30年後の「5分間ルール」

石川佳治

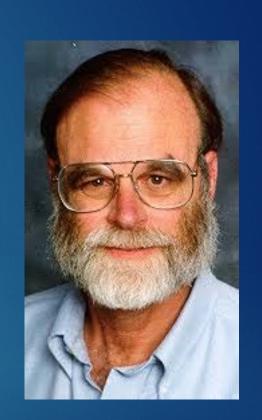
今回の内容

- 以下の記事を紹介
 - ▶R. Appuswamy, G. Graefe, R. Borovica-Gajic, and A. Ailamaki, The Five-Minute Rule 30 Years Later and Its Impact on the Storage Hierarchy, Communications of ACM, 62(11), 2019.
- ▶北川先生の教科書(データベースシステム 改訂2版)の演習問題で説明

著者紹介

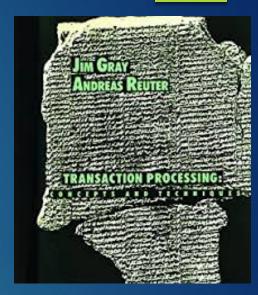
- ► Goetz Graefe
 - Microsoft ⇒ HP ⇒ Google
 - ▶DBシステム (オプティマイザなど)

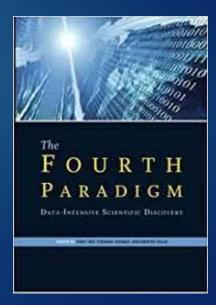
- ► Anastasia Ailamaki
 - U. Wisconsin ⇒ CMU ⇒ EPFL
 - ▶ハードウェア+DBなど
- 画者ともSIGMOD Edger F.
 Codd Innovation Award受賞



目次

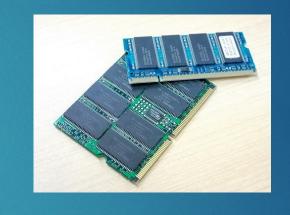
- ▶ジム・グレイについて
- ▶5分間ルールとは
- トルールの導出
- トルールの適用
- Performance Tierに対する分析
- ▶ Capacity Tierに対する分析
- ▶結論


ジム・グレイ (Jim Gray)


- ▶1944年~2007年
 - ▶趣味のヨットで行方不明に
- 経歴
 - ▶IBMでSystem Rの開発などに関わる
 - 1995年よりマイクロソフト
 - 名前をとったMicrosoft Jim Gray Systems Labがウィスコンシン州にある
- ▶チューリング賞 (1998年)

ジム・グレイの業績

- ▶トランザクション管理
 - ▶階層的ロック
 - >コミットの意味論
- ▶DWHにおけるデータキューブの概念
- ▶ Sloan Digital Sky Surveyのシステム構築
 - ▶巨大な天文学データベースの構築
- ▶科学の「第4のパラダイム」の提唱
 - ▶ Data-intensive Computing



目次

- ジム・グレイについて
- ▶5分間ルールとは
- トルールの導出
- トルールの適用
- Performance Tierに対する分析
- ▶ Capacity Tierに対する分析
- ▶結論

5分間ルールの動機

- ▶大昔の話(1980年代)
- ▶記憶階層
 - メモリ (DRAM)
 - ▶高速だが高価,揮発性
 - ▶磁気ディスク (HDD)
 - ▶低速だが大容量

