
Noname manuscript No.
(will be inserted by the editor)

Direction-Based Surrounder Queries for Mobile
Recommendations

Xi Guo · Baihua Zheng · Yoshiharu Ishikawa · Yunjun Gao

Received: date / Accepted: date

Abstract Location-based recommendation services rec-
ommend objects to the user based on the user’s prefer-

ences. In general, the nearest objects are good choices
considering their spatial proximity to the user. How-
ever, not only the distance of an object to the user but

also their directional relationship are important. Moti-
vated by these, we propose a new spatial query, namely
a direction-based surrounder (DBS) query, which re-

trieves the nearest objects around the user from differ-
ent directions. We define the DBS query not only in a
two-dimensional Euclidean space E but also in a road

network R. In the Euclidean space E, we consider two
objects a and b are directional close w.r.t. a query point
q iff the included angle ∠aqb is bounded by a threshold

specified by the user at the query time. In a road net-
work R, we consider two objects a and b are directional
close iff their shortest paths to q overlap. We say ob-

ject a dominates object b iff they are directional close
and meanwhile a is closer to q than b. All the objects
that are not dominated by others based on the above

dominance relationship constitute direction-based sur-
rounders (DBSs). In this paper, we formalize the DBS

Xi Guo, Yoshiharu Ishikawa
Graduate School of Information Science, Nagoya University,
Furo-cho, Chikusa-ku, Nagoya, Japan 464-8601.

Tel.: +81-052-789-3306, Fax: +81-052-789-3306
E-mail: guoxi@db.itc.nagoya-u.ac.jp, y-ishikawa@nagoya-u.jp

Yunjun Gao (corresponding author)

College of Computer Science, Zhejiang University, Hangzhou
310027, P. R. China.
Tel.: +86-571-87651613, Fax: +86-571-87951250
E-mail: gaoyj@zju.edu.cn

Baihua Zheng
School of Information Systems, Singapore Management Univer-
sity, Stamford Road 80, 178902, Singapore.

Tel.: +65-68280915, Fax: +65-68280919
E-mail: bhzheng@smu.edu.sg

query, study it in both the snapshot and continuous
settings, and conduct extensive experiments with both

real and synthetic datasets to evaluate our proposed
algorithms. The experimental results demonstrate that
the proposed algorithms can answer DBS queries effi-

ciently.

Keywords Spatial database · Surrounder query ·
Location-based recommendation · Direction

1 Introduction

In location-based services such as mobile recommenda-
tions and car navigation, a mobile user often receives
the recommendations of POI (point of interest) objects

based on spatial closeness and the user’s preference [14]
using some popular mobile queries (e.g., nearest neigh-
bour queries and range queries). For example, “show me

the eight nearest convenience stores” is a top-8 nearest
neighbour query and “show me the convenience stores
within 400 meters” is a circular range query. However,

such conventional spatial queries may not be helpful
when we want to recommend neighbourhood informa-
tion around the user.

An example is depicted in Fig. 1. Fig. 1(a) shows

the result of a top-8 query. It is observed that all the
returned POI objects are located in the north east of
q. If the user intends to move to reverse direction (e.g.,

south), the answer objects are not useful at all. In other
words, the usefulness of returned POI objects not only
depends on their distances to the user but also their di-

rections to the user. To support object evaluation based
on both proximity and direction of POI objects w.r.t.
a specified query point, we propose direction-based sur-

rounder (DBS) queries in this paper. An example DBS

2

query is depicted in Fig. 1(b) where the three near-

est objects surrounding q are returned. Compared with
top-k search, DBS retrieves objects that are located in
different directions of q and hence it provides a better

overview of the surrounding area.

q

object
user

top-8

(a) Top-k query (k = 8)

object
user

DBS

q

(b) DBS query

Fig. 1: Motivating example

As shown in Fig. 1(b), a DBS query evaluates ob-
jects in a space X based on not only their distances to

the query point but also their direction relationships
with the query point. The basic idea is that, for a given
query point q, an object pi is a better candidate than
another object pj if pi is closer to q and they are direc-

tional close w.r.t. q in the space X.
In this paper, we consider DBS queries in both a

vector space E and a metric space R (X ∈ {E,R}). For
the vector space E, we assume that objects of interest
are in the two dimensional Euclidean space and the
corresponding queries are called E-DBS queries. For the

metric space R, we assume that the objects are in a
road network and the corresponding queries are called
R-DBS queries.

