of various 
kinds. We performed the tests for the following sets of 
meters: 40, 80 and 160 in the aggregation periods one, 
two, three and four months.  

The tests were performed for various percentages of 
materialized aggregates. First, we were executing queries 
when the table storing the materialized information was 
empty. We then executed the same queries with a full set 
of materialized data. In the next steps, using a simple 
program we removed 75%, 50% and 25% of materialized 
aggregates lists. By this we were imitating the normal 
system operation, when the number of materialized 
aggregates lists increases with the number of executed 
queries. 

The measured values were: query execution time (time 
of evaluating the value of a list of aggregation windows) 
and the number of lists materialized during query 
execution. 

We present the tests results showing trends in the 
distributed system operation. Also, the distributed and 
centralized system versions efficiency  is compared. 

In figure 7 we present a graph showing distributed 
system operation while aggregating measures data for 
over 80 meters. The graph shows the relation between 
aggregation time and amount of materialized aggregates 
available in the data base. We can observe a strong linear 
decrease of aggregation time. More detailed analysis 
reveal that the decrease is a bit slighter between 50% and 
75% of available materialized information. Of special 
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notice, the aggregation times for various aggregation 
periods are much more congenial for 100% of 
materialized aggregates than when the system used no 
materialized information. Hence we hypothesize that 
indexing structure materialization strongly increases 
system’s efficiency and improves scalability. 
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Figure 7 . Distributed system operation while aggregating 

measures data from over 80 meters. 
 

In figure 8 we present a graph showing the 
materialized aggregates lists number while evaluating 
aggregates for over 160 meters. The graph shows that the 
number of materialized aggregates grows quickly with 
extension of the aggregation period. We have to stress 
that the aggregates list materialization and its further 
restoring is a very short-lasting operation in comparison 
with the raw data processing and imposes relatively small 
overhead. 
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Figure 9 presents a graph comparing the distributed 

and centralized system measures aggregation time. The 
aggregations were performed for more than 160 meters; 
the aggregation periods extend from one to four month. 
The graph shows that the distributed system significantly 
surpasses the centralized version in terms of efficiency.  

The system distribution results in significant speedup 
of aggregating operations. The speedup is very close to 
linear (a linear coefficient N is number of servers in the 
distributed system) where there are no materialized 
aggregates in the data base and the system must process 
the raw data. 
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Figure 9. Aggregation times comparison for distributed 
and centralized system (160 meters) 

 
The more aggregates are materialized the less is the 
benefit of distribution. This result shows the importance 
of indexing structure materialization. 

6.   Conclusions and future work plans 
In this paper we give a description of a telemetric system 
of integrated meter readings and present in detail a 
distributed spatial telemetric data warehouse system 
designed for storing and analyzing a wide range of spatial 
data. We presented both the centralized and distributed 
structures of our system. The data is generated by media 
meters working in a radio wave-based measurement 
system. The STDW works with the new data model called 
cascaded star model. The cascaded star model allows 
efficient storing and analyzing huge amounts of spatial 
data whose range is very wide and extends from meter 
measurement values to weather information.  

The paper contains detailed description of data 
distribution process as well as the whole distributed 
system operation. In order to provide satisfactory 
interactivity for our system, in addition to distributed 
structure we used a special indexing structure called an 
aggregation tree. Its structure and operation is tightly 
integrated with the spatial character of the data. Thanks to 
a memory managing mechanism the system is very 
flexible in the field of aggregates accuracy. We called the 
index Virtual Memory Aggregation Tree (VMAT), the 
reason being the aggregation tree intensively uses a disk 
to store the aggregates. The approach using VMAT allows 
the overcoming of available RAM memory limitations 
when indexing huge amounts of data. The tests proved 
that VMAT works effectively even with small amounts of 
memory. A final selective materialization of indexing 
structure fragments performed by combining the Java 
streams and the Oracle BLOB table column strongly 
increases the system’s efficiency.  

Tests results show that by means of aggregation tree 
materialization the system’s efficiency can be greatly 
increased. Another positive outcome of materialization is, 
the greater the number of aggregation actions performed, 
the faster the system works, because more nodes were 
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materialized. Data and workload distribution is another 
way to improve the system efficiency. 

Our future plans call for implementation of updating 
the aggregation tree contents algorithm and research in 
the field of distributed data warehouse solutions involving 
dynamic load balancing. 
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Abstract

Continuous K nearest neighbor queries (C-
KNN) are defined as the nearest points of in-
terest to all the points on a path (e.g., contin-
uously finding the three nearest gas stations
to a moving car). The result of this type
of query is a set of intervals (or split points)
and their corresponding KNNs, such that the
KNNs of all objects within each interval are
the same. The current studies on C-KNN fo-
cus on Euclidean spaces. These studies are
not applicable to spatial network databases
(SNDB) where the distance between two ob-
jects is defined as the length of the shortest
path between them. In this paper, we pro-
pose two techniques to address C-KNN queries
in SNDB: Intersection Examination (IE) and
Upper Bound Algorithm (UBA). In the IE, we
first find the KNNs of all nodes on a path and
then, for those adjacent nodes whose nearest
neighbors are different, we find split points be-
tween them and compute the KNNs of the
split points using the KNNs of the nodes.
The intuition behind UBA is that the perfor-
mance of IE can be improved by determining
the adjacent nodes that cannot have any split
points in between, and consequently eliminat-
ing the computation of KNN queries for those
nodes. Our empirical experiments show that
the UBA approach outperforms IE, specially
when the points of interest are sparsely dis-
tributed in the network.

1 Introduction
The problem of K nearest neighbor (KNN) queries
in spatial databases have been studied by many re-
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Proceedings of the Second Workshop on Spatio-
Temporal Database Management (STDBM’04),
Toronto, Canada, August 30th, 2004.

searchers. This type of query is frequently used in Ge-
ographical Information Systems (GIS) and is defined
as: given a set of spatial objects and a query point, find
the K closest objects to the query. An example of KNN
query is a query initiated by a GPS device in a vehicle
to find the five closest restaurants to the vehicle. Dif-
ferent variations of KNN queries are also introduced.
One variation is the continuous KNN query which is
defined as the KNNs of any point on a given path. An
example of continuous KNN is when the GPS device
of the vehicle initiates a query to continuously find the
five closest restaurants to the vehicle at any point of a
given path from a source to a destination. The result
of this type of query is a set of intervals, or split points,
and their associated KNNs. The split points specify
where on the path the KNNs of a moving object will
change, and the intervals (bounded by the split points)
specify the locations that the KNNs of a moving object
remains the same. The challenge in this type of query
is to efficiently specify the location and the KNNs of
the split points.

The majority of the existing work on KNN queries
and its variations are aimed at Euclidean spaces, where
the path between two objects is the straight line con-
necting them. These approaches are usually based on
utilizing index structures. However, in spatial network
databases (SNDB), objects are restricted to move on
pre-defined paths (e.g., roads) that are specified by an
underlying network. This means that the shortest net-
work path/distance between the objects (e.g., the vehi-
cle and the restaurants) depend on the connectivity of
the network rather than the objects’ locations. Index
structures that are designed for spaces where the dis-
tance between objects is only a function of their spatial
attributes (e.g., Euclidean distance), cannot properly
approximate the distances in SNDB and hence the so-
lutions that are based on index structures cannot be
extended to SNDB.

We proposed [4] a Voronoi based approach, VN3,
to efficiently address regular KNN queries in SNDB.
The VN3 has two major components, network Voronoi
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polygons (NVP) for each point of interest, and the
pre-computed distances between the border points of
each polygon to the points inside the polygon. The
VN3 approach provides the result set in an incremental
manner and it works in two steps: the filter step uses
the first component to generate a candidate set, and
the pre-computed component is used in the refinement
step to find the distances between the query objects
and the candidates, and hence refine the candidates.

In this paper, we propose several approaches to ad-
dress continuous KNN queries in SNDB. Depending on
the number of neighbors requested by a CNN query,
we divide the problem into two cases. When only the
first nearest neighbor is requested (e.g., finding only
the closest restaurant to a vehicle on a given path),
our solution relies entirely on the properties of VN3.
We show that the split points on the path are simply
the intersections of the path with the NVPs of the net-
work, which are a subset of the border points of the
NVPs.

We propose two solutions for the cases when more
than one neighbor is requested by the CNN query (i.e.,
C-KNN). The main idea behind our first approach is
that the KNNs of any object on a path between two
adjacent nodes (e.g., intersections in road system) can
only be a subset of any point(s) of interest (e.g., restau-
rants) on the path, plus the KNNs of the end nodes.
Hence, the first solution is based on breaking the entire
path to smaller segments, where each segment is sur-
rounded by two adjacent nodes, and finding the KNNs
of all nodes. We then show that for two adjacent nodes
with different KNNs, by specifying whether the dis-
tances from a query object to the KNNs of the nodes
will be increasing or decreasing as the object moves,
we can find the location of the split points between the
two nodes. The intuition behind our second solution
is that if an object moves slightly, its KNNs will prob-
ably remain the same. Our second approach is then
based on finding the minimum distance between two
subsequent nearest neighbors of an object, only when
the two neighbors can have a split point between them.
This distance specifies the minimum distance that the
object can move without requiring a new KNN query
to be issued. Our empirical experiments show that the
second approach always outperforms the first solution.
To the best of our knowledge, the problem of contin-
uous K nearest neighbors is spatial network databases
has not been studied.

The remainder of this paper is organized as follows.
We review the related work on regular and continuous
nearest neighbor queries in Section 2. We then provide
a review of our VN3 approach that can efficiently ad-
dress KNN queries in SNDB in Section 3. In Section 4,
we discuss our approaches to address continuous KNN
queries. Finally, we discuss our experimental results
and conclusions in Sections 5 and 6, respectively.

2 Related Work

The regular K nearest neighbor queries have been ex-
tensively studied and for which numerous algorithms
have been proposed. A majority of the algorithms are
aimed at m-dimensional objects in Euclidean spaces,
and are based on utilizing one of the variations of mul-
tidimensional index structures. There are also other
algorithms that are based on computation of the dis-
tance from a query object to its nearest neighbors on-
line and per query. The regular KNN queries are the
basis for several variations of KNNs, e.g., continuous
KNN queries. The solutions proposed for regular KNN
queries are either directly used, or have been adapted
to address the variations of KNN queries. In this sec-
tion, we review the previous proposed solutions for
regular and continuous KNN queries.

The regular KNN algorithms that are based on in-
dex structures usually perform in two filter and re-
finement steps and their performance depend on their
selectivity in the filter step. Roussopoulos et al. in
[8] present a branch-and-bound R-tree traversal algo-
rithm to find nearest neighbors of a query point. The
main disadvantage of this approach is the depth-first
traversal of the index that incurs unnecessary disk ac-
cesses. Korn et al. in [5] present a multi-step k -nearest
neighbor search algorithm. The disadvantage of this
approach is that the number of candidates obtained
in the filter step is usually much more than necessary,
making the refinement step very expensive. Seidl et al.
in [9] propose an optimal version of this multi-step al-
gorithm by incrementally ranking queries on the index
structure. Hjaltason et al. in [2] propose an incremen-
tal nearest neighbor algorithm that is based on uti-
lizing an index structure and a priority queue. Their
approach is optimal with respect to the structure of
the spatial index but not with respect to the nearest
neighbor problem. The major shortage with all these
approaches that render them impractical for networks
is that the filter step of these approaches performs
based on Minkowski distance metrics (e.g., Euclidean
distance) while the networks are metric space, i.e. the
distance between two objects depends on the connec-
tivity of the objects and not their spatial attributes.
Hence, the filter step of these approaches cannot be
used for, or properly approximate exact distances in
networks. Papadias et al. in [7] propose a solution for
SNDB which is based on generating a search region for
the query point that expands from the query, which
performs similar to Dijkstra’s algorithm. Shekar et al.
in [10] and Jensen et al. in [3] also propose solutions for
the KNN queries in SNDB. These solutions are based
on computing the distance between a query object and
its candidate neighbors on-line and per query. Finally,
in [4], we propose a novel approach to efficiently ad-
dress KNN queries in SNDB. The solution is based
on the first order network Voronoi diagrams and the
result set is generated incrementally.
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Sistla et al. in [11] first identify the importance of
the continuous nearest neighbors and describe model-
ing methods and query languages for the expression of
these queries, but did not discuss the processing meth-
ods. Song et al. in [12] propose the first algorithms
for CNN queries. They propose fixed upper bound al-
gorithm that specifies the minimum distance that an
object can move without requiring a new KNN to be
issued. They also propose a dual buffer search method
that can be used when the position of the query can
be predicted. Tao et. al in [13] present a solution that
is based on the concept of time parameterized queries.
The output of this approach specifies the current result
of the CNN query, the expiration period of the result,
and the set of objects that will effect the results af-
ter the expiration period. This approach provides the
complete result set in an incremental manner. Tao et
al. in [14] propose a solution for CNN queries based on
performing one single query for the entire path. They
also extend the approach to address C-KNN queries.
The main shortcoming of all of these approaches is
that they are designed for Euclidean spaces and utilize
a spatial index structure, hence they are not appropri-
ate for SNDB. Finally, Feng et al. in [1] provide a
solution for C-NN queries in road networks. Their so-
lution is based on finding the locations on a path that
a NN query must be performed at. The main short-
coming of this approach is that it only addresses the
problem when the first nearest neighbor is requested
(i.e., continuous 1-NN) and does not address the prob-
lem for continuous K-NN queries. To the best of our
knowledge, the problem of continuous K nearest neigh-
bor queries in spatial network database has not been
studied.

3 Background: VN3

Our proposed solutions to address continuous KNN
queries utilize the VN3 approach to efficiently find the
KNNs of an object. The VN3 approach is based on
the concept of the Voronoi diagrams. In this section,
we start with an overview of the principles of the net-
work Voronoi diagrams. We then discuss our VN3 ap-
proach ([4]) to address KNN queries in spatial network
databases. A thorough discussion on Voronoi diagrams
and VN3 are presented in [6] and [4], respectively.

3.1 Network Voronoi Diagram

A Voronoi diagram divides a space into disjoint poly-
gons where the nearest neighbor of any point inside a
polygon is the generator of the polygon. Consider a set
of limited number of points, called generator points, in
the Euclidean plane. We associate all locations in the
plane to their closest generator(s). The set of loca-
tions assigned to each generator forms a region called
Voronoi polygon (VP) of that generator. The set of
Voronoi polygons associated with all the generators is
called the Voronoi diagram with respect to the gener-
ators set. The Voronoi polygons that share the same

edges are called adjacent polygons. A network Voronoi
diagram, termed NVD, is defined for (directed or undi-
rected) graphs and is a specialization of Voronoi dia-
grams where the location of objects is restricted to the
links that connect the nodes of the graph and distance
between objects is defined as their shortest path in the
network rather than their Euclidean distance. A net-
work Voronoi polygon NV P (pi) specifies the links (of
the graph), or portions of the links, that pi is closest
point of interest to any point on those links. A border
point of two NVPs is defined as the location where a
link crosses one NVP in to the other NVP.

3.2 Voronoi-Based Network Nearest Neigh-
bor: VN3

Our proposed approach to find the K nearest neighbor
queries in spatial networks [4], termed VN3, is based
on the properties of the Network Voronoi diagrams and
also localized pre-computation of the network distances
for a very small percentage of neighboring nodes in the
network. The intuition is that the NVPs of an NVD
can directly be used to find the first nearest neigh-
bor of a query object q. Subsequently, NVPs’ adja-
cency information can be utilized to provide a candi-
date set for other nearest neighbors of q. Finally, the
pre-computed distances can be used to compute the
actual network distances from q to the generators in
the candidate set and consequently refine the set. The
filter/refinement process in VN3 is iterative: at each
step, first a new set of candidates is generated from
the NVPs of the generators that are already selected
as the nearest neighbors of q, then the pre-computed
distances are used to select “only the next” nearest
neighbor of q. VN3 consists of the following major
components:

1. Pre-calculation of the solution space: As a major
component of the VN3 filter step, the NVD for the
points of interest (e.g., hotels, restaurants,...) in a
network must be computed and its corresponding
NVPs must be stored in a table.

2. Utilization of an index structure: In the first stage
of the filter step, the first nearest neighbor of q is
found by locating the NVP that contains q. This
stage can be expedited by using a spatial index
structure generated on the NVPs.

3. Pre-computation of the exact distances for a very
small portion of data: The refinement step of VN3

requires that for each NVP, the network distances
between its border points be pre-computed and
stored. These pre-computed distances are used to
find the network distances across NVPs, and from
the query object to the candidate set generated by
the filter step.

Our empirical experiments shows that VN3 outper-
forms the only other proposed approach ([7]) for KNN
queries in SNDB by up to one order of magnitude.
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They also show that the size of the candidate set gener-
ated by our proposed filter step is smaller than that of
the approaches designed for spatial index structure.

4 Continuous Nearest Neighbor
Queries

Continuous nearest neighbor queries are defined as de-
termining the K nearest neighbors of any object on
a given path. An example of this type of query is
shown in Figure 2 where a moving object (e.g., a car) is
traveling along the path (A,B,C,D) (specified by the
dashed lines) and we are interested in finding the first
3 closest restaurants (restaurants are specified in the
figure by {r1, ..., r8}) to the object at any given point
on the path. The result of a continuous NN query is
a set of split points and their associated KNNs. The
split points specify the locations on the path where the
KNNs of the object change. In other words, the KNNs
of any object on the segment (or interval) between two
adjacent split points is the same as the KNNs of the
split points. The challenge for this type of query is to
efficiently find the location of the split point(s) on the
path. The current studies on continuous NN queries
are focused on spaces where the distance function be-
tween two objects is one of the Minkowski distance
metrics (e.g., Euclidean). However, the distance func-
tion in spatial network databases is usually defined
as their shortest path (or shortest time) which has a
computationally complex function. This renders the
approaches that are designed for Minkowski distance
metrics, or the ones that are based on utilization of
vector or metric spatial index structures, impractical
for SNDB.

In this section, we discuss our solutions for C-KNN
queries in spatial network databases. We first present
our approach for the scenarios when only the first NN
is desired (i.e., C-NN), and then discuss two solutions
for the cases where the KNN of any point on a given
path are requested.

4.1 Continuous 1-NN Queries

Our solution for CNN queries, when only the first near-
est neighbor is requested, is based on the properties of
VN3. As we showed in Section 3, a network Voronoi
polygon of a point of interest pi specifies all the loca-
tions in space (space is limited to the roads in SNDB),
where pi is their nearest neighbor. Hence, in order to
specify the C-NN of a given path, we can first spec-
ify the intersections of the path with the NVPs of the
network. Subsequently, we can conclude that pi is the
C-NN of the segments of the path that are contained
in NV P (pi). Note that this approach cannot be ex-
tended to C-KNN queries since the polygons are first
order NVPs, i.e., they can only specify the first nearest
neighbor of an object.

For example, assume the network Voronoi diagram
shown in Figure 1 where {p1, ..., p7} are the points of
interest. As depicted in the figure, the path from S to
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Figure 1: Continuous first nearest neighbor

D crosses NV P (p1), NV P (p5) and NV P (p7) and can
be divided to 4 segments. We can conclude that p5,
p1, and p7 are the first nearest neighbors of any point
on segments {1, 3}, {2}, and {4}, respectively.

4.2 Continuous KNN Queries

In this section, we discuss two approaches to address
continuous KNN queries. Our first solution, IE, is
based on examining the KNNs of all the nodes on a
path, while our second approach, UBA, eliminates the
KNN computation for the nodes that cannot have any
split points in between.
4.2.1 Intersection Examination: IE

Our first approach to address continuous KNN queries
in SNDB is based on finding the KNNs of the inter-
sections on the path. We describe the intuition of our
IE approach by defining the following properties:

Property 1: Let p(ni, nj) be the path between two
adjacent nodes ni and nj , o1 and o′1 be the first near-
est points of interest (or neighbors) to ni and nj , re-
spectively, and assume that p(ni, nj) includes no point
of interest, then the first nearest point of interest to
“any” object on p(ni, nj) is either o1 or o′1.

Proof: This property can be easily proved by
contradiction. Assume that the nearest point of
interest to a query object q on p(ni, nj) is ok /∈
{o1, o

′
1}. We know that the shortest path from q to

ok, p(q, ok), must go through either ni or nj . Suppose
p(q, ok) goes through ni and hence distance(q, ok) =
distance(q, ni) + distance(ni, ok). However, we know
that distance(ni, ok) > distance(ni, o1) since o1 is the
first nearest point of interest to ni and hence its dis-
tance to ni is smaller than the distance of any other
point of interest to ni. Subsequently, we can conclude
that distance(q, ok) > distance(q, o1) which means
that o1 is closer to q than ok, contradicting our ini-
tial assumption.

As an example, this property suggests that in Fig-
ure 2, the first nearest restaurant to any point between
A and B can be either r1 or r3 since r1 and r3 are the
first nearest neighbors of A and B respectively.

Property 2: Let p(ni, nj) be the path between
two adjacent nodes ni and nj , O = {o1, ..., ok} and
O′ = {o′1, ..., o

′
k} be the k nearest points of interest

to ni and nj , respectively, and assume that p(ni, nj)
includes no point of interest, then the k nearest points
of interest to “any” object on p(ni, nj) is a subset of
{O

⋃
O′}.
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Figure 2: Example of continuous K nearest neighbor
query

Proof: This property is in fact the extension of
property 1 and can be similarly proved by contradic-
tion.

As an example, this property suggests that in Fig-
ure 2, since the three nearest restaurants to A and B
are {r1, r2, r3} and {r3, r4, r5}, respectively, the three
nearest restaurants to any object between A and B
can only be among {r1, r2, r3, r4, r5}.

From the above properties, we can conclude that:

• If two adjacent nodes have similar KNNs, ev-
ery object on the path between the nodes will
have similar KNNs as the nodes, meaning that
there will be no split points on the shortest path
between the nodes. That is simply because O
and O′ (in property 2) are the same and hence,
{O

⋃
O′} = O = O′.

• In order to find the continuous KNN of any point
on a path, we can first break the path into smaller
segments where each segment obeys the above
properties. We then find the continuous KNN for
each segment, and finally, the union of the results
for all segments generates the result set for the
entire path.

The above properties are not valid for a path p if
p includes one or more points of interest (e.g., the
path between B and C in Figure 2 which includes r3).
We can address this issue in two alternative ways: 1)
breaking p to smaller segments where each segment
does not include any points of interest. For example,
we can break the path (B,C) of Figure 2 to (B, r3)
and (r3, C). This will require that in addition to B
and C, the KNNs of r3 be determined as well which
incurs additional overhead. However, in the real world
data sets, the points of interest usually constitute a
very small percentage of the nodes in the graph (e.g.,
in the State of California, restaurants that have a den-
sity of less than 5%, are the points of interest with the
maximum density). Hence, the incurred overhead is
negligible. 2) Similar to Properties 1 and 2, we can
also easily prove that by including points of interest
that are on p in the candidate set, the above prop-
erties will again become valid for p. For example,
this solution suggests that the three closest restau-
rant to any point on the path (B,C) is a subset of
{r3

⋃
{r3, r4, r5}

⋃
{r6, r8, r3}}. For the rest of this pa-

per, we use the first alternative.

Once the KNNs of the nodes in the network are
specified, we need to find the location and the KNNs
of the split points on each segment (i.e., path between
two adjacent nodes). Note that split point(s) only ex-
ist on the segments where the nodes of that segment
have different KNNs. We divide the KNNs of a node
ni to two increasing and decreasing groups: the NNs
that their distances to a query object q, which is trav-
eling from ni in a specific direction, increases as the
distance of q and ni increases, are called increasing
NNs and vice versa. Note that whether a NN is in-
creasing or decreasing depends on the direction that q
is traveling. We can specify whether a point of interest
is considered as increasing or decreasing NN using the
following property:

Property 3: Let ni and nj be two adjacent nodes,
d(x, y) specifies the length of the shortest path between
objects x and y, and O = {o1, ..., ok} be the set of
points of interest in the network, then the shortest
path from ni to oa ∈ O goes through nj if and only if
d(ni, oa) = d(ni, nj) + d(nj , oa).

Proof: This property is self-evident and we omit
its proof.

We formally define increasing/decreasing NNs as:

Definition: A point of interest o is called increas-
ing for the direction ni → nj if the shortest path from
ni to o does not pass through nj , and it is called de-
creasing otherwise.