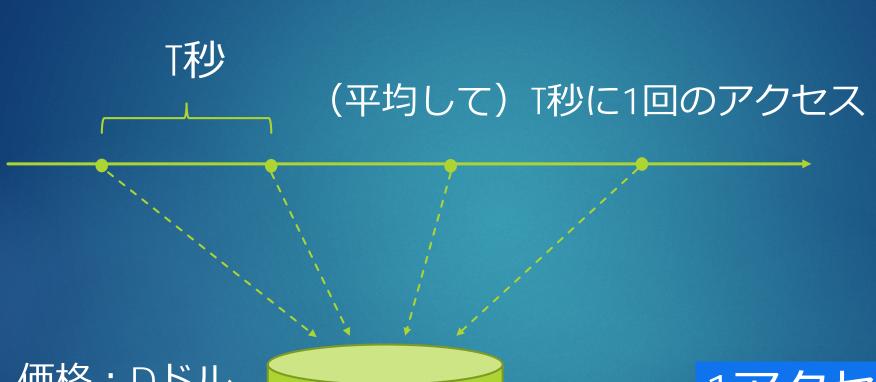
▶疑問:経済的な観点からみて、DRAMとHDDをどのように使うのがよいのか?

5分間ルール(1987年)

- ▶1KBのデータが5分間に1回程度参照される場合, DRAM上に配置すべき
 - ▶つまり、DRAMの容量を適切に増やすなどして、上の条件が成り立つようにすべき
- ▶当時のハードウェアを前提として算出
- 出典: J. Gray and G. Putzolu, The 5-Minute Rule for Trading Memory for Disc Accesses and the 10-byte Rule for Trading Memory for CPU Time, SIGMOD 1987.

目次

- ジム・グレイについて
- ▶5分間ルールとは
- ▶ルールの導出
- トルールの適用
- Performance Tierに対する分析
- ▶ Capacity Tierに対する分析
- ▶結論


ルールの導出 (1)

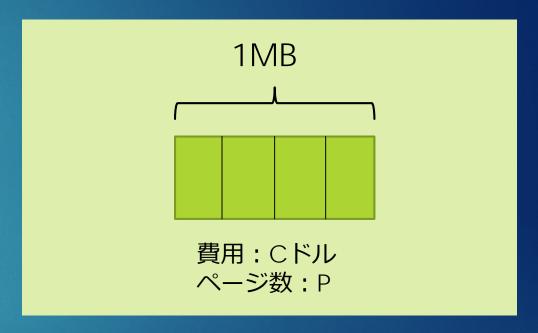
- ▶設定(その1)
 - ▶D:典型的なHDDの価格(単位:ドル)
 - ▶A:1秒間に何回ディスクページへのランダムアクセスを処理できるか(単位:アクセス/秒)
- ▶1ドル払えば, 毎秒A/D (アクセス/秒・ドル) のアクセスが処理可能
- 注:HDDの容量は考慮しない
 - ▶十分に容量がある,典型的なHDDを想定

ルールの導出 (2)

- ▶1ドル払えば, 毎秒A/D (アクセス/秒・ドル) の アクセスが処理可能 ⇒ 1アクセスにD/A (秒・ド ル/アクセス) が必要
- ▶あるページをT秒に1回アクセスするなら(すなわち毎秒1/T回のアクセス), 1アクセスあたり D/(A·T)ドルが必要
- ▶ポイント:アクセスに関するコストをお金に換算

ルールの導出:ここまで

価格:Dドル 1秒にA回の アクセス可


HDD

1アクセスあたり D/(A·T)ドルが必要

ルールの導出 (3)

- | 設定 (その2)
 - P: 1MBのDRAMに入る ページ数(単位:ページ)
 - ▶C:1MBあたりのDRAMの 価格(単位:ドル)
- ▶DRAMに1ページを確保するためのコストはC/P(ドル)となる

DRAM (主記憶)

つまり,1アクセスを高速に 行うためDRAMを用いる コストはC/Pドル

ルールの導出 (4)

以下の状況を考える

 $D/(A \cdot T) = C/P$

- ▶左辺:HDDへの1アクセスのために必要な費用
- ▶右辺:1アクセスの効率化にDRAMを用いる費用
- ▶費用の観点からはちょうど釣り合っている

ルールの導出 (5)