For E-DBS queries, we measure the distance and the
direction of an object pi w.r.t. q using the vector which
originates from q and ends in pi. For R-DBS queries,

we measure the distance and the direction of an ob-
ject pi w.r.t. q based on the shortest path from q to
pi. Typically, when an exact road network is available,

an R-DBS query is an appropriate choice for the user.
When road network information is not available or not
useful (e.g., shopping in a small city area), an E-DBS

query would be a good choice.

Before presenting the formal definition of a DBS

query, we use Example 1 and Example 2 to illustrate
DBS queries in the Euclidean space E and in a road
network R, respectively. They also serve as the running

examples in this paper.

a

b

c

d

e f
g(-4,-6) (0,-6)

O

y
object
user

DBS

x

(-3,6)

(3,4)

(2,1)

(-5,2)

(10,-5)

pi di ωi

a
√
5 27◦

b 5 53◦

d
√
29 158◦

f 6 270◦

c
√
45 117◦

e
√
52 236◦

g
√
125 333◦

pi: object;
di: distance;
ωi: direction.

Fig. 2: Example of an E-DBS (θ = π/3)

Example 1 In Fig. 2, there are seven POIs (a to g)
around the user O. We use the vectors −→a , . . . ,−→g orig-
inating from O to denote the distance di and the di-

rection ωi of a POI object i w.r.t. O. We assume two
POI objects i and j are directional close if the in-
cluded angle ∠iOj is bounded by θ (= π/3) specified

by the user. For example, a and b are directional close
as |ωa − ωb| = 26◦ < π/3, but objects a and d are not.
Given two objects i and j, i dominates j iff they are

directional close and i has a shorter distance to the user
than j does, i.e., di < dj . The E-DBS query retrieves
all the POI objects that are not dominated by others.

Notice that the number of objects returned is affected
by the value of θ. In our example, objects a, d, and f
are the result.

a b
c

d

q

v1

v2

v3v4

v5

v6

pi di ωi

a 9 {v6, v3}
b 10 {v6, v3}
c 5 {v4}
d 9 {v4, v5}

Fig. 3: Example of an R-DBS

Example 2 In Fig. 3, a road network is represented

by a graph with six vertices V = {v1, · · · , v6} and nine
edges. The shortest path from q to a passes vertex v6
first and then vertex v3 to reach a, i.e., q → v6 → v3 →
a, denoted as SP (q, a) = {v6, v3}. Here, the distance

3

of a to q is set to the length of the shortest path, and

the direction of a to q is set to the shortest path itself.
Following previous notations, di and ωi of object pi are
illustrated in Fig. 3.

We assume two objects are directional close if their
shortest paths overlap. Object a dominates object b, be-

cause they are directional close and meanwhile |SP (q, a)|
(= 9) < |SP (q, b)|(= 10); but object c does not domi-
nate a because they are not directional close. Objects

a, c, and d are the R-DBS objects.

A DBS query is a new multi-objective optimization
problem focusing on the spatial context. We evaluate
the dominance relationship between objects based on

both distances and directions. Its formal definition will
be presented in Section 3. In order to support DBS
query in both the static scenario and the dynamic mo-

bile scenario, we form snapshot DBS queries and con-
tinuous DBS queries.