An example of the above definition and property
suggests that in Figure 2, r3 is considered as a de-
creasing NN for a query object that is traveling from
A toward B (since B is on the path between A and
r3), but it is considered an increasing NN when the
query is traveling from A toward E.

We can now describe our approach to find the loca-
tion of the split points between two nodes, and their
KNNs, using the following example: suppose that in
Figure 2, we are interested to find the three closest
restaurants to any point on the path (A,B,C,D).

Step 1: The first step is to break the original path
(A,B, C,D) to smaller segments. For the given ex-
ample, the resulting segments will be (A,B), (B, r3),
(r3, C) and (C,D).

Step 2: Once the segments are specified, the KNNs
of the nodes of each segment must be determined. We
use VN3 approach to efficiently find the KNNs of the
nodes. To illustrate our technique, we focus on the first
segment (i.e., AB). The other subsequent segments can
be treated similarly. The three nearest restaurants to
A and B and their distances as {(r1, 3)(r2, 6)(r3, 7)}
and {(r3, 2)(r4, 3)(r5, 4)}, respectively. We now know
that there must be split point(s) between A and B and
the KNNs of any point on segment (A,B) is a subset
of the candidate list {r1, r2, r3, r4, r5}.

Step 3: From the above candidate list, we can eas-
ily generate a sorted list of the nearest neighbors for
the starting point of the segment, A. We also specify
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whether each NN is an increasing or decreasing NN
using ↑ and ↓ symbols, respectively. For the given
example, the sorted candidate list for A is {↑ (r1, 3),
↑ (r2, 6), ↓ (r3, 7), ↓ (r4, 8), ↓ (r5, 9)}.

Step 4: We now specify the location of the first
split point by: 1) we find the location of the split point
for any two subsequent members of the sorted list, oi

and oi+1, where the first and second members have
increasing and decreasing distances to A, respectively.
The distance of the split point for oi and oi+1 to A

can be easily found as: d(A,oi+1)+d(A,oi)
2 − d(A, oi) =

d(A,oi+1)−d(A,oi)
2 . Note that since oi+1 is lower than

oi on the sorted candidate list, d(A, oi+1) is always
greater than d(A, oi), meaning that the location of the
split point is always between A and B, 2) we then
select the split point with the minimum distance to
A as the first split point. For the given example, the
only two subsequent members of the candidate list that
satisfy the above condition are ↑ r2 and ↓ r3 with split
point p1 = 6+7

2 = 6.5 and a distance of (6.5 − 6 =)0.5
to A.

Note that we ignore other combinations of any two
subsequent members of the sorted list because: a) if
two subsequent members both have increasing (or de-
creasing) distances to A (e.g., ↑ (r1, 3) and ↑ (r2, 6),
or ↓ (r3, 7) and ↓ (r4, 8)), the differences between their
distances to a query object moving from A to B will
remain constant, meaning that there will be no split
points between them, and b) if the first member has a
decreasing and the second member has an increasing
distance to A, when the query object is traveling from
A to B, the distance of the query to the first mem-
ber will be decreased further and the distance to the
second member will be increased further, which means
there will be no split points between the members.

Step 5: We can easily update the sorted candidate
list to reflect their distances to the first split point
p1 by adding/subtracting the distance of A and p1

to/from the members that have increasing/decreasing
distances to A. The sorted candidate list for p1

will then become {↑ (r1, 3.5), ↓ (r3, 6.5), ↑ (r2, 6.5),
↓ (r4, 7.5), ↓ (r5, 8.5)}.

Step 6: We now treat p1 as the beginning node of a
new segment, (p1, B), and repeat steps 4 to 6: we first
determine the split points for (↑ r1, ↓ r3) and (↑ r2, ↓
r4) pairs as np1 = 3.5+6.5

2 = 5 and np2 = 6.5+7.5
2 = 7,

then find their distances to A as d(np1, p1) = 5−3.5 =
1.5 and d(np2, p1) = 7 − 6.5 = 0.5, and finally select
np2 as the next split point p2. We continue executing
steps 4 to 6 until the new split point has similar KNNs
as B.

Table 1 shows the results of repeating the above
steps for the segment (A,B): the KNNs of any point
on (A, p1) interval is equal to the KNNs of A (and p1),
for any point on (p1, p2) segment is equal to KNNs of
p1 (and p2), and so on. Note that the distance from a
query object, which is between two split points, to its

Split Point Distance to A Candidate Set
p1 0.5 ↑ (r1, 3.5), ↓ (r3, 6.5), ↑ (r2, 6.5),

↓ (r4, 7.5), ↓ (r5, 8.5)
p2 1.0 ↑ (r1, 4), ↓ (r3, 6), ↓ (r4, 7),

↑ (r2, 7), ↓ (r5, 8)
p3 1.5 ↑ (r1, 4.5), ↓ (r3, 5.5), ↓ (r4, 6.5),

↓ (r5, 7.5), ↑ (r2, 7.5)
p4 2.0 ↓ (r3, 5), ↑ (r1, 5), ↓ (r4, 6),

↓ (r5, 7), ↑ (r2, 8)
p5 2.5 ↓ (r3, 4.5), ↓ (r4, 5.5), ↑ (r1, 5.5),

↓ (r5, 6.5), ↑ (r2, 8.5)
p6 3 ↓ (r3, 4), ↓ (r4, 5), ↓ (r5, 6),

↑ (r1, 6), ↑ (r2, 9)

Table 1: Split points for segment (A,B) of Figure 2

KNNs can be similarly computed. Subsequently, the
results for other segments can be similarly found.

This approach, although provides a precise result
set, is conservative and may lead to unnecessary exe-
cution of KNN queries. For example, suppose that in
Figure 1, we are interested in the first NN of any point
on the traveling path from S to D. Clearly, there are
only three split points on this path. However, if we uti-
lize IE approach to address this query, the 1-NN query
will be issued for all the intersections of the path. We
address this issue with our second approach.

4.2.2 Upper Bound Algorithm: UBA

The UBA approach works similar to IE. However,
while IE performs KNN queries for every node (e.g.,
intersection) on the path, the UBA approach only per-
forms the computation of KNN queries for the nodes
that is required and hence, provides a better per-
formance by reducing the number of KNN compu-
tations. The intuition for UBA is similar to what
is discussed in [12]: when a query object is moved
slightly, it is very likely that its KNNs remain the
same. Song et. al. in [12] define a threshold value as
δ = min(d(oi+1, q)− d(oj , q)) where q is the query ob-
ject and oi+1 ∈ (K+1)NNs(q). The defined δ specifies
the minimum difference between the distances of any
two subsequent KNNs of q. It can be shown that if the
movement of q is less than δ

2 , the KNNs of q remain the
same. This approach is designed for Euclidean spaces
but we apply it to spatial network databases. In addi-
tion, we propose a less conservative bound, δ′, which
improves the performance of our approach further.

We first discuss the extension of the approach de-
scribed in [12] to SNDB using the example in Figure 2.
Let us assume that a query object q is traveling from
D toward C and we are interested in finding the three
closest restaurants to q. The above approach suggests
to first find the four closest restaurants to D, {(r8, 1),
(r6, 9), (r3, 10), (r7, 11)}. The value of δ is then com-
puted (δ = 1), and finally it is concluded that while
the distance of q and D is less than or equal to ( δ

2 =)
0.5, the 3NNs of q are the same as the 3NNs of D. The
next (3+1)NN query must then be issued at the point
that the distance of q and D becomes 0.5.

As we discussed in Section 4.2.1, depending on the
traveling path of a query object q, its KNNs can be
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divided to two increasing and decreasing groups. We
showed that if two subsequent members of the candi-
date list are both increasing or decreasing, or if the
first one is decreasing and the second one is increas-
ing, they cannot generate any split points on the path.
This property is in fact the basis of UBA algorithm.

We define the new threshold value as δ′ =
min(d(oi+1, q) − d(oi, q)) where q is the query object,
oi+1 ∈ (K + 1)NNs(q), and oi and oi+1 have increas-
ing and decreasing distances to q, respectively. The
reason for this is similar to the discussion presented in
the step 4 of Section 4.2.1. Our defined δ′ specifies the
minimum difference between the distances of only the
NNs that can generate a split point on the traveling

path. If the movement of q is less than δ′

2 , the KNNs of
q remain the same. Otherwise, a new (K+1)NN query
must only be issued at the intersection point that is

immediately before the point that has a distance of δ′

2
to the initial location of q. For example, in Figure 2, if
the traveling path is (D,C,B,A) and the point speci-
fied by some δ′ is between C and B or between D and
C, a new (K+1)NN query must be issued at point C
and then the split points between C and D are speci-
fied similar to IE. In this case, UBA will perform sim-
ilar to IE. However, if the point specified by some δ′ is
between B and A, then a new (K+1)NN query must
be issued at point B which means UBA eliminates the
overhead of computing KNN for C. Note that δ′ is al-
ways greater than or equal to δ and hence, provides a
better bound for our method.

We now discuss the same example using our UBA
approach. The four nearest neighbors of D are {↑
(r8, 1), ↓ (r6, 9), ↓ (r3, 10), ↓ (r7, 11)}. Note that in
addition to specifying the KNNs of an object, the VN3

approach can also be used to specify the direction (i.e.,
increasing or decreasing) of the neighbors. This can
be achieved by determining the immediate connected
node, n, to the object that is on the shortest path from
the object to its Kth neighbor, rk. Consequently, rk

is decreasing if n is on the traveling path. With our
approach, we only examine ↑ r8 and ↓ r6 to compute
δ′ since they are the only subsequent members of the
list that satisfy our condition. The value of δ′ for this
example will then become 9−1 = 8, which means that
when q starts moving from D toward C, as long its dis-
tance to D is less than or equal to (8

2 =)4, the 3NNs
of q will remain similar to the 3NNs of D. This means
that once the (3+1)NNs of D are determined, there is
no need to compute (3+1)NNs of any other point on
the (D → C) path. Moreover, as we discussed in Sec-
tion 4.1, the first nearest neighbor of a moving point
remains the same as long as the point stays in the same
NVP. Hence, we ignore the comparison of the first and
second nearest neighbors (if it is necessary) and check
any changes in the first nearest neighbor only by lo-
cating the intersection of the path with the NVPs of
the network. Consequently, the new value of i in our

Function IE( Path P )
1. Break P to segments that satisfy property 2:

P = {n0, ..., nm}
2. Start from ni = n0, for each segment (ni, ni+1):
2.1 Find KNN(ni) and KNN(ni+1)
2.2 Find the directions of KNNs(ni)
2.3 Find the split points of the segment (ni, ni+1)

Function UBA( Path P )
1. Break P to segments that satisfy property 2:

P = {n0, ..., nm}
2. Start from ni = n0, while ni 6= nm :
2.1 Find (K+1)NN( ni ) and their directions
2.2 compute δ′

2.3 Find np, nq where δ′ is between (np, nq)
2.4 If nq = ni+1:
2.4.1 IE (ni , ni+1)
2.5 ni = ni+1

Figure 3: Pseudo code of IE and UBA

formula for δ′ varies from 2 to K, which may lead to
even a higher bound value for δ′.

Figure 3 shows the pseudo code of our IE and UBA
approaches.

5 Performance Evaluation

We conducted several experiments to compare the per-
formance of the proposed approaches for the continu-
ous KNN queries. The data set used for the exper-
iments is obtained from NavTeq Inc., used for navi-
gation and GPS devices installed in cars. The data
represents a network of approximately 110,000 links
and 79,800 nodes of the road system in downtown Los
Angeles. We performed the experiments using differ-
ent sets of points of interest (e.g., restaurants, shop-
ping centers) with different densities and distributions.
The experiments were performed on an IBM ZPro with
dual Pentium III processors, 512MB of RAM, and Or-
acle 9.2 as the database server. We calculated the
number of times that the KNN query must be issued
and the required times, for different values of K and
different lengths of traveling paths. We present the
average results of 100 runs of continuous K nearest
neighbor queries.

Table 2 shows the query response time (in seconds)
for IE and UBA approaches when the length of the
traveling path is 5KM and the value of K varies from 1
to 20. Also, the numbers inside parenthesis in columns
under UBA specify the number of nodes a (K+1)NN
query is issued at. Note that for the given data set,
the average length of the segments between two adja-
cent intersections is about 147 meters, meaning that
(on average) there are 34 intersections in a 5KM path.
As shown in the table, UBA always outperforms IE.
This is because as shown in the table, the number of
nodes a (K+1)NN query is issued at in UBA method
is always less than 34, i.e., the number of nodes a
KNN query must be issued at in IE method. How-
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K=3 K=5 K=10 K=20
Qty K=1 IE UBA IE UBA IE UBA IE UBA

Entities (density) (No. of nodes) (No. of nodes) (No. of nodes) (No. of nodes)

Hospital 46 0.6 153 22.5 217 82 476 294 952 670
(0.0004) (5) (13) (21) (24)

Shopping 173 0.68 85 20 110 58 231 149 493 377
Centers (0.0016) (8) (18) (22) (26)
Parks 561 0.7 34 11 51 16.5 91.8 62 187 143

(0.0053) (11) (20) (23) (26)
Schools 1230 0.92 17 7 23.8 14.7 48.5 37 119 94.5

(0.015) (14) (21) (26) (27)
Auto 2093 1.0 15.3 6.7 22.1 14.3 48 38 85 72
Services (0.0326) (15) (22) (27) (29)
Restaurants 2944 1.0 13.6 6.0 19.8 13.4 47.6 39.2 81.6 74.5

(0.0580) (15) (23) (28) (31)

Table 2: Query processing time (in seconds) of IE vs. UBA, Traveling Path = 5KM

ever, the advantage of UBA over IE is minimal when
the points of interest are distributed densely in the
network (e.g., restaurants). The reason for this is that
in these cases, the value of δ′ is relatively close to the
average length of the segments. That is, the points
determined by the UBA approach on which the next
(K+1)NN queries must be performed, are (usually) lo-
cated between two adjacent nodes. Hence, the UBA
approach can only eliminate the computation of KNNs
for a small number of adjacent nodes. However, for
the points of interest that are sparsely distributed in
the network (e.g., hospitals), the value of δ′ is usually
much larger than the average length of the segments.
This means that the UBA approach can filter out sev-
eral adjacent nodes from the computation of KNNs
and hence, significantly outperforms IE.

Also note that the performance of UBA becomes
close to IE when the value of K increases. This is also
because there are more number of subsequent increas-
ing/decreasing neighbors that must be examined when
the value of K increases. This will lead to a smaller
value for δ′, which will lead to KNN query for more
number of nodes. When the value of K is equal to
1, the query response time becomes smaller when the
points of interest are sparse. This is because the num-
ber of NVPs in the network are less when the points
of interest are sparse and hence, the intersection of a
line with the NVPs can be determined faster. The ex-
periments for traveling paths of 1, 2, 5, 10, and 20 KM
show similar trends.

6 Conclusion
In this paper we presented alternative solutions for
continuous K nearest neighbor queries in spatial net-
work databases. These solutions efficiently find the
location and KNNs of split point(s) on a path. We
showed that the continuous 1NN queries can be sim-
ply answered using the properties of our previously
proposed VN3 approach: the split points are the inter-
section(s) of the path with the network Voronoi poly-
gons of the network. We also proposed two solutions
for the cases where continuous K nearest neighbors
are requested. With our first solution, IE, we showed
that the location of the split points on a path can be
determined by first computing the KNNs of all the
nodes on the path, and then examining the adjacent

nodes that have different KNNs. Our second solution,
UBA, improves the performance of IE by eliminating
the computation of KNNs for the adjacent nodes that
cannot have any split points in between. Our experi-
ments also confirmed that UBA outperforms IE.
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Abstract 
The advent of modern monitoring applications, 
such as location-based services, presents several 
new challenges when dealing with continuously 
evolving spatiotemporal information. Frequent 
updates in the positions of moving objects, 
unexpected fluctuations in data volume and the 
requirement for real-time responses to 
continuous spatiotemporal queries indicate the 
limitations of traditional database systems. We 
attempt to model management of moving objects 
with the underlying assumption that their 
trajectories are essentially continuous, time-
varying and possibly unbounded data streams. 
We propose a basic framework for managing 
trajectory streams, and suggest the introduction 
of enhanced constructs for advanced query 
capabilities. Our first experience with querying 
moving objects in two data stream prototype 
systems is promising for the feasibility and 
extensibility of this approach. 

1 Introduction 
In monitoring applications, like sensor networks, financial 
tickers, Web search engines etc., data arrives into the 
system from multiple sources as online data streams. This 
persistent data flow through a network requires real-time 
responses to users’ requests. Multiple continuous queries 
remain active for long and they must be evaluated 
incrementally, keeping up with the arrival rate of the data. 
The typical pull-based model for transactions and queries 
utilized in the conventional DBMS paradigm gives way to 
a push-based architecture, which has been adopted by 
several prototype systems currently being developed for 
data stream management [ACC+03, BBD+02, CCD+03]. 

Applications for location-based services (e.g. automatic 

vehicle location) have also greatly benefited from recent 
advances in the fields of telecommunications and Global 
Positioning System (GPS). The possibility to locate 
objects in continuous movement (e.g., vehicles or humans) 
in real-time and with improved accuracy has boosted up 
the trend for developing moving objects databases, and 
consequently, has assisted research in the broader area of 
spatiotemporal phenomena. In particular, topics such as 
representation, indexing and querying moving objects 
have attracted much research effort, mainly towards the 
foundation of an appropriate model for the efficient 
management of their trajectories. 

We believe that the research fields of data streams and 
management of moving objects can naturally come 
together. In particular, ideas and techniques originally 
proposed for data streams can also apply to trajectories: 
 

• Why not maintain trajectory elements in memory for 
immediate processing, rather than just storing them in 
a spatiotemporal database for offline management? 

• Is it possible to formulate continuous queries over 
trajectories and provide their results incrementally? 

• If the current status of movement is what matters 
most, would it then be reasonable to ignore the details 
concerning remote parts of trajectories and instead 
focus on windows of the most recent features? 

 

We think that the answer to these indicative questions 
is affirmative according to the model we propose. 

Indeed, by sampling the trajectories of moving objects 
and thus compiling their successive positions across time, 
a data stream of spatiotemporal features can be created. 
Sampling rates may fluctuate, data could get lost during 
transmission to the system, or even superfluous (i.e. very 
dense) measurements might be observed at locations. 
Apparently, a DBMS cannot store data in its entirety, 
since the arrival rate is unpredicted and the expected 
amount of data rather high, as tuples are piling up 
continuously into the processing mechanism from their 
sources. Possible variations at the arrival rate of incoming 
data might impose excessive requirements in system 
resources, especially with respect to memory allocation. It 
is also likely that the system cannot cope with a sudden 
burst of data and thus become unable to provide responses 
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to queries in time; techniques such as load shedding 
[ACC+03] or approximations [BBD+02] have been 
devised in an attempt to remedy the problem. Clearly, a 
traditional DBMS, yet enhanced with special constructs 
for spatiotemporal data management, would prove 
inadequate to this purpose, especially in terms of online 
processing of queries that remain active for a long time. 

Our fundamental assumption about streams of 
trajectory elements paves the way towards the formulation 
of a query language for manipulating trajectory streams. 
Noticeably, spatial information is not simply some 
invariable coordinates, as in the case of sensor networks 
covering an area. On the contrary, it is precisely the 
continuous movement that is of great interest, as well as 
any spatiotemporal interactions among moving objects. 
Hence, this language should bring together the clarity and 
the processing functionality of a stream query language 
along with operations particularly designed to capture 
interesting spatiotemporal interrelationships, e.g. “objects 
crossing the boundaries of a polygon area”. 

This paper describes a novel approach to the manage-
ment of trajectories of moving objects, considering them 
as online data streams. To the best of our knowledge, 
there is no prior work making out the case for utilizing a 
stream query language so as to express continuous queries 
over dynamic spatiotemporal information. We believe that 
a declarative language is the most appropriate for the 
trajectory stream model proposed here. The semantics of 
an SQL-like language can be comfortably modified so as 
to apply to streams, whereas spatiotemporal operations 
may be incorporated with proper adjustments or additions. 
New language constructs, namely several types of 
windows, are worth introducing so as to facilitate 
managing and querying trajectories as data streams. 

The remainder of this paper is structured as follows. 
Section 2 presents a brief overview of previous work in 
the research areas of data streams and moving objects 
databases. In Section 3, we introduce elements of a model 
for representing trajectories as data streams, which we call 
trajectory streams. In Section 4, we briefly report on 
formulating indicative spatiotemporal continuous queries 
over trajectories in two data stream prototype systems. In 
Section 5, we discuss the necessity for new language 
constructs, mainly special-purpose window operators for 
trajectory streams. Finally, Section 6 concludes the paper 
and suggests ideas for future research. 

2   Related Work 
Several data stream prototypes are already at an advanced 
implementation stage, introducing a lot of new concepts 
with regard to the architecture of such a data management 
system. In parallel, several suggestions have been made 
for a stream query language. Most researchers tend to 
adopt a declarative SQL-like language. A Continuous 
Query Language (CQL) is being developed for the 
STREAM prototype [STR04], supporting management of 

dynamic streams and static relations, as well as mappings 
between them [ABW03]. In addition, CQL provides the 
means for query optimization, a crucial issue when 
numerous continuous queries are active at the same time. 
Similarly, TelegraphCQ introduces StreaQuel [TEL04], 
which extends semantics of relational operators to streams 
and allows transformation between streams. There is also 
support for windows that specify portions of the infinite 
stream. Conversely, AURORA [AUR04] follows the data 
flow paradigm, and makes use of a built-in query algebra 
SQuAl in order to construct a network of operators. These 
primitive operators take part in the global execution plan 
maintained for all active continuous queries. 

Concerning management of spatiotemporal informa-
tion, there are two different perspectives regarding time. 
From a historical point of view, an algebra for moving 
objects has been proposed [KSF+03] with data types, ope-
rators and predicates over trajectories. These constructs 
adhere to SQL and they may be implemented as an exten-
sion to a traditional DBMS [EGSV99]. In contrast, other 
models attempt to determine the current status of objects 
or to predict their future positions. To this goal, a Future 
Temporal Logic language was introduced [SWCD97], 
enhanced with spatiotemporal constructs for suitable 
query specification. Indexing techniques for moving 
objects or trajectories abound, with scalability being the 
main challenging task. Indeed, the larger the number of 
moving objects, the more expensive the maintenance of 
indexing structures due to frequent position updates. 

Some recent papers focus on evaluating continuous 
queries over continuously moving objects. Most of them 
deal with specific query types, such as k-nearest neighbors 
[ISS03] or range queries [GL04]. However, the streaming 
behavior of trajectories is all but implicit. For instance, in 
[MXA04], shared query execution is based on hashing 
with a predefined decomposition of space. Evaluation of 
spatiotemporal queries is outside the scope of this paper.  

Finally, Stream Query Repository [SQR04] offers 
some example queries involving coordinates; nonetheless, 
spatial references are used as stationary information only, 
without examining potential interactions among the 
corresponding entities. 

3   Modeling Trajectories as Data Streams 
The scope of our model is currently restricted to point 
objects only, thus spatial entities are considered to have 
no extent: the shape of objects is reduced to their centroid. 
A trajectory is obtained by recording the successive 
positions a point object takes across time. This continuous 
data flow from a number of sources (e.g. GPS receivers in 
cars) to a central processing system can be suitably 
modeled as a trajectory stream. So trajectories are viewed 
from a historical perspective, not dealing at all with predi-
ctions about the future position of the moving objects. On 
the other hand, the model conveniently enables calcu-
lation of derived attributes, such as speed or acceleration. 

42



3.1   Basic Entities 

The entities appearing in the trajectory stream model can 
be drawn from the following principal components: 
 

• Relations, which can be updated from time to time, 
thus allowing several temporal versions. Of particular 
interest are spatial relations that need be supported 
for stationary entities (e.g. area boundaries). These are 
stored in attributes of a primitive data type (point, 
line, and region). Each such relation must contain 
features of the same spatial data type, avoiding by all 
means any mixture of dissimilar spatial entities. 

• Pure data streams, modeled as ordered multisets of 
tuples. The ordering attribute (timestamp) is based on 
valid time values registered at the data sources. An 
identifier needs to be included in the schema of 
attributes to distinguish the origin of the incoming 
tuples, as the union of those tuples creates the stream. 