対を変形

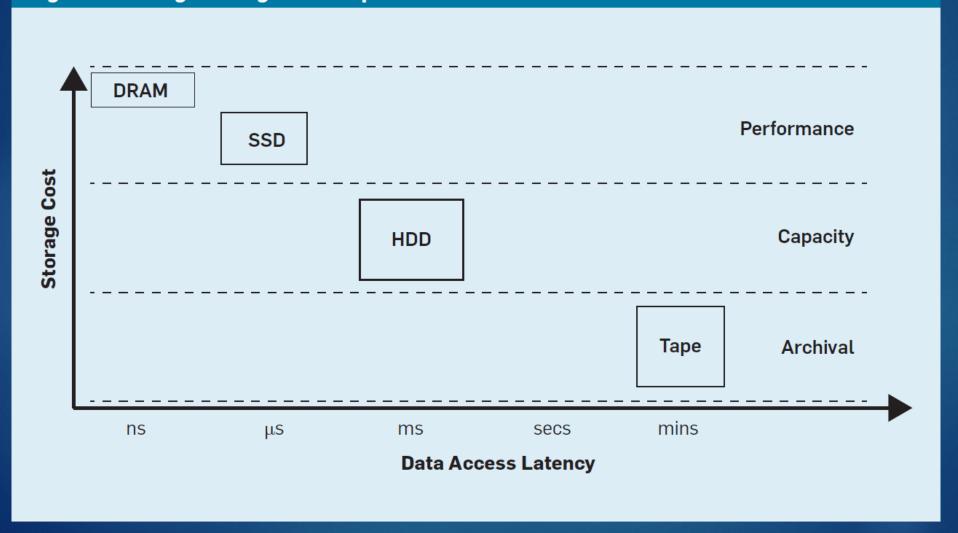
 $T = D \cdot P / A \cdot C$

▶アクセス回数がT秒あたり1回より多いアクセスが発生するようなデータについては、HDDではなくDRAM上に置く(ようにシステムを構成する)方が費用の面で有利

目次

- ジム・グレイについて
- ▶5分間ルールとは
- トルールの導出
- ▶ルールの適用
- ▶ Performance Tierに対する分析
- ▶ Capacity Tierに対する分析
- ▶結論

計算の例: SIGMOD 1987論文の場合


- ▶設定
 - ページサイズを1KBとする
 - P = 1,024 KB / 4KB = 256
 - ►HDDの価格 D = 30,000ドル
 - ▶1秒間のアクセス可能回数 A = 5回
 - ▶1MBあたりのDRAMの価格 C = 5,000ドル
- ►T = D·P/A·C = (30,000 · 256)/(5 · 5,000) = 307.2 (秒) = 5.12 (分) ← 5分間ルールが得られた!

30年後:5分間ルールはどうなったか

- ▶30年でハードウェア技術が劇的に変化
- ▶不揮発性メモリ (non-volatile memory, NVM)
 - ▶フラッシュメモリは携帯機器などで普及
 - SSD (Solid State Drive) も一般化
 - ▶新たなNVM技術: MRAM(磁気抵抗メモリ)など
- ▶磁気テープ
 - 大容量のデータを安価に蓄積
 - ▶コールドストレージ(ランダムアクセス不可)

ストレージの階層

Figure 1. Storage tiering for enterprise databases.

余談:期待の不揮発性メモリ技術

► ReRAM(抵抗変化型メモリ), PCM(相変化メモリ), STT-RAM(スピン注入メモリ)

Memory	DRAM	ReRAM	PCM	STT-RAM
Volatile	×	√	√	√
Endurance	10^{15}	$10^8 - 10^{11}$	$10^8 - 10^9$	$10^{12} - 10^{15}$
Read Latency (ns)	~10	~10	20-60	2-35
Write Latency (ns)	~10	~50	20-150	3-50
Cell Size (F ²)	60-100	4-10	4-12	6-50
Write Energy(J/bit)	10^{-14}	10^{-13}	10^{-11}	10^{-13}

J. Boukhobza et al., Emerging NVM: A Survey on Architectural Integration and Research Challenges, *Trans. Design Autom. Electr. Syst.*, 23(2), pp. 14:1-14:32, 2018.

余談: Amazon Glacier

- ▶低コストのオンラインストレージサービス
 - ▶コールドストレージの活用
- ► Amazon S3 Glacier
 - ▶1GBあたり月額0.005ドル
 - ▶データの取り出しに、申し込んでから3~5時間
- ► Amazon S3 Glacier Deep Archive
 - ▶1GBあたり月額0.002ドル
 - 取り出しに12時間程度

ハードウェアのスペック

▶赤字は1987年のDRAM-HDDの場合に用いた値

Table 1. The evolution of DRAM, HDD, and Flash SSD properties.

Metric	C_{\setminus}		DR	AM	D \		н	DD		SAT	AFlash SSD
		1987	1997	2007	2018	1987	1997	2007	2018	2007	2018
Unit price(\$)		5k	15k	48	80	(30k)	2k	80	49	1k	415
Unit capacity		1MB	1GB	1GB	16GB	180MB	9GB	250GB	2TB	32GB	800GB
\$/MB		(5k)	14.6	0.05	0.005	83.33	0.22	0.0003	0.00002	0.03	0.0005
Random IOPS		-	-	-	-	5	64	83	200	6.2k	67k (r)/20k (w)
Sequential b/w (MB/s)		-	-	-	_	1	10	300	200	66	500 (r)/460 (w)
					^						

▶SSDとしては, SATA接続のフラッシュSSDを想定

A

計算結果

- ▶上段:ページサイズを4KBに固定したときのTの値
- ▶下段: T = 5分間に固定したときのページサイズ

Table 2. The evolution of the page size for which the five-minute rule holds across four decades based on appropriate price, performance, and page size values.

	1987	1997	2007	2018
Break-even (4KB page)	100s	9m	1.5h	4h
Page size (5-minute interval)	1KB	8KB	64KB	512KB

▶2018年では T = 4h: 大抵のデータはDRAMに置くことに

DRAM-SSDの場合

| 同様に計算可能(上段)

Table 3. The evolution of the break-even interval across four decades based on appropriate price, performance, and page size values.

Tier	1987	1997	2007	2018
DRAM-SSD	_	_	15m	5m
SSD-HDD	_	_	2.25h	1.5d

今日では, 5分間ルールは DRAM-SSDに ついて成立

- 理由
 - DRAMの低価格化
 - SSDによるランダムIOPSの向上

SSD-HDDの場合

下段:SSDをHDDのキャッシュとして利用

Table 3. The evolution of the break-even interval across four decades based on appropriate price, performance, and page size values.

1987	1997	2007	2018
_	_	15m	5m
_	_	2.25h	1.5d
	_		— — 15m

 $T = 1.5 \Box$

何が言えるか

- ▶HDDのSSDへの交換は、費用のみならずデータのキャッシングのためのDRAMの量の削減に効果的
 - ▶DRAM-HDDとDRAM-SSDの場合のTの値(2018年では4.5時間 vs 5分)を比べると, 前者では多くのデータをDRAMに持つことになる
- ▶すべてのアクティブなデータはDRAMとSSDで 保持するのがよい
 - SSD-HDDの場合 T = 1.5日なので, アクティブで ないデータのみHDDで管理

目次

- ジム・グレイについて
- ▶5分間ルールとは
- トルールの導出
- トルールの適用
- ▶Performance Tierに対する分析
- ▶Capacity Tierに対する分析
- ▶結論

Performance Tierの状況

- ▶NANDフラッシュ
 - ▶2000年代半ばでSATAフラッシュSSDが地位を確立
 - ▶2000年代後半からPCIeフラッシュSSDが出現
 - ▶SATAに対し高速
- ► NVDIMM
 - DIMM(メモリモジュール)にDRAMだけでなくNAND フラッシュを載せる
- ► NVM
 - ▶NANDフラッシュより高速である3D XPoint (PCM方式) が製品化

ルールの適用

PCIe接続のNANDフラッシュSSD

Table 4. Price/performance metrics for the NAND-based Intel 750 PCIe SSD and 3D-XPoint-based Intel Optane P4800X PCIe SSD.