• Trajectory streams can be considered a specialized 
class of streams, which models the continuous 
movement of spatial point entities. The spatial 
reference evolves with time, following the successive 
positions taken by each moving object. Therefore, 
there is a close connection between spatial and 
temporal coordinates, which coexist simultaneously 
and create a unique spatiotemporal reference. This 
duality between space and time is very significant in 
formulating queries, since a combination of temporal 
and spatial predicates may be required. 

• Derived streams, produced when operations and 
predicates are applied to the contents of base streams 
[ABW03] originating from data sources. Apart from 
local views used in continuous queries (as will be 
demonstrated in subsection 4.1), the principal form of 
derived information is summaries or synopses that 
approximate the contents of the (trajectory) stream, 
possibly by sampling or aggregating specific 
attributes. These can be produced after a query or a 
subquery is applied over the tuples of a base stream. 

• Query language, for expressing continuous queries 
on the contents of streams and relations in a 
declarative manner. Obviously, this language can be 
implemented according to the algebraic structures 
prescribed for operations applicable to streams. 

 

Informally speaking, if data evolves with time, then it 
is modeled as a data stream; if spatial information also 
varies with time, a trajectory stream is produced. 
Permanence in space and time is captured with relations. 
Observe that trajectory streams may collapse to data 
streams after projecting out the spatial reference attribute. 
So, it is possible that a data stream can be derived from a 
trajectory stream, but not vice versa. For example, a data 
stream containing the speed of moving objects can be 
calculated for every position, retaining only timestamp 
information (but not spatial features) in the resulting 
tuples. Consequently, by projecting out the timestamp 

attribute as well, a relation is derived. Relations may even 
include temporal and/or spatial attributes; however, as 
long as order cannot be defined, they may be considered 
as degenerate (static) streams or trajectory streams. 

As in the relational model, we may define: 
 

Definition 1 (Schema of tuples): The tuple schema E of 
the data is represented by a set of elements (e1, e2, …eN). 
Each element ei is termed attribute, it has a name Ai and 
its values are drawn from a –possibly infinite– atomic 
data type domain Di. The finite number N of the attributes 
is called the arity of the schema. A tuple is an instance of 
the schema and it is described by the values of the 
respective attributes.                                                          

3.2   Temporal Modeling 

Time is represented as an ordered sequence of distinct 
moments. A timestamp is attached to the set of coordinates 
(and other attributes relative to the measurement) at data 
sources. As a result, each timestamp marks the actual time 
the item was recorded and refers to what is termed valid 
time in temporal databases. Another option is to introduce 
for each tuple a second timestamp based on transaction 
time (hence marking the time instants that tuples enter 
into the system for processing) [BBD+02]. Timestamps 
based on valid time need to be included in the schema of 
tuples (explicit timestamps), since they are indispensable 
to the calculation of derived attributes. More formally: 
 

Definition 2 (Time Domain): The Time Domain Τ is 
regarded as an ordered, infinite set of discrete values (time  
instants) τ ∈ Τ. A time interval  [τ1, τ2] ⊂ Τ  consists of all  
distinct time instants of Τ between τ1 and τ2.                     
 

For clarity [ABW03], Τ  may be considered  similar  to  
the set of natural numbers ℕ . For each timestamp, a Data 
Stream S is an unbounded multiset (bag) of items (i.e. 
allowing duplicates as in the definition at [ABW03]): 
 

Definition 3 (Data Stream): A Data Stream S is a map-
ping S : Τ → 2R from the Time Domain Τ to the powerset 
of the set  R of tuples with schema E. One of the attributes 
Aτ  is designated as the timestamp of each tuple,  taking its 
ever-increasing values τ from Τ.                                        
 

 From a historical perspective, a Data Stream may be 
regarded as an ordered sequence of tuple values evolving 
in time, whereas an instance of the stream at a specific 
time (e.g., NOW or even in the future) is a finite set of tuples. 
Only one attribute is used as timestamp, i.e., a unique 
time reference for the entire tuple. As further explained in 
subsection 3.4, each tuple maps to exactly one timestamp, 
but more than one tuples can have identical timestamp 
values. Timestamps cannot be assigned a NULL value. 

3.3   Spatial Modeling 

As mentioned before, the proposed model deals only with 
point entities moving in two spatial dimensions. Despite 
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this simplification, interactions are allowed between 
moving objects and other shapes with extent (i.e. lines or 
regions), which remain stationary over time. Therefore, 
the model attempts to capture spatiotemporal relationships 
among trajectories or between trajectories and static 
spatial entities. It is also envisaged that the model is 
extensible to higher dimensionality of spatial entities. 
 

Definition 4 (Point Domain): The Spatial Point Domain  
P  contains all  possible  (hence  infinite)  pairs  of  values 
‹x, y›, with real planar coordinates x, y ∈ ℝ . Thus, P may 
be regarded similar to ℝ 2.                                                 
 

Concerning spatial data types, those originally 
introduced in [GBE+00] are deemed sufficient. More 
specifically, point, points, line and region with 
their obvious interpretation may appear in relations, 
whereas only type point is allowed in trajectory streams. 

We then make use of several primitive predicates for 
expressing topological relations. Each of these binary 
spatial predicates applies to a discrete instance of the 
trajectory of a moving point in conjunction either with 
another moving point or with a stationary spatial feature: 
• a point (predicate MEET when the two points coincide), 
• a directed line (so that predicates LEFT and RIGHT can 

be defined for the moving point, or MEET when the 
point is along the line), and 

• a region, with predicates INSIDE for moving points 
that fall within its interior (Uο) and MEET for those 
touching its boundary (∂U). 

 

Complex predicates like ENTER, LEAVE, CROSS and 
BYPASS [PJT00] can be constructed from primitive ones. 

Spatial operators are also needed for the formulation 
of queries. We designate four basic ones (note that the 
first three of them refer to a single object): 
• length as the Euclidean distance between two 

arbitrary point positions of the same trajectory, 
• direction as the angle between the vector of the 

object’s movement and the horizontal axis, 
• heading which denotes the general orientation of the 

movement ({E, NE, N, NW, W, SW, S, SE}), and 
• distance for calculating the Euclidean distance 

between two distinct moving point objects at the 
same time instant. 

 

Additionally, when formulating queries, simple shapes 
might be necessary to predicates, e.g. for defining the area 
of interest for a range query. We mention four basic type 
constructors for spatial entities: 
• Point(x,y), 
• Circle(P,r), where P is an instance of the Point 

type (the center) and r ∈ ℝ  the radius, 
• Rectangle(P1,P2), where P1, P2 are instances of 

Point (the edge-points of a diagonal) and 
• Triangle(P1,P2,P3), where P1, P2, P3 are the 

three vertices defining the triangle. 

Notice that the uncertainty caused from positional 
inaccuracies should be taken into account (with a fault 
tolerance) when applying the predicates and operators 
mentioned above. 

Finally, we extend the concept of data streams by 
defining a Point Data Stream S as an unbounded bag of 
elements with varying spatiotemporal properties: 
 

Definition 5 (Point Data Stream): A Point Data Stream 
S is a mapping S : Τ  ⅹ P → 2R from Time Domain Τ and 
Point Domain P to the powerset of the set R of tuples with 
schema E. In addition to an attribute Aτ  used for time-
stamp values τ ∈ Τ, another attribute Ap acts as the spatial 
reference  for the represented entity and obtains its values 
p ∈ ℝ 2 exclusively from the Point Domain P.  Pair ‹ p, τ ›  
may be regarded as a composite space-time-stamp.          

3.4   Spatiotemporal Modeling 

Movement in 3D-space (one temporal and two spatial 
dimensions) can be regarded as a sequence of discrete 
observations of positions across time. Once coherence in 
time domain is retained (i.e., no vacuums when recording 
locations), then contiguity in spatial domain for each 
object is also likely to be preserved. Redundancies in the 
collected data are inevitable, if sampling rate is too high 
and speed too low. On the other hand, it is not at all 
certain that an object’s movement remains linear between 
two successive observations, as the model suggests. As a 
result, the trajectory itself should be considered as an 
error-prone approximation of the actual movement. 
 

Definition 6 (Trajectory Stream): Let O denote the set of 
continuously moving point objects. The changing position 
of each distinct object o ∈ O is actually a function of  time 
po: Τ → P. The Point Data Stream S composed of the 
successsive tuple values obtained by monitoring the 
movement of the points from O is a Trajectory Stream.   
 

Therefore, a trajectory stream for point objects may be 
viewed as an ordered sequence of tuple values concur-
rently evolving in space and time. An instance of this 
sequence is a set of tuples with positional and temporal 
indications;  the former  are simply  some  2D-coordinates 
‹x, y›  in a common  reference  system,  whereas the  latter 
are instants drawn from a common Time Domain. Spatial 
and temporal references cannot be assigned a NULL value. 
This space-time-stamp uniquely determines the status of 
each object in space and time, and is explicitly included in 
the schema of tuples E. This is essential for calculations 
concerning derived attributes, such as speed. Updates to 
older data are not allowed, so trajectory streams are 
considered to be composed of append-only tuples. We 
emphasize the difference between point and trajectory 
streams through the following example. 
 

Example 3.1. Imagine N mobile stations, which measure 
air pollution in a city. Collected values are transmitted to 
a control center along with their location and the time 
instant they were recorded. Obviously, incoming tuples 
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are compiled into a trajectory stream, as every item 
captures an instance of an object’s movement. It is likely 
that a user might submit a continuous query that retrieves 
tuples referring to the k out of N stations where the higher 
concentrations of a specific gas (e.g., CO) are observed at 
any time instant. As one might expect, these top-k stations 
will vary across time, so the selected tuples will form a 
data stream with changing spatial references for possibly 
different objects. Therefore, this derived information is a 
point data stream, not a trajectory stream; the notion of a 
sequence of object transitions from one location to 
another does not hold anymore in that case.                      
 

Although total ordering among tuples of a trajectory 
stream cannot be achieved based on their space-time-
stamps, a temporal total order among tuples belonging to 
the same trajectory can be defined according to their 
timestamp values only. Obviously, elements referring to 
the same trajectory should have advancing timestamps, 
even if the object stands still (i.e. identical spatial 
positions, assuming no errors in measurement). Formally: 
 

Definition 7 (Ordering): A temporal ordering fO is 
defined as a many–to–one mapping from the type domain 
DS of the tuples s of the trajectory stream S to the Time 
Domain Τ, with the following properties: 
 

• ∀ s ∈ S, ∃ τ ∈ Τ, such that  fO (s) = τ. 
• ∀ s1, s2 ∈ S, instances of the trajectory stream S, and 

their values  τ1, τ2 ∈ Τ  at  timestamps  s1.Aτ  and  s2.Aτ  

respectively, if τ1 ≤ τ2,  then  fO (s1) ≤ fO (s2).               
 

The first property of the definition above states that a 
timestamp need be associated to every tuple of the stream. 
Many tuples may map to the same timestamp; however, 
there may exist time instants where no tuples are recorded, 
e.g. for a particular time period no positional updates were 
received from a GPS. The second property establishes 
monotonicity, i.e. tuples of the trajectory stream are in 
increasing temporal order as time advances. Hence, tuples 
referring to the same trajectory can be ordered by simply 
comparing their time indications. This inherent and 
valuable characteristic of the time dimension has a subtle 
effect: after a while, older tuples may be considered as 
obsolete, so they may be either purged from memory 
completely freeing space or stored in synopses. Observe 
that the latter property holds for any two stream tuples 
(i.e. not necessarily belonging to the same trajectory), 
provided that time indications have identical granularities 
with values drawn from a common Time Domain Τ. 

Note that an attribute of the schema may be designated 
as the identifier id of each point object. This can be 
proven useful in case the contents of the trajectory stream 
need to be split in disjoint substreams, one for each point 
object. We are currently investigating potential inclusion of 
velocity vectors in the model. Intuitively, it is the mobility 
of data sources in both space and time that produces a 
trajectory stream; this is best captured by a vector (like 
velocity or acceleration) that emphasizes change. 

3.5   Types of Query Operators 

As we will demonstrate in the following section, we make 
use of several types of operators in the framework of two 
stream prototypes, applying their semantics to trajectories. 
These constructs can either be adapted from the relational 
or data stream models, or may be introduced especially 
for managing trajectories (as we suggest in Section 5): 
• Relational, such as selection or projection, modified 

properly to apply on trajectory streams as well. 
• Windowing, for determining specific parts of the 

streams and converting them to relations for 
subsequent processing. The scope of the windows can 
be fixed, variable or sliding. 

• Transform, for conveniently mapping relations (e.g. 
tuples produced by other operators) to streams. 

• Spatial, for determining interactions between moving 
points and other stationary spatial entities, e.g. points, 
lines, regions. 

• Temporal, for processing timestamps, which apply 
either on a time-point basis (individual timestamps) or 
for intervals (range of consecutive timestamps). 

• Spatiotemporal, for effectively capturing evolving 
properties and interactions between moving points. 

4   Querying Trajectories as Data Streams 
In this section we briefly report our first experience in 
formulating continuous queries over trajectories in a SQL-
like declarative language. Due to lack of space, we give 
just a few indicative queries submitted to the trial versions 
of two stream prototypes (STREAM, TelegraphCQ) that 
have recently been made publicly available. Despite 
variations at the idiom of SQL utilized, as well as certain 
limitations in expressing certain types of queries, our 
overall impression is that the streaming paradigm is 
powerful enough for managing moving objects. Our focus 
was on expressiveness, leaving aside query performance. 

A synthetic dataset was used, containing positions of 
several types of vehicles (taxis, ambulances, private and 
police cars) moving in the road network of the greater 
area of Athens. After applying a shortest path algorithm at 
1000 origin-destination pairs and sampling each route 
every second, in total 3.6 million records were created. 
Some adjustments were necessary to the schema of tuples, 
in order to properly represent spatiotemporal information, 
according to the restrictions imposed by each prototype. 

4.1   Continuous Trajectory Queries in STREAM 

We first give a short overview of the Continuous Query 
Language [ABW03] that is being developed for the 
STREAM prototype. Queries in CQL are composed from 
three classes of operators: 
• stream-to-relation operators (particularly windows) 

are applied over streaming tuples and return relations. 
• relation-to-relation are common SQL operators, such 

as selection or projection. 
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• relation-to-stream operators take a set of relational 
tuples as input and provide their output in the form of 
streams at every time instant. ISTREAM streams inserts 
to its input relation (i.e., tuples that did not exist in the 
previous time instant), DSTREAM streams deletes from 
its input relation (tuples that ceased to appear in the 
relation since the previous instant), whereas RSTREAM 
streams all current tuples of its input relation. 

 

Thus, query semantics apply to streams and relations alike. 
Continuous queries have the following general form: 
 

SELECT <select_list> 
FROM <relations>, <streams_with_windows> 
WHERE <predicates> 
GROUP BY <expressions> 
 

Windows are always specified for streams (in the FROM 
clause of the CQL query). Supported types include: 
 

• sliding windows (RANGE <time interval>) that specify 
the most recent tuples according to their timestamps, 

• tuple-based (ROWS <value expression>) that determine 
a given number from the most recent stream tuples and  

• partitioned windows (PARTITION BY <attribute list> 

ROWS <value expr>), which partition the recent portion 
of a stream based on a subset of its attributes. 

 

Since the current release of the STREAM prototype is 
Web-based, and our focus was not on performance issues, 
only a small subset of the data was used for convenience. 
The schema of tuples is Vehicles (vID, vType, x, y, t, TS), 
where TS is used for timestamps attached to all tuples. 
 

Query Q1: For instance, a spatiotemporal range query, 
such as “Find all taxis found within the area of interest 
(e.g., a rectangle) sometime in the last 10 minutes” can be 
expressed with a sliding temporal window, as follows: 
 

SELECT V1.vID, V1.vType, V1.x, V1.y 
FROM Vehicles V1 RANGE 10 MINUTES  
WHERE V1.x>=475000 AND V1.x<=480000 
AND V1.y>=4204000 AND V1.y<=4208000  
AND V1.vType="TAXI"                            
 

Note that CQL has no built-in types for any spatial 
entities, so only simple shapes can be defined (from their 
coordinates). Nested subqueries are not yet supported, but 
views may be defined over streams or relations. So, 
aggregation (GROUP BY) operations can be performed 
using views, since the HAVING clause is not available: 
 

Query Q2: “Alert when more that 10 police cars are 
located simultaneously within the area of interest”. This 
query has to be expressed with two intermediate views: 
 

InRegionCnt: SELECT TS, COUNT(vID) AS cnt 
             FROM Vehicles NOW  
             WHERE x>=475000 AND x<=480000  
             AND y>=4204000 AND y<=4208000  
             AND vType="POLICE"  
             GROUP BY TS 
 

PoliceCnt: ISTREAM (SELECT * FROM InRegionCnt) 
 

The first view returns a relation containing the number of 
police cars within the area for each time instant, whereas 

the second one transforms (ISTREAM) these intermediate 
results into a stream. NOW is a shortcut for a sliding 
window that returns only tuples with the current timestamp 
value. The final query provides the expected results: 
 

SELECT * FROM PoliceCnt NOW WHERE cnt>10       
 

Even nearest neighbor queries can be expressed in 
CQL, but in a complex style with many intermediate views. 
Things get even more complicated, because only simple 
arithmetic functions are supported, so geometric ones, like 
distance, must be simulated in several steps. However, 
expressiveness of CQL helps in formulating queries for 
complex spatial predicates, such as ENTER into region: 
 

Query Q3: “Find all vehicles entering now into the area 
of interest”. Spatial operation ENTER can be simulated as 
an ANTISEMIJOIN1 between two temporary relational 
views. The former (InsideAreaNow) stores vehicles located 
now inside the area; the latter (InsideAreaRec) keeps 
those recorded within the area in the last two time 
instances, utilizing a partitioning window for each object: 
 

InsideAreaNow: SELECT vID, t  
               FROM Vehicles NOW  
               WHERE x>=475000 AND x<=480000 
               AND y>=4204000 AND y<=4208000 
 

InsideAreaRec:SELECT vID, t + 1 AS t1  
              FROM Vehicles PARTITION BY vID ROWS 2   
              WHERE x>=475000 AND x<=480000 
              AND y>=4204000 AND y<=4208000 
 

SELECT InsideAreaNow.vID, InsideAreaNow.t  
FROM InsideAreaNow ANTISEMIJOIN InsideAreaRec 
 

Note that we take advantage of the monotonicity of time, 
assuming tacitly that positional information is registered 
at every time instant.                                                          

4.2   Continuous Trajectory Queries in TelegraphCQ 

TelegraphCQ is based on PostgreSQL DBMS, with many 
necessary adjustments to achieve adaptivity of operators 
in dynamically changing query load or data flow rate. 
Continuous queries are executed as cursors, which collect 
resulting tuples and fetch them to users in an incremental 
fashion. Only sliding windows are currently supported for 
streams; a WINDOW clause is specified for streams after 
standard SELECT-FROM-WHERE commands [TEL04]:  
 
SELECT <select_list> 
FROM <relation_and_<pstream_list> 
WHERE <predicate> 
GROUP BY <group_by_expressions> 
WINDOW stream [time interval], ... 
ORDER BY <order_by_expressions> 
 

Neither nested subqueries nor self-joins can yet be 
expressed in TelegraphCQ. However, PostgreSQL offers 
several built-in spatial operators, functions and data types 
(point, polygon, etc.), which prove particularly valuable 
in formulating continuous queries over trajectories.  
                                                           
1 Antisemijoin of R and S is defined as the multiset of tuples in R  that do 
not agree with any tuple of S in the attributes common to both R and S. 
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The schema of tuples used for the test queries was 
Vehicles (vID, vType, pos, t, TCQTIME), where TCQTIME 
is the attribute reserved for timestamp values. Next, we 
give some SQL expressions submitted to TelegraphCQ, 
equivalent to the queries of the previous subsection: 
 

Query Q1: A temporal sliding window is specified (as in 
STREAM), but we take advantage of spatial data types 
and operations (@ denotes “point INSIDE region”): 
 
SELECT vID, vType, TCQTIME 
FROM Vehicles V1 
WHERE (V1.pos @ polygon '(475000, 4204000, 

 480000, 4208000)') = TRUE 
AND V1.vType ='TAXI' 
WINDOW V1 ['10 minutes']                       
 

Query Q2: Aggregation is carried out on timestamp 
values, but the HAVING clause simplifies query expression: 
 
SELECT TCQTIME, COUNT(V1.vID) AS cnt 
FROM Vehicles V1 
WHERE (V1.pos @ polygon '(475000, 4204000, 
    480000, 4208000)') = TRUE 
AND V1.vType='TAXI' 
GROUP BY TCQTIME 
HAVING COUNT(V1.vID)>=10 
WINDOW V1 ['1 seconds']                          
 

However, due to lack of support for nested subqueries or 
views, other types of queries cannot be expressed at all. 
This is the case for nearest neighbors or complex spatial 
predicates (like ENTER into region, which can be expressed 
in STREAM, as showed for Query Q3). On the contrary, 
queries involving spatial functions, like distance (denoted 
<-> in PostgreSQL) are formulated rather simply: 
 

Query Q4: “Find all vehicles that are now within a 
distance of 500 meters from a point of interest” (this point 
is specified here by its coordinates): 
 

SELECT vID, vType, TCQTIME, (V1.pos <->   
           Point '(475750,4201500)') AS distance 
FROM Vehicles V1 
WHERE (V1.pos <-> Point '(475750,4201500)')<=500 
WINDOW V1 ['1 seconds']                        

5   Special Structures for Trajectory Streams 
Only time-based, tuple-based, and partitioned windows 
have been implemented for STREAM and TelegraphCQ. 
As we have just demonstrated, these structures are also 
valid for the trajectory stream model. In addition, we 
advocate for the adoption of four special-purpose window 
operators, with semantics applied to trajectories. 

5.1   Window Specification Types 

i. Binary windows. Sliding windows of size two time 
units may be needed to examine changes in motion, 
e.g., an object crossing the boundary of a stationary 
area. Window constructs proposed for data streams 
tend to ignore the order of tuples once the contents of 
the window have been specified. In contrast, when 
dealing with trajectories, the current and the oldest 

tuple representing the boundaries of the temporal 
window are of particular interest. Based on this 
information, several interesting entities can be 
derived, such as velocity or acceleration. Further, 
window edge functions may be utilized in SELECT 
clauses, such as First_Value and Last_Value (used 
in SQL-99). These two functions can take as 
arguments specific attributes and return the values of 
the most remote and the most recent tuple within the 
window, respectively. 

 

ii. Landmark windows. The starting edge of this window 
remains fixed over time, while its end point matches 
the present time instant. Hence, such a window returns 
an always-increasing number of tuples. Evidently, this 
window type can be defined based on time units only; 
therefore a syntax like [AFTER t] seems plausible and 
reminiscent of that for time-based windows. However, 
instead of a time interval, a specific time instant t is 
specified, no matter if any tuple exists with exactly 
this timestamp. A similar window type can be defined 
even when all tuples before a specific time instant t 
are needed, with a syntax like [BEFORE t]. Note that 
window contents remain unchanged as soon as current 
timestamp NOW exceeds value t. Interestingly enough, 
combination of these two language constructs could 
provide a band window that determines a time period 
with the syntax [AFTER t1 AND BEFORE t2] (if t1≤t2). 

 

iii. Area-based windows. While any sliding or landmark 
window refers solely to timestamps, this particular 
window type applies only to trajectory streams and 
exploits their spatial contents. Intuitively, an area-
based window extracts tuples from a trajectory stream 
whose positional reference falls inside the interior of 
the area defined. The area boundaries can be obtained 
either from a stationary spatial relation or by 
employing a type constructor (such as Circle or 
Rectangle). The former results in a stationary area, 
whereas the latter enables even a moving area to be 
defined, e.g. a circle of known (or time-varying) 
radius around a moving point object. A clause such as 
[AREA A] must be used always in combination with 
another window type based on timestamps (sliding or 
landmark); or else, it would select all tuples belonging 
to objects that crossed area A anytime in the past. 