Device	Capacity	Price(\$)	IOPS(k)	B/w(GB/s)
Intel 750	800GB	589	460	2.5
Intel P4800X	480GB	617	550	2.5

3D XPointに基づくPCIe SSD

▶ページサイズが4KBの場合, どちらについても T = 1分間程度となる

何が言えるか

- ▶NANDフラッシュはさらに価格が低下することが 予測されている ⇒ T がさらに小さくなる
- ▶NVMによるSSDの性能向上によりⅠがさらに減少
- SSDはDRAMより消費電力が小さい
 - ▶ここでは考慮していない運用コストの面でも有利
- ▶以上より、NVMベースのデータベースエンジンへ のシフトは避けられない

目次

- ジム・グレイについて
- ▶5分間ルールとは
- トルールの導出
- トルールの適用
- Performance Tierに対する分析
- ▶ Capacity Tierに対する分析
- ▶結論

HDD


- ▶一時期はクライダーの法則(Kryder's law)に従い、 ムーアの法則よりも早いペースで容量が増加
 - ▶13か月でHDDの容量は2倍
- ▶しかし、最近では改善の速度が低下
- ▶待機時にも電力を消費
 - ▶企業等では80%のデータはコールドで, その割合は増加している

テープ (1)

- ▶容量は順調に増大を続ける
- ▶LTO (Liner Tape-Open) という規格:最新はLTO-8

Table 5. Price/performance characteristics of tape.

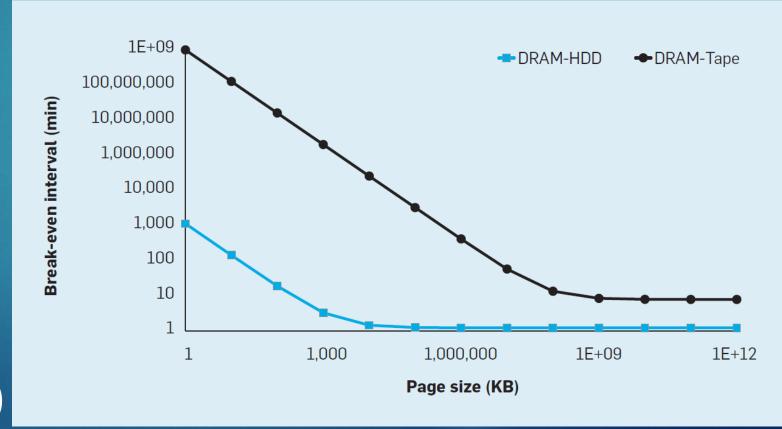
	1007	2010
	1997	2018
Tape library cost (\$)	10,000	11,000
Number of drives	1	4
Number of slots	14	10
Max capacity per tape	35GB	15TB
Transfer rate per drive (MB/s)	5	750
Access latency	30s	65s

テープドライブで 数百PBまで運用

テープ (2)

▶テープはHDDに比べバンド幅が高い:シーケンシャルアクセスには有利

Table 6. Price/performance metrics of DRAM, HDD, and tape.


Metric	DRAM	HDD	Tape	
Unit capacity	16GB	2TB	10 × 15TB	
Unit cost (\$)	80	50	11,000	
Latency	100ns	5ms	65s	
Bandwidth	100 GB/s	200 MB/s	4 × 750MB/s	
Kaps	9,000,000	200	0.02	
Maps	10,000	100	0.02	
Scan time	0.16s	3hours	14hours	
\$/Kaps	9e-14	5e-09	8e-03	
\$/Maps	9e-12	8e-09	8e-03	
\$/Tbscan	8e-06	0.003	0.03	
\$/TBscan (97)	0.32	4.23	296	

一方で、テープの ランダムアクセスの 遅延はHDDの1000倍

ルールを用いた分析 (1)

- ▶DRAM-HDDとDRAM-tapeについて、ページサイ
 - ズを変えTを計算
- ▶4KBのページなら DRAM-tapeの Tは300年!
 - トープは、 チェックイン のみのデータ モーテル (Gray)

Figure 2. Break-even interval asymptotes for DRAM-HDD and DRAM-tape cases.