 

iv. Trajectory-based windows. Clearly, this is a value-
based window that examines any but spatiotemporal 
attributes of a trajectory stream and extracts elements 
according to the criteria specified. Syntax [WHERE 
<trajectory conditional expression>] may be 
used so as to isolate qualifying tuples of certain 
trajectories, e.g. WHERE id IN (24, 89, 425). A 
possible use of this window type might be to split a 
trajectory stream into separate substreams based on 
objects’ identities. Such a clause need be combined 
with time-based, partitioned or area-based (but not 
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tuple-based) windows, thus limiting the number of 
tuples returned. In contrast to the WHERE clause used in 
SELECT queries, this construct is applied to trajectory 
streams prior to any other processing for a given query 
(e.g. joins to another stream or relation). 

5.2   Issues in Continuous Queries over Trajectories 

We now informally point out certain issues related to 
query processing of continuous queries on moving 
objects. The notion of punctuations [TMSF02] could 
prove particularly constructive in query evaluation. For 
instance, extra tuples may be interleaved in a trajectory 
stream so as to indicate that a moving object has just 
crossed the boundary of an area or that it was found very 
close to another object or a known reference location. 

The presence of numerous continuous queries over the 
same trajectory segments puts forward the need for 
multiple query optimization [Sel88]. In particular, it seems 
reasonable that expensive spatial operations (e.g. 
intersections) common to several queries need not be 
carried out in isolation from each other. Instead, grouping 
similar predicates or operators together, evaluating them 
and finally disseminating intermediate results to active 
queries, could cut execution costs considerably. 

Last, but not least, trajectory sketches may be worth 
introducing. Due to the large volume of positional data 
flowing into the system, a compressed synopsis could 
provide an acceptable approximation for each trajectory 
(using sampling, wavelets or other summary structures). 

6   Conclusions and Future Work 
This paper considers streams as first-class concepts in a 
data management system and presents a new approach in 
modeling moving point objects by representing their 
continuous motion as trajectory streams. Basic predicates 
and operators are identified, under the assumption that 
movement takes place in one temporal and two spatial 
dimensions. Formulation of continuous queries over 
trajectories turns out to be feasible and intuitive, when 
window constructs are incorporated in a query language 
developed for managing data streams. Preliminary 
attempts to formulate continuous queries on moving 
objects in two data stream prototypes has showed 
encouraging results, and some challenging issues as well. 

We believe that this approach is a promising area for 
future research. We plan to further study modeling of 
moving objects, introducing algebraic constructs for 
windows and proposing syntax rules for query language. 
Indexing trajectories by utilizing summaries as auxiliary 
structures in the presence of continuous positional updates 
is also important for improved query evaluation. Finally, 
shared execution and multiple query optimization of 
various spatiotemporal predicates is considered a major 
challenge in such a dynamic environment. 
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Abstract

This paper introduces the Dynamic Cas-
cade Tree (DCT), a structure designed to in-
dex query regions on multi-dimensional data
streams. The DCT is designed for a stream
management system with a particular fo-
cus on Remotely-Sensed Imagery (RSI) data
streams. For these streams, an important
query operation is to efficiently restrict incom-
ing geospatial data to specified regions of in-
terest. As nearly every query to an RSI stream
has a spatial restriction, it makes sense to op-
timize specifically for this operation. In addi-
tion, spatial data is highly ordered in it’s ar-
rival. The DCT takes advantage of this trendi-
ness. The problem generalizes to solving many
stabbing point queries. While the worst case
performance is quite bad, the DCT performs
very well when the stabbing point exhibits cer-
tain trending characteristics that are common
in RSI data streams. This paper describes the
DCT, discusses performance issues, and pro-
vides extensions of the DCT.

1 Introduction

New methods for processing streaming data [1, 2, 5]
have a great deal of potential impact for remotely-
sensed geospatial image data originating from the
various satellites orbiting the Earth. Besides its
typically large bandwidth, Remotely-Sensed Imagery
(RSI) data has a number of characteristics that are
different from generic streaming data. One important
difference is that streaming RSI data is highly orga-
nized with respect to it’s spatial components. This
organization varies for different data streams, but gen-
erally image data will arrive in contiguous packets of
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data. These packets may be individual pixels, rows of
pixels, or small images, depending on the instrument.
Within a packet, the organization of the pixels is well
defined. Consecutive data packets from an RSI data
stream are usually close to one another spatially. Also,
an RSI data stream is arriving at a high data rate, but
usually only at one or a small number spatial locations
at a time. In addition, most queries against an RSI
data stream include operations to restrict the geospa-
tial data to be processed to specified regions of interest.
Therefore, an RSI stream management system needs
to efficiently intersect incoming geospatial image data
with a possibly large number of query regions.

In this paper, we present a method for intersecting
incoming geospatial image data with multiple spatial
restrictions, that is, queries that request incoming data
for particular regions only. For this, we introduce the
Dynamic Cascade Tree (DCT), a structure to index
query regions and to provide for efficient insertions and
deletions of queries. The DCT supports stabbing point
queries [3] for a single moving point. A stabbing query
is a simple query that, for a given point, will identify
all indexed regions that contain that point. For an
incoming RSI data stream, the structure is used to ef-
ficiently determine what queries are interested in that
data. The trendiness inherent to most types of stream-
ing RSI data is exploited to build a small index that
is especially efficient when multiple stabbing queries
are in close proximity. Based on the information pro-
vided by the DCT, query plans can be generated and
incoming data can be pipelined to respective query
operators, thus providing the basis for multiple-query
processing models for streaming RSI data.

The remainder of the paper is structured as follows.
Section 2 describes related research for similar prob-
lem domains. Section 3 outlines the data and query
model underlying RSI. Section 4 describes the DCT
in detail. Section 5 discusses the performance of the
DCT , and implications of input regions and stabbing
point trends. Section 6 describes extensions and mod-
ifications of the DCT .
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2 Related Work

Many data structures have been developed for one and
two dimensional stabbing queries including, among
others, interval trees, priority search trees, and seg-
ment trees [3]. Space partitioning methods for answer-
ing stabbing queries include quadtrees, hashes, and
numerous variants of R-trees.

The two most common methods for solving stab-
bing queries in two dimensions are multi-level segment
trees [3] and R-trees [4]. Using multi-level segment
trees, one dimension of the region is stored in a seg-
ment tree, while the second dimension is indexed with
an associated interval structure for each node in the
first segment tree. Storage for these structures can be
O(n lg n), with stabbing query times of O(lg2 n). Dy-
namic maintenance of such a structure is more com-
plicated and requires larger storage costs [12]. It is
difficult to modify the multi-level segment tree to im-
prove results for trending data. If the input stabbing
point moves a small distance, which doesn’t change
the query results, it still would take O(lg n) time to
respond. That is because even if every node in the
multi-level segment tree maintains knowledge of the
previous point, it would still take lg(n) time to tra-
verse the primary segment tree to discover that no
changes to the query occurred.

R-trees solve the stabbing query problem by recur-
sively traversing through successive minimum bound-
ing rectangles that include the extent of all regions in
the sub-tree, generally with good performance. Since
these rectangle regions can overlap, there can be no
savings from knowing the previous stabbing query, as
there is no way to know if an entirely new path through
the segment tree needs to be traversed. R+-trees[11]
can have better performance for these trending stab-
bing points, since the minimum bounding rectangles
are not allowed to overlap and so maintaining the pre-
vious query can help verify a query hasn’t left a partic-
ular region. R+-trees have problems with redundant
storage, dynamic updates, and potential deadlocks [7].

Probably the approach most similar to the DCT de-
scribed in this paper is that of the Query index [6, 9].
The Query index builds a space partitioning index on a
set of static query regions, and at each time interval, it
allows a number of moving objects to probe the index
to determine overlapping queries. Main memory im-
plementations show that grid-based hashing of query
regions generally outperform R-tree or quad-tree based
methods. SINA [8] describes an incremental method
to solving the problem of intersecting moving objects.
However, much of the approach involves efficient inte-
gration with disk-based static queries, and a complete
main-memory implementation would be more similar
to the query index approach.

All the indices described above anticipate a large
number of moving objects to be indexed against the
query regions. The RSI application described above is

different in the sense that the DCT index is designed
for a single or small number of moving objects, where
the input rate of data for that moving object is very
high. In this application, the desire is for a small index
that can efficiently route a high volume data stream
to the query regions, rather than indices that are in-
terested in the location of the moving objects.

In one sense, the DCT is basically a method for dy-
namically maintaining a region around a current point
for which the current set of query regions is valid, and
identifying where this result set is no longer valid. An-
other method for dynamically describing a neighbor-
hood of validity for a stabbing query using R-trees was
proposed by Zhang et al. [14]. This method builds
an explicit region of validity around a current point,
which can then be used to verify that a stabbing point
will not result in a different response. The technique
makes a number of additional queries to the R-tree in-
dex in order to build this region. Like the technique
described in this paper, this could result in cost sav-
ings if many subsequent stabbing queries are located
within the region of validity.

3 Data and Query Model

Our data model for RSI data is based on raster images.
To allow for different types of objects called image, we
employ some concepts from the Image Algebra [13]
and extend these concepts to account for the specifics
of streaming RSI data.

An image consists of a set of points and values asso-
ciated with these points. The point set of an image is
a set of points and an associated measure of distance
between points. As our interest is in RSI, we choose as
point set X a subset of R

3, with a point x ∈ X of the
form x = {x, y, t}. The pair {x, y} denotes a spatial
location in some spatial reference system, and t de-
notes a timestamp. Thus, a point set exhibits spatio-
temporal characteristics. For example, weather satel-
lites continuously transmit images of clouds over one
hemisphere of the earth. Given such an image, the
point set corresponds to the actual location for each
point in the image, along with the time that the image
was acquired.

A value set V provides the values associated with
points in a given point set. For the weather satellite
example, the value set includes all the intensity levels
in the image. Value sets can be complex, in the case
of color images, V is a subset of Z

3 for the red, green,
and blue components. For gray-scale images, it is a
subset of Z. Based on the concepts of point and value
sets, we can now give a functional representation of an
image.

Definition 3.1 Given a point set X and value set V.
A V-valued image i is a function from X to V, denoted
i = {(x, i(x)) | x ∈ X}. The pair (x, i(x)) is called a
pixel of i. x is the spatio-temporal component of the
pixel and i(x) ∈ V is the pixel value at point x.
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Different types of RSI have different orderings and
structures. Figure 1 shows these structures. Airborne
cameras obtain imagery in an image-by-image manner.
Some sensors, such as NOAA’s Geostationary Oper-
ational Environmental Satellite (GOES), obtain RSI
data basically in a row-by-row fashion. Although con-
ceptually the data collected by GOES can be viewed as
a stream of images, the images are actually obtained
in a row-scan order in which pixels are delivered a few
lines at a time. Still other types of sensors gather data
on a pixel-by-pixel basis.

x

y
t

x

y

t

x

y

t

Figure 1: Examples of different point set orderings for
streaming RSI data: image-by-image, line-by-line, and
point-by-point.

All the above scenarios describing how RSI data
is obtained show an important characteristics we aim
to exploit in our approach: the points in a point set
exhibit certain trends. That is, consecutive points in a
stream of RSI data have a close spatial and temporal
proximity. The only exception is where the last point
of a line in an image is followed by the first point of
a new image (scenario on the left in Figure 1). As we
will show in the following section, knowing about the
trendiness of incoming geospatial point data can have
a significant influence on how queries against a stream
of RSI data are processed.

Queries against a stream of RSI data are typically
continuous queries that run for a long time and may
include complex operators, such as spatial transforms
or aggregates (see [13] for operations on point sets).
However, since most applications are not interested in
the complete region covered by a sensor, spatial re-
striction is a type of operation common to all queries.
A spatial restriction specifies a region of interest, pri-
marily in the form of a rectangle, and typically pre-
cedes other operations on point data. The Dynamic
Cascade Tree (DCT) includes an index structure and
algorithms to efficiently determine what query regions
are affected by incoming RSI image data, and to pass
those images to the appropriate queries.

4 The Dynamic Cascade Tree (DCT)

The problem of quickly answering multiple queries on a
stream of RSI data is basically solving a normal stab-
bing query [3] for a point. That is, as query result,
a stabbing query determines all query regions that

contain the current point delivered by the RSI data
stream. For RSI data, the stabbing points are special
in that the next stabbing point is typically very close
to the previous stabbing point. The goal is to take
advantage of the trendiness of stabbing points and to
develop index structures that improve the search per-
formance for subsequent stabbing queries.

The structure proposed in the following builds an
index that is dynamically tuned to the current loca-
tion of RSI data. For a given point, the DCT main-
tains the regions around that point where the query
result will change. Stabbing queries can be answered
in constant time if the new stabbing point has the same
result as the previous query and will incrementally up-
date a new result set based on the previous set when
the result is different. The structure is designed to be
small and quickly allow for insertions and deletions of
new query regions. It assumes some particular charac-
teristics of the input stream, notably that the stream
changes in such a way that many subsequent incoming
RSI data will contribute to the same result set(s) to
region queries as the current point. Therefore, the cost
of maintaining a dynamic structure can be amortized
over a large set of queries. Section 5 describes in more
detail the performance implications of the regions and
input data stream.

4.1 DCT Components

Figure 2 gives an overview of the data structure
employed, which we term a Dynamic Cascade Tree
(DCT). The figure shows a set of query regions
a, b, . . . , f , the node cn, denoting the most recent stab-
bing point from the data stream, and the associated
structures for the DCT . The figure describes a DCT
that indexes two dimensions. There is no required or-
der in how the dimensions are referenced, and the ex-
ample shows the vertical (y) dimension being the first
dimension indexed in the DCT .

The components of DCT are pleasantly simple ex-
tensions to a binary tree. In the example and follow-
ing pseudo-code, we assume that we have two sim-
ple search structures, List and 2 -Key-List . List sup-
ports Insert(key,value), Delete(key), and Enu-
merate(). Keys in List are unique for each value.
In our approach, we use a simple skip list [10] to
implement List . The 2 -Key-List is incrementally
more complex. It supports Insert(key1 , key2 , value),
Delete(key1 , key2 ) and Enumerate(key1 ) using two
keys. The combination of two keys is unique for
each value. Enumerate(key1 ) enumerates all the val-
ues in the 2 -Key-List , entered with key1 . An im-
plementation of 2 -Key-List could be a skip list us-
ing key1 , where each node has an associated skip
list using key2 . With this implementation, for
2 -Key-List .delete(key1 , key2 ), if the deletion causes
an empty set in the associated key1node, then that
entire node is deleted.
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Figure 2: Dynamic Cascade Tree (DCT) with query regions a, b, . . . , f ; a query region, r , is described by it’s
minimum (lower left) corner {r1 -, r2 -} and maximum (upper right) corner {r1+, r2+}

List leaf nodes contain region ids, rid as keys with
a pointer to the query region, r as the value. For
the 2 -Key-List , key1 is the value of the endpoint, and
key2 is the id of the query region, denoted rid . The
leaf nodes of a 2 -Key-List correspond to the half-open
line segments between two endpoints. Leaf nodes of a
2 -Key-List also have pointers to the next and previous
nodes in sorted order, allowing for linked list traver-
sal to leaf nodes. One reason for choosing a skip list
implementation is that the forward pointers already
exist, and only an additional back pointer is added to
a normal skip list.

The DCT maintains a separate 2 -Key-List for each
dimension of the individual query regions. In Figure 2,
these are DCTL1

and DCTL2
. In addition, the DCT

maintains a List , DCTA, of all query regions that over-
lap the current stabbing point. A second structure, cn,
maintains pointers to nodes within each 2 -Key-List ,
corresponding to the most current stabbing point.

The 2 -Key-List for the first dimension, DCTL1
con-

tains the minimum and maximum endpoints in the 1st
(y) dimension, {r1 -, r1+}, for every query region r .

The next 2 -Key-List , DCTL2
contains keys on the

endpoints in the 2nd (x) dimension and rid . DCTL2

does not contain the endpoints of all the regions in
DCT , but only the regions whose 1st dimension (y)
overlap with the current node, cn1 .

If the query regions contain more dimensions, ad-
ditional 2 -Key-List structures are added to the DCT ,
where each subsequent 2 -Key-List only indexes those
regions that overlap the current point up to that di-
mension.

In Figure 2, cn contains two pointers, cn1 and cn2

to nodes within both DCTL1
and DCTL2

correspond-
ing to the location of the most recent stabbing point.

DCTA is the final List that contains all the cur-
rently selected query regions that correspond to the
current stabbing point query. Just as DCTL2

contains
only a subset of the regions of DCTL1

that contain
the cn1 node, DCTA contains the subset of DCTL2

where the cn2 node is contained by the 2nd dimen-
sion of each region. The DCTL1

, DCTL2
, and DCTA

structures make up a cascade of indexes, each a subset
of the previous index.

4.2 Updating query regions in the DCT

The DCT is initialized by creating the 2 -Key-List and
List structures, adding a starting node for DCTL2

and
DCTL1

outside their valid range, and assigning cn2

and cn1 to those nodes.

Algorithm 1 shows the pseudo-code for inserting
query regions into DCT . Insertion and deletion are
simple routines. For insertion, a region is first inserted
into DCTL1

and then successively into DCTL2
and

DCTA if the region overlaps the current node cn in
the other dimensions. Delete-Region is similar to
the insertion, taking a region r as input. It should be
clear that the structures DCTL2

and DCTA need to be
maintained when new regions are inserted and deleted,
and for each new stabbing point. Since DCTL2

con-
tains regions overlapping the current node cn, when
a new stabbing point arrives where a y boundary for
any region in the DCT is crossed, then the DCTL2

structure needs to be modified to account for the re-
gions to be included or deleted from consideration. A
similar method needs to be associated with boundary
crossings in the x dimension while traversing DCTL2

and modifying DCTA.
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Algorithm 1 Inserting Query Regions in DCT

Insert-Region(DCT , cn, r)

1 ¤ Input: DCT ,
2 ¤ current node cn= {cn2 ,cn1}
3 ¤ region, r = {r2 -, r1 -, r2+, r1+}
4 Insert-Ith(DCT , cn, r , 1)

Insert-Ith(DCT , cn, r , i)

1 ¤ Input: DCT ,cn,r same as Insert-Region
2 ¤ dimension, i

3 I ← DCTLi
¤ ith 2 -Key-List

4 if (i > dimensions of r)
5 then DCTA.insert(rid , r)
6 else I.insert(ri-, rid , r)
7 I.insert(ri+, rid , r)
8 if (ri- ≤ cni . key and ri+ > cni . key)
9 then Insert-Ith(DCT , cn, r , i + 1)

4.3 Querying the DCT

The algorithm for reporting selected (active) query re-
gions for a new stabbing point np = {np1 ,np2} begins
by traversing the 2 -Key-List DCTL1

in the y direc-
tion from the current node cn = {cn1 , cn2} to the
node containing np1 going through every intermediate
node using the linked list access on the leaf nodes of
DCTL1

. At each boundary crossing, as regions are en-
tered or exited, those regions need to be added to or
deleted from the DCTL2

2 -Key-List . When the point
has traversed to the node containing np1 , traversal be-
gins in the x direction, moving from cn2 to the node
containing np2 . As with DCTL1

, when the traver-
sal hits x boundary points, the entered query regions
are added to DCTA and the exited regions are deleted
from DCTA. When the traversal reaches np, cn con-
tains pointers to the nodes containing np, DCTL2

con-
tains x endpoints to all the regions with y domains that
contain np1 , and DCTA lists all regions that contain
np. DCTA is then enumerated to report all the query
regions that are affected by the new stabbing point np.

Figure 3 shows an example of an update of the
structures within DCT on reporting regions for a new
stabbing point. This extends the example of Figure 2.
In this example, the new point has crossed a y bound-
ary that contains two region endpoints, c and f . As the
current point traverses in the y direction to this new
point, the x endpoints of region c are removed from
DCTL2

, and the endpoints of f are added to DCTL2
.

When the endpoints of these regions are deleted, the
regions themselves are also deleted from DCTA. In the
example, c is deleted from and f inserted into DCTA.
After reaching np1 , DCTL2

is traversed in the x direc-
tion. In the example, this results in e being deleted
from DCTA. Finally, DCTA is enumerated, complet-
ing the procedure.

Algorithm 2 describes the Report-Regions pro-
cedure, which reports query regions for a new stab-
bing point, while updating the structures of the DCT .
Report-Regions simply calls Update-Ith on the
first dimension and then reports all regions in the
DCTA List . The procedure Update-Ith recursively
visits each dimension in the DCT and adds and
deletes regions from the associated 2 -Key-List for
that dimension. In Update-Ith, Lines 7 to 12 tra-
verse the dimension backwards. At each endpoint,
the corresponding region is either added or removed
from 2 -Key-List in the next dimension. Lines 13
to 18 execute a similar traversal in the forward direc-
tion, also adding and removing regions from the next
2 -Key-List . Only one of the while loops is executed at
each invocation. After traversing to npi , Update-Ith
is called again for the next indexed dimension, i + 1.
This continues through all dimensions of the DCT .
Note that Insert-Ith will add regions into the DCTA

Listwhen traversing the final dimension of the DCT .
When all dimensions have been traversed, DCTA con-
tains all the regions that overlap np in all dimensions.

Algorithm 2 Stabbing queries in DCT

Report-Regions(DCT ,cn,np)

1 ¤ Input: DCT
2 ¤ current node(s) cn= {cn1 ,cn2 ,. . . }
3 ¤ new stabbing point, np= {np1 ,np2 ,. . . }
4 ¤ Output: List of query regions containing np.
5 Update-Ith(DCT ,cn,np,1)
6 return DCTA.enumerate

Update-Ith(DCT , cn,np, i)

1 ¤ Input: same as Report-Regions
2 ¤ dimension, i

3 ¤ Output: List of query regions containing np.
4 if (i > max dimension of r)
5 then return
6 I ← DCTLi

¤ i-th 2 -Key-List of DCT
7 while (npi < cni . key)
8 do for r ∈ I.enumerate(cni)
9 if ri- = cni . key

10 then Delete-Ith(DCT ,cn,r ,i + 1)
11 else Insert-Ith(DCT ,cn,r ,i + 1)
12 cni ← cni .prev
13 while (np

i
> cni .next. key)

14 do cni ← cni .next
15 for r ∈ I.enumerate(cni)
16 if (ri+ = cni . key)
17 then Delete-Ith(DCT ,cn,r ,i + 1)
18 else Insert-Ith(DCT ,cn,r ,i + 1)
19 Update-Ith(DCT ,cn,np,i + 1)
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Figure 3: Stabbing point moving in Report-Regions

5 DCT Performance

The performance of Report-Regions is highly de-
pendant on the location of the regions, the trend-
ing properties of the stream data, and the interaction
of the two parameters. For executions of Report-
Regions, with n being the total number of query re-
gions and k being the average number of resultant re-
gions, the average time of execution can range from
O(k) in the best case to O(n lg n + k) in the worst
case. Reasonable experiments could be designed that
would approach either of these limits. Instead, there
are rules to consider for the application of the DCT .

5.1 Insertions and deletions of query regions

The DCT data structure is small and robust to many
insertions and deletions of query regions. Insertions
and deletions take O(lg n) time as the query region is
potentially added to the structures DCTL1

, DCTL2
,

and DCTA. List and 2 -Key-List are simple to main-
tain dynamically in O(n) space.

5.2 Number of boundaries crossed

The DCT is designed for trending data, which can
most quantitatively be measured by the number of re-
gion boundary crossings from one stabbing point to the
next. This structure works best when the number of
query boundaries crossed on subsequent input points
is not large. When no boundaries are crossed, then no
internal lists are modified, and Report-Regions runs
in O(k) time. When a boundary is crossed in the i-th
dimension, then each region in the crossed DCTLi

node
needs to be inserted into or deleted from the (i+1)-th
2 -Key-List structure. This is true for regions whose
domains in subsequent dimensions do not overlap the
new stabbing point np, and thus do not contribute to
the DCTA structure. The cost of Report-Regions
in this case can be as high as O(n lg n + k), since

many non-overlapping regions are inserted into the
DCTL2

structure. There is no performance difference
in whether the crossing occurs at a single boundary
with many regions at that node, or over many bound-
ary crossings with few regions.

The DCT data structure indexes lazily in the sense
that for insertions of new regions that do not overlap
cn, it only indexes a new region on its first dimension,
and not on all dimensions. Thus, boundary crossing
costs must take some time to index on these dimen-
sions of the regions. The problem with the DCT is
that these costs can occur many times in the travel of
the input stabbing points. Rather than indexing these
values once, the DCT re-indexes a subset of points
multiple times as boundaries are crossed. The hope is
that in a new set of regions, many subsequent stab-
bing points will be in these areas, and the low cost of
those stabbing points will make up for the extra cost
of maintaining a dynamic index.

5.3 Trajectory of the trending data point

Another aspect affecting performance is the trajectory
of the input stabbing points. For example, consider a
DCT in two dimensions, like the one shown in Fig-
ure 2, with trajectories that are increasing or decreas-
ing monotonically in the x and y dimensions. In these
cases, regions are put into the DCTL2

structure at
most one time. The total time maintaining the DCTL2

structure then is at most O(n lg n), fixing a bound on
the dynamic maintenance costs of the DCT . The total
cost of m stabbing queries over that trajectory would
be O(n lg n + mk), where k is the average number
of regions per stabbing point. For a two-dimensional
segment tree implementation, the total cost would be
O(n lg n+m lg2 n+mk), which includes the static cost
of maintaining a segment tree and does not include ex-
tra costs for dynamically maintaining that tree.
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On the other hand, data with a more erratic trajec-
tory can result in poor performance. Consider a point
that repeatedly crosses a single boundary containing
all n region boundaries. Again, each iteration would
require O(n lg n) time, as the DCTL2

and DCTA struc-
tures are both repeatedly made up and torn down.

Also, the DCT as described in the Figures above,
which indexes on y and then x, favors stream data
points that trend in the x direction over data that
trend in the y direction. The reason for this is that
more regions added into the DCTL2

structure end up
being reported, and the dynamic structure building is
not wasted. Also, there are fewer insertions and dele-
tions in the DCTL2

structure in the first place. When
the stabbing point np crosses a boundary in the x di-
rection, it still takes O(lg n) time to insert, as it up-
dates DCTA, but this is more useful work in updating
DCTA than a y crossing boundary, which can spend
wasteful time adding points into DCTL2

that might
never be used. Where a stabbing query for a y trend-
ing trajectory can have a worst case time in Report-
Regions of O(n lg n + k), the worst case time in x

trending stabbing points is O(n + k), when worthless
insertions into DCTA are skipped, as described below.

This shows that order in the cascade is very impor-
tant, and dimensions that see more boundary crossings
for subsequent stabs into the DCT should be pushed
deeper into the structure. Boundary crossings are of
course dependent on the trajectory of the stabbing
point and the organization of the regions in the DCT .

5.4 Skipping worthless insertions

As mentioned above, when the next point of the input
stream trends a long way with respect to the num-
ber of query boundaries traversed, then the time for
Report-Regions goes up to at least the number of
regions contained in all the boundaries crossed. Re-
gions that are both entered and exited in the course
of a single traversal to np are even worse. Their end-
points are needlessly added, then deleted from DCTL2

,
at a cost of up to O(lg n), and never queried. This can
easily be remedied, but for clarity was left out of the
initial Update-Ith algorithm. When encountering a
region at a boundary crossing, check that the region
will remain a valid region when np has finished it’s
traversal before inserting into the 2 -Key-List struc-
ture. This prevents wasted index modifications, but
does not help with the basic problem of long traverses
of np or input points that cross back and forth across
expensive boundaries. Algorithm 3 shows the modifi-
cations made to Update-Ith in lines 7 to 12 in Algo-
rithm 2. A similar modification would be made to the
forward loop in Update-Ith.

6 DCT Extensions and Modifications

In Section 4, the discussion centered on answering a
simple stabbing query for a single point and a num-

Algorithm 3 Stabbing query modification

8 . . .
9 ¤ replaces lines 7 to 12 in Update-Ith

10 old = cni .key
11 while (npi < cni . key)
12 do for r ∈ I.enumerate(cni)
13 if (ri- = cni . key) and (old < ri+)
14 then
15 Delete-Ith(DCT ,cn,r ,i + 1)
16 elseif (ri+ = cni . key) and (ri- < npi)
17 then
18 Insert-Ith(DCT ,cn,r ,i + 1)
19 cni ← cni .prev
20 . . .

ber of regions in a two dimensional space. This basic
framework can undergo some simple modifications to
handle a number of similar types of queries.

6.1 Window queries

The first general area is for regions other than points.
The stabbing query can easily be changed from a single
point to a constant size rectangle. Constant size rect-
angles are common in RSI data. In this case, track the
center location of the stabbing rectangle, and when in-
serting new regions of interest, extend the boundaries
by half the width and height of the rectangle queries.
Intersections of the modified regions and the stabbing
point will coincide with intersections of the original
regions and the rectangle query.

Queries on stabbing rectangles with more dynamic
extents are possible, too. For example, in the two di-
mensional case, track both edges of the stabbing rect-
angle in the DCTL1

and DCTL2
structures. The lead-

ing edge of the lines in the y dimension will track in-
sertions into DCTL2

, and the trailing edges will track
deletions from DCTL2

. Leading and trailing are with
respect to the previous stabbing rectangle. Rectangles
that are growing in size from the previous rectangle
may have two leading edges, and shrinking rectangles
will have two trailing edges. A similar strategy is used
for mapping the DCTL2

structure to the DCTA struc-
ture.

Many remote-sensing image data come in a row-by-
row scheme (see Figure 1). For this special case, use
and maintain the DCTL1

structure as in the stabbing
point example, and only modify the DCTL2

structure
for different lengths of the individual rows of data.

6.2 Adding dimensions

Adding an additional dimension is a simple exten-
sion by adding another intermediate 2 -Key-List to the
DCTL1

, DCTL2
, and DCTA cascade. For example, a

time dimension on a rectangle query, or in this in-
stance a cube query, could be added. As discussed
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in Section 5, it is best to order the dimensions so the
most varying is on the deeper levels of the DCT . The
monotonic increase of time would make it a good can-
didate for the level before the DCTA structure. How-
ever, if a system contains query regions with a mostly
unbounded temporal dimension, then it could also be
located at the first level. One nice feature of making
time the first structure of the cascade is that it also
does double duty in providing a structure to prune re-
gions that have expired. For geospatial data streams,
if incoming pixels are timestamped, then new stabbing
points that have identified regions whose time extent
has ended can be removed from the time structure as
well as the other cascaded structures.

6.3 Non-spatial multi-dimensional data

The focus of the DCT has been on spatial data. How-
ever, these techniques could be applied to a general
multi-dimensional data space. The obvious modifica-
tions could be made and extended to n dimensions as
outlined above. One important issue to address is the
order of the cascade of 2 -Key-List structures. As de-
scribed in Section 5, if regions are dispersed equally, it
is generally best to move the most varying parameter
to the end of the cascade, and move the least varying
to the top. This structure is also appropriate for range
queries over a single dimension over trending data by
maintaining only the top 2 -Key-List . Since the index
sizes are relatively small, it is conceivable that a sys-
tem could consistently maintain one dimensional DCT
structures, and then dynamically begins to build two
or n dimensional structures when queries requesting
such regions are instantiated. The advantage of this
method is that the structures are no longer maintained
as the queries requesting those regions are deleted.

7 Conclusions and Future Work

In this paper, we have presented the Dynamic Cas-
cade Tree (DCT), a simple data structure designed to
follow trending geospatial data points that constitute
streaming geospatial image data. The focus has been
on two dimensional stabbing queries, but we have of-
fered modifications to a number of related problems.
Theoretical and rule of thumb performance bounds
have been discussed. Initial further work will focus
on more experimental tests of the DCT for various
realistic scenarios.

We are currently implementing the DCT as part
of a query processing architecture to support complex
continuous queries over streams of remotely-sensed
geospatial image data. The proposed DCT will build
an important component to facilitate the optimization
of multiple queries against such a stream.
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Abstract

Application systems often need to react with
certain actions whenever some preset condi-
tions are satisfied. In many cases, the eval-
uation of these conditions takes long time,
but some prediction of the results can be ob-
tained rather quickly. In this situation, spec-
ulation may be a good idea. That is, the
system takes predictions (speculation) to pre-
pare (such as prefetch) for the possible reac-
tion. Obviously, the risk is wasted efforts due
to false alarms. Higher precision prediction
results in less waste, but takes longer time
and may reduce/eliminate the opportunity for
speculation. A balance needs to be struck.
A quality-driven prediction subsystem is thus
necessary, so that the “user” of the predic-
tion subsystem can impose quality (in terms
of precision and response-time) requirements.

This paper focuses on such a prediction sub-
system with conditions on streaming time se-
ries. Two problems need to be solved: how to
predict the precision and how to achieve the
required precision in an optimized way. The
paper introduces a prediction model to tackle
the first problem, and presents an algorithm
to attack the second. Experiments show that
the prediction subsystem works well.

1 Introduction

A speculative system is one that uses some kind of
risk taking mechanism to achieve an overall gain. Pre-
fetching in various scenarios, such as in processors, op-
erating systems, and database systems, is a typical ex-
ample. To speculate is generally to carry out some

Copyright held by the author(s).
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activity based on the prediction of the forthcoming re-
quests, thereby saving some time when the actual re-
quests are processed. The risk of speculation is wasted
efforts while the gain is the potential overall increase
in throughput.

Obviously, a number of factors affect the perfor-
mance of a speculative system. Prediction precision
is an important one. Usually, the higher the predic-
tion precision is, the more the system gains. However,
in certain situations, higher prediction precision takes
longer time to produce. An overall strategy is needed
that trades off response time with precision.

In this paper, we study a condition-driven system
that takes reactive measures (by a reactive subsystem)
whenever some preset conditions are satisfied (evalu-
ated by a parallel condition evaluation subsystem). We
assume the conditions evaluation subsystem contains
a prediction subsystem that is responsible to provide
a prediction to the truth values of the conditions. We
focus on this prediction subsystem.

Since precision and response time of the prediction
(by the prediction subsystem) are usually positively
correlated, a balance must be struck between them in
order to achieve overall gain. It is thus imperative for
the prediction subsystem to have the ability to trade
time with precision. In other words, we require that
the prediction subsystem be able to satisfy some QoS
(quality of service) requirements.

More specifically, given a set of conditions, the pre-
diction subsystem will partition them into two sets,
one true-set and one false-set. We measure the preci-
sion of the two sets by false positive/negative ratios.
The smaller these values are, the more precise the pre-
diction is. Another view is that the predictions are
approximate answer to the evaluation of the condi-
tions.∗ The response time is the time when the last
condition in the true-set is produced by the prediction
subsystem. This is due to the fact that most systems
respond to conditions that become true (otherwise, it
is usually not difficult to negate conditions).

∗Hence, we will use prediction and evaluation interchange-
ably when no confusion arises.
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In order to implement a quality-driven prediction
subsystem, it is important to have the ability to mea-
sure the (intermediate) result quality during the eval-
uation process. While it is straightforward to measure
the response time, it is impossible to measure the accu-
racy (i.e., false positive and negative ratios) precisely
when an approximation method is used. Indeed, the
precise accuracy can only be measured a posteriori,
i.e., only after we know the actual evaluation results
of the conditions. So we advocate measuring accuracy
in an a priori manner, i.e., the false ratios are esti-
mated based on prior knowledge. To do this, we build
a prediction model based on historical data analysis.
At the evaluation time, we use this prediction model to
derive precision estimates. When the precision based
on the prediction model is not enough to satisfy the
“user” requirements, the prediction subsystem needs
some processing to increase the precision.

Since the evaluation procedure is based on the pre-
diction model that is probabilistic in nature, our sys-
tem cannot guarantee the satisfaction of accuracy in
a strict sense. Instead, similar to the soft quality of
service (QoS) concept in computer network [9], the
system satisfies the accuracy requirements in a “soft”
manner. That is, the system guarantees with enough
confidence that the expected accuracy will not exceed
given thresholds. Specifically, the system allows the
“user” (i.e., the reactive subsystem) to impose the fol-
lowing quality constraints:

• Response time constraint: All evaluation results
must be reported within a given time limit.

• Accuracy constraints: The expected false positive
and negative ratios must not exceed the given
thresholds, with enough confidence (the confi-
dence is deduced from the prediction model).

Since the prediction subsystem may not be able
to satisfy both constraints simultaneously, especially
when the constraints are strict and system resource
is limited. We choose to let the user (i.e., the reac-
tive subsystem) impose a precision requirement, and
let the prediction subsystem optimize on the response
time. In other cases, the user may want to impose a re-
sponse time requirement (and then decide what to do
based on the prediction precision), but this is beyond
the scope of this workshop paper.

The rest of the paper is organized as follows. In Sec-
tion 2, we briefly discuss an application where a spec-
ulative system with a condition prediction subsystem
can be useful. In Section 3, we give some formally def-
initions of our problem, and in Section 4, we introduce
our prediction model. We outline our evaluation algo-
rithm in Section 5 and present experimental results in
Section 6. We review related work in Section 7, and
conclude the paper with Section 8.

2 Speculating Situation Manager

In [3], active systems are studied with an underlying
situation manager, where a situation is a reactive en-
tity that receives events as an input, combines compo-
sition filtering with content filtering, and detects situ-
ations as an output [3]. Many applications require re-
actions to situations (rather than single events). The
high-level architecture of an application that uses the
situation manager can be like that in Figure 1 [3]. An
example situation can be that “within the same day
for at least 5 times, a customer sells after buys the
same stock” [3].

Event


Event


Situation

Manager


Event


Applications


Situations


Figure 1: Situation manager high-level architecture.

A situation can take a long time to emerge from the
situation manager due to two possible reasons. Firstly,
the evaluation of conditions that involve complex op-
erations may take a long time after all the events have
arrived.† For some complex operators, some kind of
approximation can be used to produce a prediction for
the conditions. Secondly, the temporal distance be-
tween the first and the last events for the situation
can be great. In the above example, only when the
5th time that the customer sells after buys the same
stock, the situation appears. This gives room for a
speculative application system. Indeed, in the above
example, when the 5th buy of a stock by the same cus-
tomer occurs, we probably have enough confidence to
speculate that the 5th sell will occur. In this case, we
can tell the application with some confidence that the
situation will occur so that the application can start to
prepare reactive measures for the situation. If the sit-
uation does occur, the application can react faster. If
the situation in the end does not occur, then the appli-
cation just wasted some efforts (and rollback may be
necessary). Depending on the application, this may be
a risk worth taking.

In other words, when situations take long time to
emerge and can be predicted with some confidence, it
may be advantageous to predict certain situations. In
this case, the situation manager becomes a speculat-
ing one, and applications become speculative. See Fig-
ure 2. In this case, the speculative application should

†AMIT does not allow complex operators like nearest neigh-
bor search.
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Figure 2: Speculating situation manager.

tell the situation manager how precise the prediction
should be in order to achieve the best overall gain.

The question we explore in this paper is how to pro-
vide predictions to the true-set and false-set for the
given conditions. Obviously, given enough time, the
predictions can be made as precise as possible (the
“worst” case is to wait until the conditions are eval-
uated fully, and “predictions” become actual values).
The question is how to respond in the fastest way as
long as the precision requirement is satisfied. In this
paper, we assume the conditions are on streaming time
series as defined below.

3 Basic Definitions

Streaming time series

A time series is a finite sequence of real numbers and
the number of values in a time series is its length.
A streaming time series, denoted s, is an infinite se-
quence of real numbers. At each time position i, how-
ever, the streaming time series takes the form of a
finite sequence, assuming the last real number is the
one that arrived at time i.

Condition on streaming time series

In general, a condition can be any user-defined predi-
cate on streaming time series, and needs to be evalu-
ated after every data arrival.

As an example, given (finite) time series x and y of
the same length l, we may define the following corre-
lation coefficient function:

corr(x, y) =

∑l

i=1 (xi − x)(yi − y)
√

∑l

i=1(xi − x)2
√

∑l

i=1(yi − y)2
,

where x and y are the mean values of x and y, respec-
tively. Correlation coefficient quantitatively measures
the degree of correlation between two time series in
terms of how closely they are related to each other.

When dealing with streaming time series s1 and s2,
we only look at their sub-series within a sliding window
of size w. That is, for each time t (t ≥ w), we define
the function values of s1 and s2 at time t by using

x = s1[t − w + 1, . . . , t] and y = s2[t − w + 1, . . . , t].
Correspondingly, we use corr(s1, s2, w) to denote the
function with sliding window size of w on streaming
time series s1 and s2. The function yields a value
at each given time t (t ≥ w). Using this function, we
can naturally form conditions on streaming time series,
which are commonly used to monitor interesting trend
of streaming time series [25].

• |corr(s1, s2, w)|>0.75: the (absolute) correlation
between two streaming time series is high;

• |corr(s1, s2, w1)| > 2|corr(s1, s3, w2)|: the (abso-
lute) correlation between s1 and s2 is two times
greater than that between s1 and s3.

Note that the above conditions are quite trivial in
terms of computation, but will be used in this paper
for illustrative purposes. In real application, condi-
tions can be quite complex, and can sometime involve
accesses to large databases. For example, a condition
may specify that one of the near neighbors (among a
large collection of time series objects) of the streaming
time series shows a particular property.

Quality measures

We denote a set of conditions as C = {c1, c2, . . . , cn}
and the reported evaluation result of condition ci at
time position t as r(ci, t). We denote the precise eval-
uation result (the actual value of the given condition
when a precise evaluation process is used) of ci at time
position t as R(ci, t). Obviously, we have r(ci, t) ∈
{True, False}, and R(ci, t) ∈ {True, False}.‡ Note
that r(ci, t) may not be equal to R(ci, t) due to the ap-
proximate nature of the system. Let CT denote all the
conditions in C whose reported results are True at time
position t, i.e., CT = {ci|ci ∈ C and r(ci, t) = True}.
Similarly, let CF = {ci|ci ∈ C and r(ci, t) = False}.
We call CT and CF the reported-True and reported-
False sets, respectively. The two sets are disjoint and
C = CT

⋃

CF .
Using the above notation, we define the following

three parameters to measure the quality of an evalu-
ation system at each time position t, with a smaller
value meaning better quality.

1. Response Time, RT, is the duration from the data
arrival time t to the time when last condition ci,
r(ci, t) = True, is reported.

2. False Positive Ratio, FPR, of a reported-True set
CT is the fraction of the conditions (among all the
conditions in CT ) whose actual values are False.
We define FPR = 0 if CT is an empty set.

‡In the rest of the paper, we may omit t and use r(ci) (R(ci))
to denote the reported evaluation result (actual value) of condi-
tion ci at time position t when the context is clear.
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3. False Negative Ratio, FNR, of a reported-False set
CF is the fraction of the conditions (among all
conditions in CF ) whose actual values are True.
We define FNR = 0 if CF is an empty set.

Note that response time is defined only on condi-
tions that are reported true. This is because the par-
ticular situation we are dealing with in which the sit-
uation manager only needs to enact actions when cor-
responding conditions become true, and does nothing
in other cases. Other situations may call for differ-
ent definitions, such as averaged elapsed time over all
reported true conditions, etc.

4 Prediction Model

While it is easy and straightforward to measure the
quality parameter RT , it is difficult to measure the
other two quality parameters, FPR and FNR. For ex-
ample, according to the definition of FPR, we need to
know the actual values of all conditions in a reported-
True set CT when to calculate FPR. Of course, this
is an unrealistic requirement since the underlying as-
sumption is that we do not know the actual values of
all the conditions. A practical alternative is to build
a prediction model using historical evaluation results
and calculate the expected FPR and FNR based on the
model in a probabilistic manner.

Probability distribution of an evaluation result

For each condition ci, we define a random variable Xi

to state the outcome of its evaluation. Clearly, Xi

follows Bernoulli distribution Xi ∼ B(ρi), that is,

Xi =

{

1 if R(ci) = True

0 if R(ci) = False
with

{

P (Xi = 1) = ρi

P (Xi = 0) = 1 − ρi

where the mean ρi is also called the expected value
of Xi. Note in this paper, we make the simplifying
assumption that all Xi’s are mutually independent.

Depending on how the system treats ci, we see three
different cases for ρi: (1) ci is precisely evaluated. In
this case, we have ρi = 1 if ci is evaluated to be True

and ρi = 0 if ci is evaluated to be False. (2) ci’s re-
sult is reported based on an approximation procedure,
e.g., prediction. In this case, ρi cannot be known ex-
actly. Instead, its estimate ρ̂i will be used. This ρ̂i is
a random variable following certain distribution, due
to the fact that the approximation procedure gives the
estimate with some confidence. (3) Other cases where
ρi is unknown. We now discuss how to model the dis-
tribution of ρi for the latter two cases.

In Case (2), assume ci is estimated by an approx-
imation procedure that is based on N historical eval-
uation results (samples). Then the estimate of ρi, ρ̂i,
can be approximated by a normal distribution function
Norm(µi, σ

2
i ), where the mean value µi = X̄i and the

variance σ2
i = (1−µi)µi

N
, i.e., ρ̂i ∼ Norm(µi,

(1−µi)µi

N
).

(Here, X̄i denotes the sample mean.)

For Case (3), since ρi is unknown, its estimate ρ̂i is
used again. However, different from Case (2), the dis-
tribution of ρ̂i is modeled as Norm(0.5, 0.25). Mean
value 0.5 implies that the chances of ci being true or
false are the same. The variance value 0.25 is the max-
imum variance that an estimate of ρ can have.

For all the three cases, the estimate of ρi can be
viewed as a random variable that follows normal dis-
tribution. (Case (1) is a special case of normal distri-
bution.)

Example prediction model

To get ρ̂i when condition ci is predicted, we propose
to build a prediction model by analyzing the historical
evaluation results for each condition. We adopt the
data mining approach in [14] and histogram techniques
in [20] to build the prediction model. Without loss of
generality, we assume each atomic condition is in the
form of f() > γ, where f is an arithmetic expression
with the two basic functions and γ is a constant. We
partition the range of f (values of f) into buckets.
Each bucket is denoted by its boundaries (v1, v2].

We build an i-step look-ahead prediction model
based on historical data, which are the precise evalua-
tion results in a long run. At each time position, func-
tion f is evaluated precisely. For a function f , a bucket
(v1, v2], and a fixed look-ahead step i, we obtain a
count as follows: find all the time positions in the long
run when the value of f falls into the bucket (v1, v2].
Randomly pick N of these positions, say, t1, . . . , tN .
Then check the condition f() > γ at time positions
tj + i for j = 1, . . . , N , and record the percentage of
times the condition is true. Hence, we can construct a
histogram for each f and i: the buckets correspond to
a partition of the range of f , and each bucket is associ-
ated with a percentage value which is obtained in the
way discussed above. This histogram can be refined
via histogram building techniques (e.g., splitting and
merging) [2].

The histogram can be represented by a curve (in-
terpolated) instead of bars for clarity: the x-axis rep-
resents the buckets (or the range of f), and the y-
axis represents the percentages (which we call µ).
Fig. 3 shows six example histograms for the condition
|corr(s1, s2, 50)| > 0.75. (In these examples, the his-
tory has 20,000 time positions and we take 50 samples
for each bucket in the histogram.) As an example,
assume at time t, we obtain |corr(s1, s2, 50)| = 0.85
through a precise evaluation procedure. If we choose
to look ahead 5 steps, we look up the corresponding
curve in Fig. 3 and obtain µ = 0.8 for f = 0.85. This
means if the correlation value is 0.85 (or −0.85) at
time t, we can predict that this condition (absolute
correlation value is greater than 0.75) is true at time
t + 5 with a probability of 0.8.

The above only gives an example on how a predic-
tion model might be obtained. Different kind of con-
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Figure 3: A sample prediction model.

ditions call for different models, and different ways to
build the models.

In general, a prediction model for each condition
is built based on some feature values (like in the
above example). We assume that when a condition is
precisely evaluated, the corresponding feature values
(used for prediction) are extracted. When the predic-
tion of a condition is required, we will look back in
time to find the nearest time position when the con-
dition was precisely evaluated. We use then-extracted
feature values and the prediction model to predict the
probability for the condition to be true.

FPR and FNR constraints

With the prediction model, given a reported-True set
of size m, we can derive its expected false positive
ratio, denoted E(FPR). Indeed, we can prove

E(FPR) ∼ Norm(µ, σ2)

where µ =
∑m

i=1(1 − µi)/m and σ2 =
∑m

i=1 σ2
i /m2.

Here µi and σi take values from the corresponding
cases.

Similarly, we can prove that the expected FNR of
a reported-False set of size m is also a normally dis-
tributed random variable with µ =

∑m

i=1 µi/m and
σ2 =

∑m

i=1 σ2
i /m2.

We are now ready to define false positive ratio
(FPR) constraint and false negative ratio (FNR) con-
straint by using the expected FPR and FNR.