ルールを用いた分析(2)

- ▶DRAM-HDDは T = 1分間に収束(ページサイズ 100MB)
- DRAM-tapeはT = 10分間に収束(ページサイズ 100GB)
- ▶転送サイズを極端に大きくしないとペイしない

新たな分析の指標

▶MB-access-per-second (Maps)とTBのスキャン (TBscan) がより重要

Table 6. Price/performance metrics of DRAM, HDD, and tape.

Metric	DRAM	HDD	Tape
Unit capacity	16GB	2TB	10 × 15TB
Unit cost (\$)	80	50	11,000
Latency	100ns	5ms	65s
Bandwidth	100 GB/s	200 MB/s	4 × 750MB/s
Kaps	9,000,000	200	0.02
Maps	10,000	100	0.02
Scan time	0.16s	3hours	14hours
\$/Kaps	9e-14	5e-09	8e-03
\$/Maps	9e-12	8e-09	8e-03
\$/Tbscan	8e-06	0.003	0.03
\$/TBscan (97)	0.32	4.23	296

Mapsに着目:

- DRAMが最も安価
- DRAMに対しHDDが1,000倍 程度に留まる:HDDのシーケ ンシャルアクセス性能により
- HDDはテープより6桁安い

TBscanに着目:

- DRAMは依然として安価
- HDDとテープが近づく(1桁)

TBscanに基づく1997年との比較

- ▶DRAMとHDDのギャップが拡大している
 - ▶1997年ではDRAMをHDDの代わりに使うのは13倍 安かったが、現在では300倍安い
 - ▶スキャン主体のアプリケーションでもHDDを避けた方がよい
- ▶HDDとテープのギャップが小さくなってきている
 - ▶1997年ではHDDはテープより70倍安かったが,現 在は10倍

何が言えるか

- ▶これまでHDDをcapacity tier, テープをarchival tierとして用いてきたが, HDDとテープの接近により, cold storage tierとまとめるのがよい
- ▶新たなコールドストレージの技術(高速)も出現
 - MAID (massive array of idle disks)
 - ▶待機時にHDDの電源を停止
- ▶遅延を気にしないバッチ処理 はコールドストレージ上で

目次

- ジム・グレイについて
- ▶5分間ルールとは
- トルールの導出
- トルールの適用
- Performance Tierに対する分析
- ▶ Capacity Tierに対する分析
- ▶結論

結論①

- ▶HDDはもはやテープである
- ▶5分間ルールは1987年のDRAM-HDDについて成り 立ったが、現在は4時間ルールとなっている
- ▶HDDは性能が重要な場面だけでなく, 非シーケンシャルなデータアクセスパターンを持つすべての応用で不適合になりつつある

結論②

- ▶NVMはもはやDRAMである
- ▶DRAMとSSDのギャップが縮まる傾向にある
- ▶現在,5分間ルールはDRAM-SSDの間で成り立つ
- ▶最新のNVM(3D-XPoint)技術を用いると, 1分末 満となる
- ▶今後, DRAMに基づくデータベースエンジンが, NVMに基づく永続メモリエンジンに移行する

結論③

- ▶コールドストレージはもはや「ホット」である
- トシーケンシャルなワークロードに対し, HDDと テープのギャップが急速に縮まっている
- ▶最新のコールドストレージ機器はさらに優れる
- ▶HDDは性能重視でないバッチ的な分析にも不適合となっていく:コールドストレージ上で直接実行する方がよい