Definition An FPR-constraint is in the form of a pair
τFPR = (θE , α) (0 ≤ θE , α ≤ 1). A set of reported-
True conditions CT satisfies τFPR if P{E(FPR) ≤
θE} ≥ α. We call θE and α the expected-mean thresh-
old and the confidence threshold, respectively.

Intuitively, the smaller the θE value and the greater
the α value, the “tighter” an FPR-constraint τFPR is.
Formally, we define a partial order τ ′

FPR
≤ τ ′′

FPR
if

θ′E ≤ θ′′E and α′ ≥ α′′, and we say τ ′
FPR

is a tighter

FPR-constraint than τ ′′
FPR

. Among all such FPR-
constraints that a reported-True set CT satisfies, we
call the “tightest” one as the FPR-quality of set CT .
For simplicity, we fix the value of α in all constraints,
and thus, the one having the smallest θE will always
give the highest FPR-quality.

Symmetrically, we can define FNR-constraint τFNR

and FNR-quality of a reported-false set CF .

5 Evaluation algorithm

As mentioned earlier, in our speculative situation man-
ager, an important decision is how precise (in terms
of false-positive/negative ratios) the underlying con-
dition evaluation system is. This decision is based on
how much saving the approximated algorithm can save
(in terms of response time). A basic problem for the
underlying condition evaluation system is the follow-
ing optimization problem: use the minimum amount
of time to achieve the required precision.

More precisely, given accuracy constraints for
both CT and CF (i.e., τFPR and τFNR), we need to
minimize the response time. We use a greedy al-
gorithm for this optimization problem, as shown in
Fig. 4. The basic idea is to increase the size of CT and
CF aggressively, and at the same time, try to report
as early as possible those conditions in CT .

In the algorithm, we assume that if a condition is
reported true, then its µ value must be greater than
threshold 0.5. That is, we don’t want to risk it if the
chance of condition to be true is small. Likewise, if
a condition is reported to be false, its µ value must
be less than (or equal to) 0.5. Different system may
require other threshold values other than 0.5.

The algorithm starts with using InitExpandCT

to get initial report-True set CT . The procedure
InitExpandCT is to take all the conditions with the
highest µ values (no less than 0.5) as long as the FPR-
constraint is satisfied. The conditions in CT are re-
ported to be True. These are the conditions that can
be reported True without doing any precise evaluation.
This is Step 1.

After Step 1, we need to precisely evaluate condi-
tions in order to report them true (without violating
either τFPR or µ > 0.5). In Step 2, as a greedy algo-
rithm, we pick up the condition having the next high-
est µ value. This is the one immediately after the
conditions in the initial CT in the µList. Hence, we
pick it (i.e., ciT

) up to precisely evaluate. If the condi-
tion is evaluated True, we add it to CT and try to ex-
pand CT with no precise evaluation again (by calling a
Procedure ExpandCT , which basically tries to grab the
conditions with the next highest µ values as long as
the FPR-constraint is satisfied), report the conditions
in the expended CT and keep going. If the condition
is evaluated False, then we just keep going to precisely
evaluate the next condition, since we are still not able
to expand CT without a condition evaluated true.
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Consts.: τFPR and τFNR constraints
Goal: minimize response time (RT )

Step 1. Form and report the reported-True set:

Initialize zT = 0 and zF = 0;
[zT , iT ] = InitExpandCT (zT );
Report c1, . . . , ciT −1 as True;

Step 2. Process all conditions ci with (µi > 0.5):
Do loop until (µiT

≤ 0.5) or (iT > n)
{ - Precisely evaluate ciT

. Two outcomes:
- If ciT

is evaluated False, update zF with
an extra reported-False condition, con-
tinue the loop with iT = iT + 1;

- If ciT
is evaluated True, then

- Update zT w/ an extra rpt.-True cond.;
- [zT , ∆T ] = ExpandCT (zT , iT + 1)
- Report ciT

, . . . , ciT +∆T
as True;

- Update iT = iT + ∆T + 1;
}

Step 3. Form the reported-False set:

[zF , iF ] = InitExpandCF (zF )
Step 4. Process all conditions ciT

with (µiT
≤

0.5) :
Continue to use the same iT from Step
2, do loop until (iT > iF ).
{ - Precisely evaluate ciT

. Two outcomes:
- If ciT

is evaluated True, report ciT
as

True and continue the loop with iT =
iT + 1;

- If ciT
is evaluated False, then

o update zF w/ an extra rpt.-False cond.;
o [zF , ∆F ] = ExpandCF (zF , iF );
- update iF = iF − ∆F and iT = iT + 1;

}
Step 5. Report as False all those conditions that

were not reported True.

Figure 4: Algorithm QualEval.

During Step 2, if we run out of conditions in µList,
we can stop (just report all the conditions that were
evaluated False as false and thus achieve FNR = 0). If
the µList is not exhausted, then we need to reach the
first condition in the µList such that its µ value is no
greater than 0.5.

Once we only have conditions with µ no greater
than 0.5, we need to precisely evaluate them and re-
port them as soon as they are evaluated True. How-
ever, there is a chance we may be able to report them
False. Therefore, Step 3 tries to get the maximum
set of conditions to report False without precise eval-
uation (note that all the conditions that were evalu-
ated False need to be taken into account, hence the
zF value may not start with 0 in Step 3). The proce-
dures InitExpandCF and ExpandCF are analogous to
InitExpandCT and ExpandCT , respectively.

After Step 3, if we still have conditions that need
to be processed (i.e., if iT≤iF ), we will pick them up
to evaluate. Since we want to minimize the response
time for the conditions in CT , we precisely evaluate the

conditions starting from those with greater µ values.
Again, if any condition is evaluated False, we will try
to expand CF .

It is easily seen that the algorithm is correct since
both FPR and FNR-constraints are both satisfied.

6 Experimental Results

In this section, we present our experimental results,
showing that the algorithm effectively achieves its op-
timization goal and satisfies the quality requirements.

We first describe the data set, condition set, and
performance parameters we used in our experiments.

Data set: We generate synthetic data for ex-
periments. The data set consists of 100 streaming
time series. Each time series is independently gen-
erated with a random walk function. For stream s,
si = si−1 + rand , where rand is a random variable
uniformly distributed in the range of [−0.5, 0.5].

Condition set: Our condition set includes 400
conditions defined over these 100 streams. Each con-
dition may contain one or more correlation functions.
Each correlation function is defined on two streams
that are picked up randomly from the 100 streams,
with its sliding window size being randomly chosen
from [50, 1000].

Performance parameters: We use the four qual-
ity parameters described in Section 3 (i.e., RT , FPR
and FNR) to measure the performance of our algo-
rithms. Note that FPR and FNR are all real numbers
in [0, 1] and can be computed precisely by comparing
the reported evaluation results with the precise eval-
uation results (done for the purpose of performance
evaluation). The response time is measured by the
number of conditions that are precisely evaluated (ei-
ther to True or False) before all the conditions in the
reported-True set are reported. By using this measure
(instead of using real time), we can clearly separate
the overhead of the optimization procedure and the
condition evaluation time.

We now show the performance of QualEval. In our
experiment, we set the confidence threshold α = 95%
for both FPR- and FNR-constraints. We vary the
expected-mean threshold θE from 0.05 to 0.3 in dif-
ferent runs, and execute the algorithm for 1,000 time
positions in each run.

Fig. 5(a) and (b) show the evaluation quality
achieved in terms of actual FPR and FNR. The two
plots of Fig. 5(a) present the actual FPR and FNR val-
ues at each time position for 200 time positions with
θE = 0.01 (for both τFPR and τFNR). We can see
that these actual FPR (FNR) values are in the range
[0.01, 0.04] with a mean of 0.008 (which is very close to
the given θE = 0.01). Fig. 5(b) presents how well FPR
(FNR) constraints with various mean thresholds (vary-
ing from 0.01 to 0.3) are satisfied by our algorithm. We
calculate the average of the actual FPR (FNR) values
over 1000 time positions for each run, and we can see
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Figure 5: Performance of QualEval.

that the average is either below or very close to the
corresponding given expected-mean threshold θE for
all the runs. Note that when the given θE becomes
large enough (i.e., greater than 0.2 in Fig. 5(b)), the
actual FPR (FNR) values tend to become some con-
stants that are determined by the prediction model.
The little drop of the curves in this figure is due to
experimental variance.

Fig. 5(c) shows the performance of QualEval in
terms of response time. For comparison, a naive algo-
rithm is implemented: It randomly picks up a condi-
tion to evaluate precisely, until it has reported k Trues,
where k is the number of real Trues in the reported-
True set from QualEval (i.e., k is the number of cis
such that R(ci) = True and ci ∈ CT ). This is to
make the naive algorithm report the same number
of true conditions. We compare the response time of
QualEval with this naive algorithm for different runs
with θE values in [0.01, 0.3]. We can see that QualEval
consistently outperforms the naive algorithm. Note
that the response time of QualEval decreases as θE in-
creases, because the greater the θE value, the coarser
approximation is allowed, and thus fewer precise eval-
uations are needed.

The performance gain of QualEval is significant.
For example, given θE = 0.01, QualEval only takes
about 1/15 time of the naive algorithm, but maintains
the quality of FPR and FNR at around 1%. When θE

is set to higher values, the performance gain becomes
more significant. Note that the confidence threshold
α is set to 95% in all the experiment reported here.
Given the same expected-mean threshold θE for both
FPR- and FNR-constraints, smaller α will yield faster
response. We omit the experimental results on using
various α settings in this paper.

7 Related Work

Speculation has been used in various applications such
as processor design, cache implementation, and buffer
management in OS. Recently, Polyzotis and Ioannidis
[22] described a speculative query processing system,
where the system anticipates the user queries by pre-
dicting from partially entered query statements. Our
design follows the same approach.

The quality-driven aspect of our work is similar to
the QoS concept in computer network [12, 19]. QoS
in computer network allows the end users to specify
their requirements on different quality metrics (e.g.,
service availability, delay, delay variation, throughput,
and packet loss rate). The network system needs to
guarantee certain levels of service quality based on
these requirements. This paper adapts the QoS con-
cept into condition evaluation on streaming time se-
ries and presents a basic design strategy for developing
such a quality-driven system.

Aurora [24, 1, 8] seems to be the only data stream
processing system that contains a QoS component. In
Aurora, a user may register an application with a QoS
specification that provides the user’s preference on the
performance and quality of this application. These
QoS specifications serve to drive policies for scheduling
and load shedding.

With limited resources, using approximation tech-
niques in processing continuous queries on data
streams has been studied in [11, 13, 10, 15, 25]. How-
ever, most approximate evaluation strategies, and even
some precise evaluation strategies, only consider one
quality aspect and neglect the others. For example,
Chain [6] minimizes the memory usage without con-
sidering the response time at all. Our work differs
from all such work in that our strategy takes different
user-specified quality requirements into consideration
to guide the evaluation procedure. In other words, the
satisfaction of quality requirements in our system is
provided by run-time dynamic adjustments instead of
by static algorithm design. This advantage allows our
system to handle different constraints.

In Statstream system [25], Zhu and Shasha pre-
sented an efficient approximation method to calculate
all pair-wise correlations for a set of streaming time
series. In this paper, we use correlation function to
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construct conditions. While [25] aims at building an
approximate evaluation system that can process cor-
relations efficiently, we focus on satisfying the user’s
quality requirements.

8 Conclusion

In this paper, we studied a condition prediction sub-
system that considers user-specified quality require-
ments. We argued that such a system is necessary for
speculative systems. We used statistical analysis to de-
rive the likelihood of a condition to be true at a time
position. By using this likelihood and the associated
confidence (due to finite sampling), we estimated the
quality of our predictions. Based on this prediction
method, we designed an algorithm to produce predic-
tions satisfying precision requirements. Our experi-
ments showed that the algorithm is effective.

The prediction subsystem presented in this paper
works well with simple correlation conditions and syn-
thetic data sets. To make this subsystem applicable
to real applications, it would be interesting to extend
the prediction subsystem to handle more general con-
ditions such as those in AMIT, or those involving com-
plex operators such as nearest neighbor searches. As
future work, it is also interesting to study how to im-
prove the subsystem when some assumptions made in
this paper do not hold anymore (e.g., streaming time
series come from some common sources and are not in-
dependent). Another interesting research direction is
to design algorithms that satisfy other types of qual-
ity requirements. For example, a user may want to
impose a response time limit while requiring the sys-
tem to achieve the best precision.
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Abstract

The tremendous increase of cellular phones,
GPS-like devices, and RFIDs results in highly
dynamic environments where objects as well
as queries are continuously moving. In this
paper, we present a continuous query proces-
sor designed specifically for highly dynamic
environments (e.g., location-aware environ-
ments). We implemented the proposed con-
tinuous query processor inside the PLACE
server (Pervasive Location-Aware Comput-
ing Environments); a scalable location-aware
database server currently developed at Pur-
due University. The PLACE server extends
data streaming management systems to sup-
port location-aware environments. Such envi-
ronments are characterized by the wide vari-
ety of continuous spatio-temporal queries and
the unbounded spatio-temporal streams. The
proposed continuous query processor mainly
includes: (1) Developing new incremental
spatio-temporal operators to support a wide
variety of continuous spatio-temporal queries,
(2) Extending the semantic of sliding window
queries to deal with spatial sliding windows as
well as temporal sliding windows, and (3) Pro-
viding a shared execution framework for scal-
able execution of a set of concurrent con-
tinuous spatio-temporal queries. Preliminary
experimental evaluation shows the promising
performance of the continuous query proces-
sor of the PLACE server.
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1 Introduction

The wide spread of cellular phones, handheld de-
vices, and GPS-like technology enables environments
where virtually all objects are aware of their loca-
tions. Such environments call for new query pro-
cessing techniques to efficiently support location-aware
servers. Unlike traditional database servers, location-
aware servers have the following distinguished char-
acteristics: (1) Data are received from moving and
stationary objects in the form of unbounded spatio-
temporal streams, (2) Large number of continuous
stationary and moving spatio-temporal queries, and
(3) Any delay of the query response results in an ob-
solete answer. Consider a query that asks about the
moving objects that lie in a certain region. If the query
answer is delayed, the answer may be outdated where
objects are continuously changing their locations.

Existing techniques for handling continuous spatio-
temporal queries in location-aware environments (e.g.,
see [3, 16, 18, 31, 34, 36, 39, 40]) focus on devel-
oping specific high level algorithms that utilize tra-
ditional database servers. In this paper, we go be-
yond the idea of high level algorithms, instead, we
present a continuous query processor that aims to
modify the database engine to support a wide vari-
ety of continuous spatio-temporal queries. Our con-
tinuous query processor is implemented inside the
PLACE (Pervasive Location-Aware Computing En-
vironments) server; currently developed at Purdue
University [2, 24]. The PLACE server extends both
the PREDATOR relational database management sys-
tem [30] and the NILE streaming database manage-
ment system [15] to support efficient continuous query
processing of spatio-temporal streams. In particular,
the continuous query processor of the PLACE server
has the following distinguishing characteristics:

1. Incremental evaluation. The PLACE con-
tinuous query processor employs an incremen-
tal evaluation paradigm by continuously updat-
ing the query answer. We distinguish between
two types of updates; namely positive and neg-
ative updates [23]. A positive/negative update
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indicates that a certain object needs to be added
to/removed from the query answer.

2. Spatio-temporal operators. The PLACE con-
tinuous query processor employs a new set of
spatio-temporal incremental operators (e.g., IN-
SIDE and kNN operators) that support incre-
mental evaluation of a wide variety of continuous
spatio-temporal queries.

3. Predicate-based Sliding Windows: We ex-
tend the notion of sliding windows beyond time-
based and tuple-count windows to accommodate
for predicate-based windows (e.g., an object ex-
pires from the window when it appears again in
the stream).

4. Scalability. We use a shared execution paradigm
as a means of achieving scalability in terms of
the number of outstanding continuous spatio-
temporal queries.

The rest of the paper is organized as follows: Sec-
tion 2 highlights the challenges we faced in building
the continuous query processor of the PLACE server
along with the related work of each challenge. In Sec-
tion 3, we present an overview of the data model and
SQL language used by the PLACE server. Section 4
presents different methods of expiring incoming tuples
in the PLACE server. The incremental processing of
continuous queries is discussed in Section 5. Section 6
discusses the shared execution of concurrent contin-
uous queries. The graphical user interface (GUI) of
the PLACE server is presented in Section 7. Section 8
introduces preliminary experimental results from the
PLACE server. Finally, Section 9 concludes the paper.

2 Challenges and Related Work

In this section, we go through some of the challenges
we faced while building the continuous query proces-
sor of the PLACE location-aware server. With each
challenge, we present its related work.

2.1 Challenge I: Incremental Evaluation of
Continuous Queries

Most of spatio-temporal queries are continuous in na-
ture. Unlike snapshot queries that are evaluated only
once, continuous queries require continuous evaluation
as the query result becomes invalid with the change
of information [37]. A naive way to handle continu-
ous queries is to abstract the continuous query into
a series of snapshot queries executed at regular inter-
val times. Existing algorithms for continuous spatio-
temporal queries aim to optimize the time interval
between each two instances of the snapshot queries.
Mainly, three different approaches are investigated:
(1) The validity of the results [39, 40]. With each
query answer, the server returns a valid time [40] or

a valid region [39] of the answer. Once the valid time
is expired or the client goes out of the valid region,
the client resubmits the continuous query for reeval-
uation. (2) Caching the results. The main idea is to
cache the previous result either in the client side [31]
or in the server side [18]. Previously cached results
are used to prune the search for the new results of
k-nearest-neighbor queries [31] and range queries [18].
(3) Precomputing the result [18, 34]. If the trajectory
of query movement is known apriori, then by using
computational geometry for stationary objects [34] or
velocity information for moving objects [18], we can
identify which objects will be nearest-neighbors [34]
to or within a range [18] from the query trajectory.
If the trajectory information changes, then the query
needs to be reevaluated.

With the large number of continuous queries,
reevaluating a continuous spatio-temporal query, even
with large time intervals, poses a redundant processing
for the location-aware servers. In the PLACE continu-
ous query processor, we go beyond the idea of reevalu-
ating continues spatio-temporal queries. Instead, we
provide an incremental evaluation paradigm, where
only the updates of the result are reported to the user.

2.2 Challenge II: Wide Variety of Continuous
Queries

Most of the existing query processing techniques focus
on solving special cases of continuous spatio-temporal
queries, e.g., [31, 34, 39, 40] are valid only for moving
queries on stationary objects, [5, 9, 11, 25] are valid
only for stationary range queries. Other work focus on
aggregate queries [11, 32, 33] or k-NN queries [16, 31].
Trying to support such wide variety of continuous
spatio-temporal queries in a location-aware server re-
sults in implementing a variety of specific algorithms
with different access structures.

In the PLACE continuous query processor, we avoid
using tailored algorithms for each kind of continu-
ous spatio-temporal queries. Instead, we furnish the
PLACE server with a set of primitive pipelined query
operators that can support a wide spectrum of contin-
uous spatio-temporal queries.

2.3 Challenge III: Large Number of Concur-
rent Continuous Queries

Most of the existing spatio-temporal algorithms fo-
cus on evaluating only one spatio-temporal query
(e.g., [3, 16, 18, 31, 34, 36, 39, 40]). In a typi-
cal location-aware server [2, 21, 24], there is a huge
number of concurrently outstanding continuous spatio-
temporal queries. Handling each query as an individ-
ual entity dramatically degrades the performance of
the location-aware server.

Although there is a lot of research in sharing the
execution of continuous web queries (e.g., see [8]) and
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continuous streaming queries (e.g., see [6, 7, 14]), opti-
mization techniques for evaluating a set of continuous
spatio-temporal queries are recently addressed for cen-
tralized [25] and distributed environments [5, 9]. The
main idea of [5, 9] is to ship part of the query pro-
cessing down to the moving objects, while the server
mainly acts as a mediator among moving objects. In
centralized environments, the Q-index [25] is presented
as an R-tree-like [10] index structure to index the
queries instead of objects. However, the Q-index is
limited in two aspects: (1) It performs reevaluation of
all the queries (through the R-tree index) every T time
units. (2) It is applicable only for stationary queries.
Moving queries would spoil the Q-index and hence dra-
matically degrade its performance.

2.4 Challenge IV: Indexing Moving Ob-
jects/Queries

Most of the existing spatio-temporal index struc-
tures [22] aim to modify the traditional R-tree [10] to
support the highly dynamic environments of location-
aware servers. In particular, two main approaches
are investigated: (1) Indexing the future trajectories
such that the existing tree would last longer before
an update is needed. Examples of this category are
the TPR-tree [29], REXP -tree [28], and the TPR*-
tree [35]). (2) Modifying the deletion and insertion
algorithms for the original R-tree to support frequent
updates. Examples of this category include the Lazy-
update R-tree [17] and the Frequently-updated R-
tree [19]

Even with the proposed modifications of the R-tree
structures, highly dynamic environments degrades the
performance of the R-tree and results in a bad per-
formance. In the PLACE continuous query proces-
sor, we avoid using R-tree-like structure. Instead,
we use a grid-like index structure [23] that is sim-
ple to update and retrieve. Moreover, fixed grids are
space-dependent, thus there is no need to continuously
change the index structure with the continuous inser-
tion and deletion.

3 The PLACE Server

In this section, we present the data modelling and SQL
language used by the PLACE server.

3.1 Data Model

By subscribing with the PLACE server, moving ob-
jects are required to send their location updates pe-
riodically to the PLACE server. A location update
from the client (moving object) to the server has the
format (OID, x, y), where OID is the object identifier,
(x, y) is the location of the moving object in the two-
dimensional space. An update is timestamped upon
its arrival at the server side. Once an object stops
moving (e.g., an object reaches to its destination or

the cellular phone is shut down) it sends to the server
a disappear message which indicates that the object is
no further moving.

Due to the highly dynamic nature of location-aware
environments and the infinite size of incoming spatio-
temporal streams, we cannot store all incoming data.
Thus, the PLACE server employs a three-level storage
hierarchy. First, a subset of the incoming data streams
is stored in in-memory buffers. In-memory buffers are
associated with the outstanding continuous queries at
the server. Each query determines which tuples are
needed to be in its buffer and when these tuples are
expired, i.e., deleted from the buffer. Second, we keep
an in-disk storage that keeps track with only one read-
ing of each moving object and query. Since, we cannot
update the disk storage every time we receive an up-
date from moving objects, we sample the input data by
chosing every kth reading to flush to disk. Moreover,
we cache the readings of moving objects/queries and
flush them once to the secondary storage every T time
units. Data on the secondary storage are indexed us-
ing a simple grid structure [23]. Third, every Tarchive

time units, we take a snapshot of the in-disk database
and flush it to a repository server. The repository
server acts as a multi-version structure of the moving
objects that supports historical queries. Stationary
objects (e.g., gas stations, hospitals, restaurants) are
preloaded to the system as relational tables that are
infrequently updated.

3.2 Extended SQL Syntax

As the PLACE server [24] extends both PREDA-
TOR [30] and NILE [15], we extend the SQL language
provided by both systems to support spatio-temporal
operators. Mainly, we add the INSIDE and kNN

operators to support continuous range queries and k-
nearest-neighbor queries respectively. A continuous
query is registered at the PLACE server using the
SQL:

REGISTER QUERY query name AS

SELECT select clause
FROM from clause
WHERE where clause
INSIDE inside clause
kNN knn clause
WINDOW window clause

The REGISTER QUERY statement registers the con-
tinuous query at the PLACE server with the
query name as its identifier. The select clause,
from clause, and where clause are inherited from the
PREDATOR [30] database management statement.
The window clause is inherited from the NILE [15]
stream query processor to support continuous slid-
ing window queries [14]. A continuous query is
dropped form the system using the SQL: DROP QUERY

query name.
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The inside clause can represent stationary rectan-
gular or circular range queries by specifying the two
corners or the center and radius of the query region,
respectively. If the first parameter to the inside clause
is set to M , then the query is moving and the second
parameter represents the ID of the focal object of the
query. Similarly, the knn clause can represent station-
ary as well as moving k-nearest-neighbor queries.

4 Tuple Expiration

With the unbounded incoming spatio-temporal
streams, it becomes infeasible to store all incoming
tuples. However, some input tuples may be buffered
in memory for a limited time. The choice of the stored
tuples are mainly query dependent, i.e., we store only
the tuples of interest. Since the queries are continu-
ously changing, there should be a mechanism to expire
(delete) some of the stored tuples and replace them
with other tuples that becomes more relevant to the
outstanding continuous spatio-temporal queries. In
the PLACE continuous query processor, we employ
three types of tuple expiration, namely, temporal expi-
ration, spatial expiration, and predicate-based expira-
tion.

4.1 Temporal Expiration

Most of the data stream management systems use the
concept of temporal expiration as a mechanism to an-
swer continuous sliding window queries. A sliding
widow query involves a time window w. Any object
that has a timestamp within the current sliding win-
dow of any outstanding query Q is in-memory buffered
with the associated buffer of Q.

An example for a sliding window query submitted
to the PLACE server is: Q1: ”Continuously, report
the number of cars that passed by region R in the last
hour”.

SELECT COUNT(ObjectID)
FROM MovingObjects
WHERE type = Car
INSIDE R

WINDOW 1 hour

Notice that Q1 buffers all incoming tuples during
the previous hour. A tuple is expired (i.e., deleted
from the query buffer) once it goes out of the sliding
time window (i.e., if it becomes more than one hour
old).

4.2 Spatial Expiration

The PLACE server introduces a new type of expira-
tion that depends on the spatial location of the moving
objects instead of their timestamps. An incoming tu-
ple o is stored in the in-memory buffer associated with
a query Q only if o satisfies the spatial window (e.g.,
region) of Q.

An example of spatial expiration query is: Q2:
”Continuously, report the number of cars in a certain
area.”. Notice that unlike Q1, in Q2, we are concerned
about the actual current number of cars not the num-
ber of cars in the recent history. The SQL of Q2 is
similar to that of Q1 with only the removal of the win-
dow statement.

4.3 Predicate-based Expiration

Due to the nature of spatio-temporal streams, other
forms of tuple expiration may arise. For example, con-
sider the query Q3: ”For each moving object, contin-
uously report the elapsed time between each two con-
secutive readings”. Such a query contains a self join
where objects from the stream of moving objects are
self joined based on the object identifier. The query
buffer needs to maintain only the latest reading of each
moving object. Once the reading of a certain object
is reported, the previous reading is expired. We call
such kind of expiration as predicate-based where it is
mainly dependent on the query semantic.

5 Incremental Evaluation

To avoid reevaluating continuous spatio-temporal
queries, we employ an incremental evaluation
paradigm in the PLACE continuous query processor.
The main idea is to only report the changes of the an-
swer from the last evaluation time. By employing in-
cremental evaluation, the PLACE server achieves the
following goals: (1) Fast query evaluation, since we
compute only the updates of the answer not the whole
answer. (2) In a typical location-aware server, query
results are sent to the users via satellite servers [1, 12].
Thus, limiting the amount of transmitted data to the
updates only rather than the whole query answer saves
in network bandwidth. (3) When encapsulating incre-
mental algorithms into physical pipelined query oper-
ators, limiting the tuples that go through the whole
query pipeline to only the updates reduces the flow
in the pipeline. Thus, efficient query processing is
achieved.

To realize the incremental evaluation processing in
the PLACE server, we go through three main steps.
First, we define the high level concept of incremen-
tal updates, by defining two types of updates; posi-
tive and negative updates [20, 23]. Second, we encap-
sulate the processing of incremental algorithms into
pipelined query operators. Third, we modify tradi-
tional pipelined query operators (e.g., distinct and
join) to deal with the concept of negative tuples [13].

5.1 Positive/Negative Updates

Incremental evaluation is achieved through updating
the previous query answer. Mainly, we distinguish be-
tween two types of updates; positive updates and neg-
ative updates. A positive/negative update indicates
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Figure 1: Incremental evaluation of range queries

that a certain object needs to be added to/removed
from the query answer. A query answer is represented
in the form (QID, OList), where QID is the query
identifier and OList is the query answer. The PLACE
server continuously updates the query answer with up-
dates of the form (QID,±, OID) where ± indicates
the type of the update and OID is the object identi-
fier.

Figure 1 gives an example of applying the concept
of positive/negative updates on a set of continuous
range queries. The snapshot of the database at time
T0 is given in Figure 1a with nine moving objects,
p1 to p9, and five continuous range queries, Q1 to
Q5. The answer of the queries at time T0 is repre-
sented as (Q1, P5), (Q2, P1), (Q3, P6, P7), (Q4, P3, P4),
and (Q5, P9). At time T1 (Figure 1b), only the ob-
jects p1, p2, p3, and p4 and the queries Q1, Q3, and Q5

change their locations. As a result, the PLACE server
reports the following updates: (Q1,−P5), (Q3,−P6),
(Q3, +P8), and (Q4,−p4).

5.2 Spatio-temporal Incremental Pipelined
Operators

Two alternative approaches can be utilized in imple-
menting spatio-temporal algorithms inside the PLACE
server: using SQL table functions [26] or encapsulat-
ing the algorithms in physical query operators. Since
there is no straightforward method for pushing query
predicates into table functions [27], the performances
is limited and the approach does not give enough flex-
ibility in optimizing the issued queries. In the PLACE
server we encapsulate our algorithms inside physical
pipelined query operators that can be part of a query
execution plan. By having pipelined query operators,
we achieve three goals: (1) Spatio-temporal operators
can be combined with other operators (e.g., distinct,
aggregate, and join operators) to support incremen-
tal evaluation for a wide variety of continuous spatio-
temporal queries. (2) Pushing spatio-temporal oper-
ators deep in the query execution plan reduces the
number of tuples in the query pipeline. This reduction
comes from the fact that spatio-temporal operators act
as filters to the above operators. (3) Flexibility in the
query optimizer where multiple candidate execution
plans can be produced.

The main idea of spatio-temporal operators is to
keep track of the recently reported answer of each
query Q in a query buffer termed Q.Answer. Then,
for each newly incoming tuple P , we perform two tests:
Test I: Is P part of the previously reported Q.Answer?
Test II: Does P qualify to be part of the current an-
swer? Based on the results of the two tests, we distin-
guish among four cases:

• Case I: P is part of Q.Answer and P still qualify
to be part of the current answer. As we process
only the updates of the previously reported result,
P will not be processed.

• Case II: P is part of Q.Answer, however, P does
not qualify to be part of the answer anymore. In
this case, we report a negative update P− to the
above query operator. The negative update indi-
cates that P is spatially expired from the answer.

• Case III: P is not part of Q.Answer, however,
P qualifies to be part of the current answer. In
this case, we report a positive update to the above
query operator.

• Case IV: P is not part of Q.Answer and P still
does not qualify to be part of the current answer.
In this case, P has no effect on Q.

5.3 Traditional Operators

Having the spatio-temporal operators at the bottom or
at the middle of the query evaluation pipeline requires
that all the above operators be equipped with special
handling of negative tuples. The NILE query proces-
sor [15] handles negative tuples in pipelined operators
as follows:

• Selection and Join operators handle negative tu-
ples in the same way as positive tuples. The only
difference is that the output will be in the form of
a negative tuple.

• Aggregates update their aggregate functions by
considering the received negative tuple.

• The Distinct operator reports a negative tuple at
the output only if the corresponding positive tuple
is in the recently reported result.

For more details about handling the negative tu-
ples in various query operators, the reader is referred
to [13].

6 Scalability

The PLACE continuous query processor exploits a
shared execution paradigm [21, 23, 38] as a means for
achieving scalability in terms of the number of concur-
rently executing continuous spatio-temporal queries.
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Figure 3: Snapshot of the PLACE client and server
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Figure 2: Shared execution of continuous queries.

The main idea is to group similar queries in a query ta-
ble. Then, the evaluation of a set of continuous queries
is modelled as a spatial join between moving objects
and moving queries. Similar ideas of shared execu-
tion have been exploited in the NiagaraCQ [8] for web
queries and PSoup [6, 7] for streaming queries.

Figure 2a gives the execution plans of two simple
continuous spatio-temporal queries, Q1: ”Find the ob-
jects inside region R1”, and Q2: ”Find the objects in-
side region R2”. With shared execution, we have the
execution plan of Figure 2b. Shared execution for a
collection of spatio-temporal range queries can be ex-
pressed in the PLACE server by issuing the following
continuous query:

SELECT Q.ID, O.ID
FROM QueryTable Q, ObjectTable O
WHERE O.location inside Q.region

7 User interface in PLACE

Figure 3 gives snapshots of the client and server graph-
ical user interface (GUI) of PLACE. The client GUI
simulates a client end device used by the users. Users
can choose the type of query from a list of available
query types. The spatial region of the query can be
determined using the map of the area of interest1 (the
bold plotted rectangle on the map). By pressing the
submit button, the client translates the query into SQL
language and transmits it to the PLACE server. Once
the query is submitted to the server, the result appears
to the query as a list at the bottom of Figure 3a. A
client can send multiple queries of different types to
the PLACE server.

The PLACE server GUI is for the purpose of admin-
istration at the server side. The main idea is to keep
track of the concurrently executing continuous queries
from each type. All the processed queries along with
their parameters are displayed in the bottom left of
the screen. In addition, the server GUI contains a re-
gional map showing the movement of objects, and the
parameters of the selected queries.

8 Performance Evaluation

In this section, we present preliminary experiments
that show the promising performance of the continu-
ous query processor in the PLACE server. We use the

1The map in Figure 3 is for the Greater Lafayette, IN, USA.
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Network-based Generator of Moving Objects [4] to gen-
erate a set of 100K moving objects and 100K moving
queries. The output of the generator is a set of moving
objects that move on the road network of a given city.
We choose some points randomly and consider them
as centers of square range queries.

8.1 Size of Incremental Answer

Figure 4 compares between the size of the incremental
answer returned by utilizing the incremental approach
and the size of the complete answer. The location-
aware server buffers the received updates from moving
objects and queries and evaluates them every 5 sec-
onds. Figure 4a gives the effect of the number of mov-
ing objects that reported a change of location within
the last 5 seconds. The size of the complete answer
is constant and is orders of magnitude of the size of
the worst-case incremental answer. In Figure 4b, the
query side length varies from 0.01 to 0.02. The size of
the complete answer increases dramatically to up to
seven times that of the incremental result. The saving
in the answer size directly affects the communication
cost from the server to the clients.

8.2 Pipelined Spatio-temporal Operators

Consider the query Q:“Continuously report all trucks
that are within MyArea”. MyArea can be either a sta-
tionary or moving range query. A high level implemen-
tation of this query has only a selection operator that
selects only the “trucks”. Then, a high level algorithm
implementation would take the selection output and
incrementally produce the query result. However, an
encapsulation of INSIDE algorithm into a physical
operator allows for more flexible plans.

Figure 5 compares the high level implementation
of the above query with pipelined operators for both
stationary and moving queries. The selectivity of the
queries varies from 2% to 64%. The selectivity of the
selection operator is 5%. Our measure of comparison
is the number of tuples that go through the query eval-
uation pipeline. When algorithms are implemented at
the application level, the performance is not affected

by the selectivity. However, when INSIDE is pushed
before the selection, it acts as a filter for the query
evaluation pipeline, thus, limiting the tuples through
the pipeline to only the incremental updates. With
INSIDE selectivity less than 32%, pushing INSIDE

before the selection greatly affects the performance.

9 Conclusion

In this paper, we present the continuous query proces-
sor of the PLACE (Pervasive Location-Aware Com-
puting Environments) server; a database server for
location-aware environments currently developed at
Purdue University. The PLACE server extends both
the PREDATOR database management system and
the NILE stream query processor to deal with un-
bounded spatio-temporal streams. In addition to the
temporal tuple expiration defined in sliding window
queries, we maintain other forms of tuple expirations
(e.g., spatial expiration). To efficiently handle large
number of continuous queries, we employ an incremen-
tal evaluation paradigm that contains: (1) Defining
the concept of positive and negative updates, (2) En-
capsulating the algorithms for incremental processing
into pipelined spatio-temporal operators, and (3) Mod-
ifying traditional query operators (e.g., distinct and
join) to deal with the negative updates that comes
from the spatio-temporal operators. Shared execution
is employed by the continuous query processor as a
means of achieving scalability in terms of the number
of concurrently continuous queries. Preliminary ex-
perimental results show the promising performance of
the PLACE continuous query processor.
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Abstract

An infrastructure is emerging that supports the de-
livery of on-line, location-enabled services to mo-
bile users. Such services involve novel database
queries, and the database research community is
quite active in proposing techniques for the effi-
cient processing of such queries. In parallel to
this, the management of data streams has become
an active area of research.

While most research in mobile services concerns
performance issues, this paper aims to establish
a formal framework for defining the semantics of
queries encountered in mobile services, most no-
tably the so-called continuous queries that are par-
ticularly relevant in this context. Rather than in-
venting an entirely new framework, the paper pro-
poses a framework that builds on concepts from
data streams and temporal databases. Definitions
of example queries demonstrates how the frame-
work enables clear formulation of query seman-
tics and the comparison of queries. The paper
also proposes a categorization of location-based
queries.

Keywords: Location-based service, data stream,
continuous query, skyline query, range query,
nearest-neighbor query.

1 Introduction

The emergence of mobile services, including mobile com-
merce, is characterized by convergences among new tech-
nologies, applications, and services. Notably, the ability to
identify the exact geographical location of a mobile user
at any time opens to range of new, innovative services,
which are commonly referred to as location-based services
(LBSs) or location-enabled services.

Copyright held by the author(s).
Proceedings of the Second Workshop on Spatio-Temporal
Database Management (STDBM’04),
Toronto, Canada, August 30th, 2004.

In an LBS scenario, the service users are capable of con-
tinuous movement, and changing user locations are sam-
pled and streamed to a processing unit, e.g., a central server.
The notion of a data stream thus occurs naturally. Ser-
vice requests result in queries being issued against the data
streams and other, typically relational, data.

Conventional queries are one-time queries, i.e., queries
that are simply issued against the state of the database as
of the time of issue, upon which they, at a single point
in time, return a result. In our scenario, so-called contin-
uous queries are also natural. Such queries are “active”
(i.e., being re-evaluated) for a duration of time, and their
results are kept up-to-date as the database changes during
this time. As an example, an in-vehicle service may dis-
play the three nearest, reasonably priced hotels with rooms
available along the route towards the vehicle’s destination.
The vehicle’s location (a data stream) together with data
about hotels (relational data) are continuously queried to
provide the result (a data stream).

Significant results on the processing of location-based
queries (LBQs) has already been reported. As LBQs are
defined in different settings, no direct means are available
for classifying and comparing these queries. As more and
more work, considering more and more different kinds of
queries, is reported, the need for comparison increases.

This paper presents a general framework within which
the semantics of LBQs can be specified. This enables the
definition of LBQs in a single framework, which in turn
enables the comparison of queries. The framework is well
defined—it is based on precise definitions of data structures
and operations on these. The framework has the following
characteristics.

� Streams as well as relations are accommodated.� Because queries often involve ranked results, relations
are defined to include order.� Relational algebraic operators are extended to also
apply to streams, by using mappings of streams to
relations, and, optionally, mappings of relations to
streams.

The result is an expressive yet semantically simple frame-
work that may be extended with additional operators and
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mappings. To illustrate the extensibility, a new operator,
the skyline operator, is introduced.

Rather than listing and defining all possible location-
based queries, this paper represents several prominent ones,
such as a range query, a nearest-neighbor query, and a
location-based skyline query; and it discusses categoriza-
tions of LBQs.

The research area of stream data is quite active and has
produced a number of interesting concepts in relation to
the semantics of continuous queries. Specifically, signifi-
cant research results have been reported on query process-
ing for data streams (e.g., [3, 6, 22, 29]). Some works con-
sider queries over data streams together with relations (e.g.,
[1, 18]), but only few works consider the formalization of
queries over streams and relations.

Similarly, location-based query processing is an active
area of research, and many interesting results have ap-
peared. Much attention has been given to the indexing
and query processing for moving objects. Numerous index
structures and algorithms have been proposed for a variety
of location-based queries (e.g., [4, 9, 12, 13, 14, 17, 19,
20, 23, 24, 26, 27, 28]), such as nearest neighbor queries,
reverse neighbor queries, spatial range queries, distance
joins, and closest-pair queries. A new type of query, the
skyline query, has recently received attention [5, 8, 15, 21].
However, only little attention has been paid to query pro-
cessing in relation to spatial data streams [16]. To the best
of our knowledge, no formal frameworks have been pro-
posed for the definition of location-based queries against
relations and data streams.

Recently, Arasu et al. [1] have offered an interpretation
of continuous queries over streams, by formalizing streams,
relations, and mapping operators among them. We build on
their general approach. To accommodate ordering as well
as duplicates, we use list-based relations and a variant of
the list-based relational algebra proposed by Slivinskas et
al. [25]. To be able to express query semantics precisely,
our approach also accommodates the notions of activation
and deactivation times and reevaluation granularity.

The paper is outlined as follows. Section 2 defines
the data structures underlying the framework and presents
the application scenario. The next section completes the
framework, by defining the operators that map between the
different operators in the framework. Section 4 uses the
framework to define different location-based queries and
also discusses the categorization of location-based queries.
The last section summarizes and offers directions for future
research.

2 Data Structures and Application Scenario

2.1 Data Model Definition

Building on the relation concept defined by Slivinskas et
al. [25], we define relations as lists to capture duplicates
and ordering. We define schemas, tuples, and relation in-
stances, then define the same concepts for streams.

Definition 2.1. A relation schema ���������	��

��� is a three-

tuple where � is a finite set of attributes, � is a finite set of
domains, and ��

��������� is a function that associates a
domain with each attribute.
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Definition 2.2. A tuple over schema ^>=_���������	��

��� is a
function F`���>�baXc7dfehg , such that for every attribute i of
� , F$�-i��kjl��

�m�-i�� . A relation over ^ is a finite sequence
of tuples over ^ .

The definition of a relation corresponds to the definition
of a list or a sequence. A relation can thus contain duplicate
tuples, and the ordering of tuples is significant. Relation
8
9	:<; from Figure 1 is the list n�F�o4�/FAp*�/FAq*�/F�rf�/FAs �4t , where, e.g.,
F	ou= � �-
*?A@ B��C�	vfwRx
�7�(�-
*?A@ D-
4E4�(��y*wR�	v�zf�/�7�(�-
*?A@ F�G
HJI��
“police station” � � .

Definition 2.3. A stream schema is a relation schema
���������	��

��� , where � includes a special attribute { , � in-
cludes the time domain | , and ��

�m�-{}�~=�| .

We assume that domain | is totally ordered. While, for
simplicity, we use the non-negative numbers as the time
domain in the sequel, other domains may be used. For ex-
ample, the real or natural numbers, the TIMESTAMP do-
main of the SQL standard, or one of the domains proposed
by the temporal database community may be used.

Stream �(�4��� in Figure 2 has schema ���������	��

��� , where
�>= �(� ��8 B��C� � ��8 �J� � ��8 D-
4E4�	{ �����K= �

number �
velocity � location �	| � , and ��

�S= � � � ��8 B��C�/PUTRVXWJY�N7�7�
� � ��8 �J� velocity �7�(� � ��8 D-
4E4� location �7�(�-{��	|~� � .

�R��� ��� �R��� � �R��� � ��� �
�7��� �7��� �7��� �����)7'('�6 +")7'*.7�u)$0(1 +��('*./2('
1 )7')7'('
, +"�`,(04.	,(0(1 +-,�'('*.7)7'
1 )$,)7'('(& +"�u)$,4.7�u)()$1 +�3('*./2('
1 )7')7'('�6 +�'*./'
1 +")7'('*./3('
1 )$,)7'('(& +"�u)7'*./&
1 +<6
'*.	0�2
1 )$,)7'('*) +�'*.7)$1 +")73*./&(2
1 �)7'('�6 +-,�'*./&
0(1 +")7'('*./3('
1 )$0
�7��� �7��� �7��� �����

Figure 2: Stream �*�����
Definition 2.4. A stream is a possibly infinite multiset of
tuples over stream schema � .

For a stream tuple F/� , the time ����=�FA�	�-{}� indicates when
the tuple became available in the stream. While a relation is
ordered, we have chosen to not introduce an inherent order
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on streams. Streams come with the natural (partial) order
implied by their time attribute.

Stream �(�4��� in Figure 2 is the possibly infinite multiset
�(�4���k= � ������� �(�Ax(wfw � �(�Ax(wR��� x
zf�7�(���fwR���fw��7��x(wf�7� ����� �(�Ax(wfw � �
��y*wR�	v�zf�7�(�Ax(wfwR��	fw��7��x
zf�7� ����� � � �

While a query is issued against an entire relation state,
intuitively, a query issued at some time ��
 will only see ei-
ther what has appeared in the stream so far, i.e., all tuples
with timestamp less than or equal to ��
 , or what has ap-
peared in the stream between some past time and ��
 . The
latter may be assumed if what has appeared in the stream
so far does not fit in the available memory.

2.2 Discussion

As we pointed out earlier, we use streams for modeling the
locations of moving objects such as pedestrians, cars, and
buses. We use relations for modeling aspects of an applica-
tion domain that change discretely.

As we aim for a generic framework, we make no as-
sumptions about the representations of the geographical lo-
cations and extents of objects that limit the applicability of
the framework. However, to be specific, we assume that
positions are simply points ��
 �/GR� in two-dimensional Eu-
clidean space; in accord with this, a velocity vector is given
by �����R�/���*� . We note that in some application scenarios, po-
sitions of objects are given in terms of road networks, using
linear referencing [11]. The framework is also applicable
in the context of this kind of positioning.

In the example we use throughout, stream �4�4��� in Fig-
ure 2 captures positions and velocities of moving users.
Attribute

� ��8 B�� records the ID of a user, and
� ��8 � and� ��8 D-
4E record the velocity and location of the user at the

time instant recorded in attribute { . In a real-world appli-
cation, multiple streams may well be present. For example,
users moving by bicycle and by car may be captured by
separate streams. For simplicity, we only use one stream.

Relation 8(�4��� in Figure 3 captures discretely changing
properties of the service users. As before,

� ��8 B�� records
the ID of a user; and attributes

� ��8 ����� I capture the first
name of a user.�R��� ��� �R��� ����� %)7'('*)

Kate)7'('
,
Bill)7'('(&
Joan)7'('�6
Tom

Figure 3: Relation
8(�4���

Finally, relation 849	:<; in Figure 1
records the points of interest that
service users may query. Attribute

*?A@ B�� captures the ID of a point
of interest, 
*?A@ D-
4E records its loca-
tion, and 
*?A@ F�G
HJI records its type.

In real-world applications, addi-
tional attributes and relations may

of course be used, beyond the ones introduced above.
In our scenario, the users of the services that issue

the queries are moving, and the points of interests being
queried are static. However, in other equally valid sce-
narios, a static user can query moving objects, e.g., a su-
permarket wants to know all the potential customers who
are near the supermarket between 8:00 a.m. and 5:00 p.m.
Also, a moving user may query other moving users—this
may be typical of location-based games.

3 Mapping Operators
Queries are either one-time or continuous, they apply to
relations and streams, and their results are either relations
or streams.

Relations are well known, and the semantics of queries
against relations are generally agreed upon. In contrast,
what the appropriate semantics of queries against streams
should be and how these should be defined are less obvi-
ous. Following Arasu et al. [1], we aim to maximally reuse

Relations StreamsOperators

Relation−to−Stream OperatorsRelation−to−Relation

Stream−to−Relation Operators

Figure 4: Mapping Operators

the relational setting in defining the semantics of queries
against streams. We do this by introducing mapping opera-
tions between streams and relations, so that a query against
a stream can be defined by mapping the stream to a rela-
tion, then applying a relational query, and then, optionally,
mapping the result to a stream. This results in the frame-
work of representations and operators outlined in Figure 4.
Note that direct stream-to-stream operators are absent.

3.1 Relation-to-Relation Operators

3.1.1 Basic Algebra Operators

A relation-to-relation operator takes one or more relations
84o4������� �/8�� as arguments and produces a relation 8 as a re-
sult. As our relations are ordered, we use operators intro-
duced by Slivinskas [25] as our relation-to-relation opera-
tors: selection ( � ), projection ( � ), union-all ( � ), Cartesian
Product ( � ), difference (  ), duplicate elimination ( 84� � H ),
aggregation ( ! ), sorting ( �(

8
F ), and top ( FA
�H ).

These carry their standard meanings when applied to re-
lations without order. As an example of how the operators
are defined, consider selection � . Based on the definitions
in Section 2, we use " to be the set of all relations and let
8 = n�F	o
�/FAp*� ����� �/F#�Rt j$" . We let H�j$% , where (follow-
ing standard practice) % is the set of all selection predicates
(also termed propositional formulas, see, e.g., [2, pp. 13–
14]) that take a tuple as argument and return True or False.

The selection operator � : & "'�(%K�)"+* is defined using,
-calculus rather than tuple relational calculus, to contend

with the order. Being a parameter, argument H is expressed
as a subscript, i.e., �.-C��8*� .
/1032 � . #54 + �7638 1:9 � .+  ;�*�-� + � 1 638 1:9 + # +�< %=�*� + � 1�1:9>< %=�*� + � 1/. 8 1 ,+ # +�< %=�*� + � 1�1?9>< %=�*� + � 1/. 8 1:@ /BA +  ;�*�-� + � 1�1

The arguments are given before the dot, and the definition
is given after the dot. Thus, if 8 is empty (denoted as C ),
the operation returns it. Otherwise, if 8 contains only one
tuple (the remaining part of the relation, F#��B�D/��8*� , is empty),
we apply predicate H to the (first) tuple, �EDCI��U�J��8*�/� . If the
predicate holds, the operation returns the tuple; otherwise,
it returns an empty relation. If these conditions do not hold,
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the operation returns the first tuple or an empty relation
(depending on the predicate), with the result of the oper-
ation applied to the remaining part of 8 appended ( � ). The
common auxiliary functions DCI��U� , F#��B�D , and � are defined
elsewhere (e.g., [25]). Since the objective is to obtain an
expressive framework, the framework is kept open to the
introduction of such auxiliary functions, although they may
increase the conceptual complexity.

3.1.2 Skyline Operator

We proceed to demonstrate how a ������� �	��
 operator, which
is of particular interest in location-based services, can be
expressed in the framework.

To understand the operator, consider a set of points in
D -dimensional space. One point H o dominates another point
HJp if H o is at least as good as H p in all dimensions and
is better than HJp in at least one dimension [5]. It is as-
sumed that a total order exists on each dimension, and
“better” in a dimension is defined as smaller than (alter-
natively, larger than) with respect to the dimension’s to-
tal order. Next, we assume a relation 8 with attributes� �Ro
� ����� ���
����?�o
� ����� ��?�� � so that the sub-tuples correspond-
ing to attributes

� �Co(� ����� ���
� � make up the D -dimensional
points. The skyline operator then returns all tuples in 8 that
are not dominated by any other tuple in 8 .

To be precise, we first define two auxiliary functions.
Let � denote the set of all tuples of any schema. The first
function is ������� : & � � " � � � * � �

True � False � , which
returns True if there exists a tuple in the (second) relation
argument that dominates the first argument tuple with re-
spect to the argument attributes.
�����
� 032  . � . ��� . 4=4 4 . ����4 + �7638 1:9 False, "! � +  .#< %=�*� + � 1/. ��� . 4 4 4 . ��� 1�9 �����
� +  .  ;�*�-� + � 1/. ��� . 4 4 4 . ��� 1 ,# ����# +  . < %=�*� + � 1/. ��� . 4 4 4 . ��� 1�9 True,�����
� +  .  ;�*�-� + � 1/. ��� . 4 4 4 . ��� 1
Function $�%4D returns True if the two argument tuples are
identical on all argument attributes �Co4� ����� ���
� . Function& 

� H returns True if the second argument tuple is no
worse than the first argument tuple on any of the argument
attributes.

In the first line, if 8 is empty, the operation returns False.
Otherwise, if the first argument tuple F is the same as the
head of argument relation 8 on the argument attributes, the
operation continues to consider the rest of 8 . Else, the third
line checks if DCI��U�J��8*� is no worse than F . If so, F is dom-
inated by DCI��U�J��8*� , and the operation returns True. Other-
wise, the operation proceeds with the rest of 8 .

Next, we define auxiliary function '(� �*) : & "$� "$�u� � * �" . For two relations 8*o and 8(p having the same attributes�Ro
���Up*� ����� ���
� , '(� �*) collects all the tuples in 8*o that are
not dominated by any tuple in 8
p with respect to attributes�Ro
���Up*� ����� ���
� .
+-, �	. 032 �/� . �10 . ��� . 4 4 4 . ����4 + �/� 638 1:9 �/� ,�����
� +�< %=�*� + �/� 1/. �10 . ��� . 4 4 4 . ��� 1�9

+-, �	. +  ;�*�-� + �/� 1/. �10 . ��� . 4 4 4 . ��� 1 ,< %=�*� + �/� 1�@ +-, �	. +  ;�*�-� + �/� 1/. �10 . ��� . 4 4 4 . ��� 1

Here, if 84o is empty, the operation returns it. Otherwise,
if the head of 8*o is dominated by any tuples in 8
p on the
argument attributes, the operation continues with the rest
of 84o . Else, it returns the DCI��U�J��8*o�� with the result of the
operation applied to F#��B�D/��8*o$� appended.

The skyline operator ������� �	��
X� & " � � � * � " is defined
next. Arguments � � are parameters and are expressed as
subscripts, i.e., ������� �	��
3214�5 6 6 6 5 287/��8*� .
9;:8< , =>�@? 032 � . ��� . 4 4=4 . ����4 + �7638 1:9 � . +-, �	. + � . � . ��� . 4 4 4 . ��� 1
3.2 Stream-to-Relation Operators

A stream-to-relation operator takes a stream as input and
produces a relation. As relations are finite while streams
can be infinite, windowing is commonly used to extract a
relation from a stream [3]. We describe three types of slid-
ing windows [1]: time-based, tuple-based, and partitioned.
Other types of windows can be easily incorporated into the
framework, as this does not affect other parts of the frame-
work. The stream-to-relation operators map multisets into
lists. We assume that each operator described next orders
its result according to the time attribute { (tuples with the
same time value may be in any order).

3.2.1 Time-Based Windows

A time-based sliding window operator A 2
, with absolute

or now-relative time parameter �
� , on a stream � returns all
tuples F�j � for which �
�CB F$�-{}�DB �FE , where �FE is the
current time.

�R��� ��� �R��� � �R��� � ���)7'('*) +�'*.7)$1 +")73*./&(2
1)7'('�6 +")7'*.7�u)$0(1 +��('*./2('
1)7'('(& +"�u)$,4.7�u)()$1 +�3('*./2('
1)7'('
, +"�`,(04.	,(0(1 +-,�'('*.7)7'
1)7'('�6 +�'*./'
1 +")7'('*./3('
1)7'('(& +"�u)7'*./&
1 +<6
'*.	0�2
1
Figure 5: Result of A 2G ���(�4���(� at Time 12

Note that A 2HJI ���
� consists of tuples that made their ap-
pearance in � at time �/E , while A 2K ���
� consists of all tuples
that appeared in the stream so far. For stream �4�4��� in Fig-
ure 2, suppose �/E`= x
y and �(�u= � . The result of A 2G ���(�4���
�
can be seen in Figure 5.

3.2.2 Tuple-Based Windows

A tuple-based sliding window operator A : , with positive
integer parameter L , on a stream � returns the L most re-

�R��� ��� �R��� � �R��� � ���)7'('(& +"�u)$,4.��u)()$1 +�3('*./2('
1)7'('
, +"�`,(04./,(0(1 +-,�'('*.$)7'('
1)7'('�6 +�'*.A'
1 +")7'('*./3('
1)7'('(& +"�u)7'*./&
1 +<6
'*.	0�2
1
Figure 6: Result of A :r ���(�4���
� at Time 12

cent tuples in � , i.e., the tuples F�j � for which F$�-{}�MB ��E
and such that no other tuples exist in N that have larger time
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values (that do not exceed �/E ). If ties exist, tuples are cho-
sen at random among the ties. Note also that fewer than L
qualifying tuples may exist.

A tuple-based window is specified as A :� ���
� . Note that
A :� ���
�}= A 2K ���
� . As an example, recall �
�4��� in Figure 2
and let �FE = x
y . Then A :r ���(�4���
� is given in Figure 6.

3.2.3 Partitioned Windows

A partitioned sliding window over stream � takes a posi-
tive integer L and a subset of � ’s attributes,

� i o
� ����� �	i � � ,
as parameters. This operation first partitions N into sub-
streams based on the argument attributes, then computes
a tuple-based sliding window of size L independently on
each substream, and then returns the union of these win-
dows.

�R��� ��� �R��� � �R��� � ���)7'('*) +�'*.7)$1 +")73*./&(2
1)7'('
, +"�`,(04.	,(0(1 +-,�'('*.7)7'
1)7'('�6 +�'*./'
1 +")7'('*./3('
1)7'('(& +"�u)7'*./&
1 +<6
'*.	0�2
1
Figure 7: Result of A�o 5 �4��� �������(�4���
�

Using A as the operator name, the partitioned window
can be expressed as A � 5 � 4�5 6 6 6 5 ��� ���
� . To exemplify, con-
sider �(�4��� in Figure 2, let �/E = x
y , L = x , and let the set of
attributes be

�(� ��8 B�� � . Then the result of A�o 5 �4��� �������(�4���
�
is given in Figure 7.

3.3 Relation-to-Stream Operators

A relation 8 may be subject to updates, so that its state
varies across time. We use the notation 8����C� to refer to
the state of 8 at time � . With this definition, we can specify
the two relation-to-stream operators Istream and Rstream
(adapted from [1]). The operators � , � , and  are the alge-
bra operators defined in Section 3.1.1.

Istream (“Insert” stream) maps relation
�

into a stream
N so that a tuple F`j 8����C�� 
8���� � x
� is mapped to ��F7�/�C� j�� .
Next, Rstream maps relation 8 into stream � by tagging
each tuple in 8 with each time that it is present in 8 . As-
suming that w is the earliest time instant, the operators are
defined as follows.

Istream
+ � 1 6	��

��� +�+ � +���1�� � +��k� )$1�1���������1 � + � +�'
1����$'���1

Rstream
+ � 1 6	� 

��� + � +���1���������1

Assume that a moving tourist wants to continuously
know the nearest hospitals. The result, which is sub-
ject to change as the tourist moves, may be returned as a
stream produced using one of the windowing operators and
a relation-to-stream operator. We discuss nearest-neighbor
queries in the next section.

We have so far defined relational operators and mapping
operators between streams and relations. As location-based
queries involve operations on spatial data, spatial opera-
tors are intrinsic to such queries. We treat spatial operators
as black boxes and simply assume a set of such operators.
Specifically, we will use spatial operators proposed by the
OpenGIS Consortium [7].

3.4 One-Time and Continuous Queries

A one-time query is a combination of stream-to-relation
and relation-to-relation operators, while a continuous query
is a possibly infinite numbers of one-time queries that are
run repeatedly within a specified time interval according
to a specified time granularity. The result of a continu-
ous query can either be relations or streams. To generate
a stream result, relation-to-stream operators are naturally
employed by the continuous query; see Figure 8.

Let a one-time query be expressed as �! #" - ���f�/8*� ,
where � and 8 are argument streams and relations and H
is the parameters of the query. Then a continuous query
can be expressed as $!�! #" - ���f�/8*� & % �4�&%('(�*)�* , where % � and
%(' are the start and end time of the continuous query and
) is the time granularity of the query. A relation-to-stream
operator may also be included in this expression to map the
results into stream.

Since relations and the associated algebraic operators
accommodate duplicates and order, any queries that can be
expressed using traditional relational algebra can be pre-
sented in the framework; and the framework is open to new
kinds of queries, as new algebraic and mapping operators
can be added.

4 Location-Based Queries
The literature covers the processing of quite a few kinds
of LBQs, including range, nearest-neighbor, and reverse
nearest-neighbor queries, as well as closest pair queries,
spatial joins, and spatial aggregate queries. Queries can
concern past states of reality, or present and (anticipated)
future states. Our focus will be on queries that concern the
current state.

We proceed to demonstrate how the semantics of three
queries can be specified: spatial range and nearest neighbor
queries, and a new location-based skyline query. We end by
discussing the categorization of location-based queries.

4.1 Spatial Range Query

Various kinds of spatial range queries are used commonly.
A range query may be used for finding all moving objects
within a circular region around a point of interest; and a
continuous range query may be used for the monitoring of
a region.

We assume a spatial range ��) is given and define a range
query (RQ) and continuous range query (CRQ) using a
combination of stream-to-relation, relation-to-relation, and
relation-to-stream operators.

To define the range query, we first obtain the most recent
positions of all users. This is done by applying a partition
window A>o 5 �4��� �������(�4���
� to stream �(�4��� and by applying a
function CurLoc, using an extended projection. The func-
tion takes as argument a tuple F j �
�4��� that records the
movement of an object, and it returns the location at time
�FE of the object.
�,+ 6.-�/ +10 2 3,4 / +10 5,4 687*9�:<;&=�> ?�@

AS loc
+�A ��4 / +10 2 3 + � / +10 1�1B�C8D&EGF�H +  1 6l +1I 9 . , J�K 1GL  +1I 9 . M 1 � +��*N��  + � 1�1
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Figure 8: The Working of a Location-Based Query

Then a selection retrieves all users that are inside the spatial
region. Operator within �;��)U� Z [�\ � returns true if

Z [�\
is within

spatial range ��) . The one-time range query is then given as
follows.

RQ ��� + � / +10 1 6 /
within

> ��� 4 � ;&= @ + �,+ 1
Next, assume that the start and end times of the continuous
range query are {k� and { ' , and that the time granularity is
) . By applying the Rstream operator, the definition of the
continuous range query is given next.

CRQ ��� + � / +10 1�� ��+ . ��� .	��
 6
Rstream

+ /
within

> ��� 4 � ;&= @ +
� + 1�1�� ��+ . ��� .���

To exemplify, let spatial range ��) be a circle with radius

z*w and center ��y*wR�	v�zf� , and let {k�k= w , { 'k= y*w , and ) =
x . Then the result of the continuous range query against
stream �(�4��� is given in Figure 9. Note that the result is a
stream.

�R��� ��� �R��� � � F�H �
����� ����� �7��� �����)7'('*) +�'*.7)$1 +")73*./&(2
1 �)7'('*) +�'*.7)$1 +")73*./&(�
1 )7')7'('(& +"�u)$,4.7�u)()$1 +<6
2*./3(�
1 )())7'('*) +�'*.7)$1 +")73*.A6
'
1 )()
����� ����� �7��� �����

Figure 9: Result Stream of CRQ ��� ���(�4���
� & wR��y*wR��x *
According to the above definition, all the users’ loca-

tions are calculated at each time instant. However, it may
be that some users have not reported location data for sev-
eral hours, rendering their location data useless. This sug-
gests an alternative definition where only location data that
has arrived within some time duration from the current time
is used.

Using the same {k� , { ' , and ) as above and assuming
that we are only interested in location data that arrived since
time �(� , an alternative definition follows.

CRQ ��� 4 
�� + � / +10 1�� ��+ . ��� .���
 6
Rstream

+ /
within

> ��� 4 � ;&= @ + ���+ 1�1�� ��+ . ��� .	��

In this definition, 8��� is 8
� where �(�4��� is replaced by
Rstream � A 2H � ���(�4���(�/� . Intuitively, this query may miss
some users who are actually inside the spatial range, but
have not reported their location for some time.

4.2 Nearest Neighbor Query

The � nearest neighbor query (kNNQ) is another basic
LBQ. Example uses include locating the nearest hospitals
or emergency vehicles. To formulate the query that finds
the � nearest neighbors of an object � B�� , we first define
several auxiliary functions.

A partitioning window query A�o 5 �4��� �������(�4���(� first re-
trieves the most recent position data for each object from
the stream. Then a selection with predicate

� ��8 B�� =>� B��
is applied to retrieve the position data for our object. Let 8/�
denote the relation resulting from this selection.

To compute the � objects nearest to � B�� , we calculate,
using a spatial operator “dist,” the distance between � B�� ’s
current location and the locations of all other objects, which
are stored in attribute 
*?A@ D-
4E of 849	:<; . As the next step in
computing the query, we apply a generalized projection to
associate the distance to the user object with each other
object:

�,+ 6.-��	� � 2 3,4 �	� � � � N 4 �	� � ?�� A �&4
dis
+ ���	� � � �8� 1

Here, “dis” denotes ��O LAM
���! 
" � �$#*��%~TRN'& [�\ ��F/�/� , function
%~TRN'& [�\ ��F/� was defined earlier, and F denotes a tuple from
the argument relation.

Then we apply the ����)�� and ����( operators to 84� to ex-
press the query.

)�*+*-,/. 2 3,4 0 + � / +10 . ���	� � 1 6l "�/# 0 + �����$ 
dis
+ �,+ 1�1

Let 8=- = �J9	:<; 1���-
'�243 576�8 9 :�;=<�>@?	>@9 6�A$BA��8
9	:<;4� contain all po-
lice stations and consider the query CEDFDHG o K�K q 5 o ���(�4���f�/8=-��
issued at time �FEl= xfx . The query finds the one police
station nearest to user x(wfwfv . Using the definition, a win-
dow operator extracts all the most recent tuples for each
user from stream �
�4��� . Then the tuple with

� ��8 B�� =
x(wfwfv , I ��) J = �#� x
y���� xfx
� , usr loc = ��	fwR���fw�� , and
� = x(w is selected. The current location is approximated
as ��	fwR���fw��+K �#� x
y���� xfx
�7� �Axfx �Kx(w�� = � � �R��	B��� . (We
define the distance between points ��
 o4�/GUo$� and ��
Jpf�/Gfp�� asL 
Jp � 
 o L K L Gfp � GUo L ). Among all objects in relation 8 - , the
object with 
*?A@ B�� =�vfw � is selected.

If the user issues the same kind of query continuously
while moving, a relation-to-stream operator may be used
to map the result of each one-time query to a stream, which
is expressed as follows:
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CkNNQ
. 2 3,4 0 + � / +10 . ���	� � 1�� ��+ . ��� .���
 6

Rstream
+ )�*+*-,+. 2 3,4 0 + � / +10 . ���	� � 1�1�� ��+ . ��� .���


The result of CkNNQ o K�K q 5 o ���(�4���f�/8=-�� & wR��y*wR��x * is shown in
Figure 10.

����� ��� ����� � ��� �����  "!$#�% dis
�

����� ����� ����� ���7� ���7�&('�6 +-5�'*./2('
1
police station 10

)7'&('�6 +-5�'*./2('
1
police station 33

)()&('*) +-,�'*./&
0(1
police station 43

)$,&('*) +-,�'*./&
0(1
police station 36

)7&
����� ����� ����� ���7� ���7�

Figure 10: CkNNQ over Relation 8 -
4.3 Location-Based Skyline Query

The query assumes the following scenario. A user drives
along a pre-defined route towards a destination. The user
wants to visit one or several points of interest enroute. The
most attractive of the qualifying points of interest are those
that are nearest to the user’s current location and that result
in the smallest detour. The detour is the extra distance trav-
eled if the user visits the point of interest and then travels
to the destination.

Let 81� , %~TRN'& [�\ and F be as defined earlier. We assume
that spatial operator “dist” takes into account the user’s
route, and we denote the user’s destination by ��
���� . Then
the detour �8
 can be expressed as follows.

� ? + ����� � ��� .  . �*%��	 1 6���� �	� + J�

� , J�K . B�C8D&EGF�H +  1�1�L
��� �	� + J�

� , J�K .�� ? 9 � 1 � ��� �	� + B�C8D&EGF�H +  1/.�� ? 9 � 1

Next, a (generalized) projection is applied to the Cartesian
product of 8
9	:<; and 81� to get all the objects’ distances and
detours to the user:

�,+ 6.-��	� � 2 3,4 �	� � ?�� A �&4
dis
4
det
+ ���	� � � �8� 1

Here, “dis” denotes ��O LAM
���! 
" � �$#*��%~TRN'& [�\ ��F/�/� and “det”
denotes �8
U�-
*?A@ D-
4E4�/F7�	��I4��F/� .

Finally, the skyline operation generates the result.

SQ
. 2 3,4 3��1+1? + � / +10 . ���	� � 1 6 ���*!f� ���C%

dis,det
+ �,+ 1

Following the scenario described above, let ��E = x
z
and assume a user with

� ��8 B�� = x(wfw�y wants to go to a
hospital or a police station enroute to the destination, the
location of which is �Ax(wR���fw�� . For simplicity, we use di-
rect line segments as routes between two points. Using
the calculation above, the current location of the user is
��y*wfwR��x(w��!K �#�kyfz���yfzf� �	�Ax
z �hx(yf� =_�Ax
yfz�����zf� . For all static
objects with I ��) �*��(�
 “ � [fZ O \ Y LAM ] M	O [ P ” and “ � [ L��RO M ]*Z ,” the
distance and detour are listed in Figure 11. The skyline
operator returns the last three tuples.

4.4 Towards a Categorization of Location-Based
Queries

As it is obviously impossible to define all possible LBQs,
we proceed to explore the space of possible LBQs by pre-
senting several orthogonal categorizations of such queries.

����� ��� �����  "!$#�% dis det&('*)
police station

)$0(0 )7'('&('
,
hospital

)7'(' )7'&('�6
hospital

2(' 3('&('
0
police station

3(' ,�'
Figure 11: Intermediate Result

First, queries can be categorized based on whether they
refer to data concerning the past, present, or future states of
reality.

Second, queries can be categorized according to
whether they are one-time or continuous queries. Contin-
uous queries may be classified further, based on whether
they are constant or time-parameterized. The latter occurs
when a query refers to the (variable) current time. An ex-
ample is a continuous query that retrieves all objects cur-
rently within a spatial range. A corresponding constant
query might retrieve all objects that are (currently believed
to be) within a spatial range at some fixed near future time.
Constant continuous queries have been termed “persistent”
in the literature.

Third, queries may be classified as being either “one-to-
many” or “many-to-many.” The former queries apply one
predicate to many objects, returning one set, multiset, or list
of objects. The latter conceptually repeatedly applies many
different predicates to many objects, potentially retrieving
many objects for each predicate.

A simple selection is thus an example of the former. The
� nearest neighbor query in Section 4.2 retrieves (up to) �
objects that are the nearest to some (i.e., “one”) specified
object; it is thus also a “one-to-many” query. In contrast,
joins are “many-to-many” queries: The predicate involving
one (left hand side) object is applied to many (right hand
side) objects, and this repeated many times. The so-called
“closest pair” query, which finds pairs of objects from two
different groups that are closest, is also a “many-to-many.”

Fourth, LBQs may be categorized based on whether
they involve “topological,” “directional,” or “metric” pred-
icates.

Fifth, based on the time at which a query is registered
to the system, it can be “pre-defined,” meaning that it is
present before the streams it uses start, or it can be “ad
hoc,” meaning that it is registered after at least one of its
streams has started.

5 Summary and Future Work

Substantial research has been reported on query processing
in relation to mobile services, in particular location-enabled
mobile services. Different techniques are applicable to dif-
ferent kinds of queries. Based on results from stream and
temporal databases, this paper proposes a framework for
capturing the semantics of the diverse kinds of queries that
are relevant in this context. By enabling the definition of
queries in a single framework, the paper’s proposal enables
the comparison of queries.

The framework consists of data types, relations and
streams, as well as algebraic operations on relations and
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operations that map between streams and relations. The
specific representations of spatial data and the associated
operations on these are treated as black boxes, in order
to enable applicability across different such representations
and operations. The extensibility of the framework was ex-
emplified by adding a skyline operator.

The use of the framework was illustrated by the defini-
tion of three location-based queries, a spatial range query, a
nearest-neighbor query, and a location-based skyline query.
Toy examples were given for illustrating these queries. Fo-
cus has been on the capture of the semantics of LBQs,
and how to use one-time or continuous queries in actual
location-based services is beyond the scope of the paper.

This paper represents initial work, and future work may
be pursued in several directions. First, the framework may
be enriched in various ways. One is to introduce explicit
representations of the space within which the spatial ob-
jects are located and move, e.g., road networks. Second,
while this paper has given one definition of each of three
queries, it would be worthwhile to explore the different
possible semantics that may be given to queries within the
framework. Such a study may reveal whether or not de-
sirable semantics can be specified in all cases. Third, more
work on taxonomies for location-based queries is desirable.
Interesting initial steps have been taken in this direction
(e.g., [23]), but much more detail is desirable.
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