A snapshot DBS query finds out the DBS objects ac-
cording to the user’s current position. Example 1 and
Example 2 present examples of snapshot DBS queries

in the Euclidean space E and in a road network R, re-
spectively. The purpose of snapshot DBS queries is to
provide the user with the current “best view” and to en-

able the user to identify the best POI for each direction.
A näıve solution is to check objects one by one to deter-
mine whether they are dominated by others. However,

this brute force based approach is very inefficient as it
needs to consider the entire object set. Alternatively,
we propose new approaches which can answer snapshot

DBS queries efficiently by utilizing some unique prop-
erties of DBS.

On the other hand, a continuous DBS query re-
trieves the DBS objects while the user is moving lin-
early. It is typically used to predict when and how the

best view (i.e., the DBS) changes while the user is mov-
ing. Example 3 and Example 4 are extended from orig-
inal Example 1 and Example 2 to illustrate the idea

of continuous E-DBS queries and continuous R-DBS
queries, respectively.

b

c

d

e f g

a

O

y object
user

x

60

user pi λ

(0, 0)′ a, g 54◦

(60, 0)′ a, g 148◦

(0, 0)′ a, d 131◦

(60, 0)′ a, d 4◦

Fig. 4: Example of a continuous E-DBS query (θ = π/3)

Example 3 As shown in Fig. 4, we assume a user cur-

rently located at the position (60, 0)′ is moving linearly
along the x-axis. We list the included angle (denoted
as λ) between object a and object g and that between

object a and object d when the user is at (0, 0)′ and
(60, 0)′, respectively in Fig. 4 to demonstrate the dy-
namic nature of the included angles when user keeps

moving.

Object g, which is dominated by a when the user lo-
cates at (0, 0)′, is not dominated by a when user moves
to (60, 0)′ because they are in the different direction

w.r.t. the user. On the other hand, object d, which is
an DBS object when the user locates at (0, 0)′, is dom-
inated by a when user moves to (60, 0)′. Thus, DBS

points (i.e., {a, g}) corresponding to (60, 0)′ are differ-
ent from those (i.e., {a, d, f}) corresponding to (0, 0)′.

Example 4 As shown in Fig. 5, a user is moving from
v6 to v4 along the edge e(v6, v4). The shortest path from

q to a is SP (q, a) = {v6, v3} when the user starts at v6.
However, it changes to {v4, v3} when the user locates at
v4. Object a, which is not dominated by c when the user

locates at v6, is dominated by c when the user reaches
v4. Consequently, the DBS objects {c, d} w.r.t. v4 are
different from the DBS objects {a, c, d} w.r.t. v6.

q

a b
c

d

v1

v2

v3v4

v5

v6

Fig. 5: Example of a continuous R-DBS query

A critical problem in supporting continuous queries
is how to update the DBS while the user is moving. A

näıve solution is to issue a snapshot query whenever the
user moves to a new position. However, it is impracti-
cal and is quite costly. Our alternative approach is to

predict DBS changes based on pre-computations when
the query is submitted. Thus, we can update the DBS
result whenever the user arrives at the change position,

which is predicted by the algorithm proposed in this
paper.

In the following, we formalize the snapshot DBS
query and continuous DBS query in both the Euclidean

space E and the road network R, and present the cor-
responding query processing algorithms. A preliminary
report of this work appeared in [16]. In this paper, we

extend the original work by (i) augmenting the DBS

4

queries considering road networks, (ii) presenting more

illustrative examples, more detailed theoretical analy-
sis, and more formal proofs; (iii) conducting a more
comprehensive experimental evaluation; and (iv) includ-

ing a complete review of the related work to make this
paper self-contained.

The rest of this paper is organized as follows. Sec-

tion 2 overviews the related work. Section 3 presents
the formal definition of a DBS query. Section 4 and
Section 5 elaborate the query processing algorithms for

snapshot DBS query and continuous DBS query, respec-
tively. Then, Section 6 reports the experimental results
and our findings. Finally, Section 7 concludes the paper

with some directions for future work.

2 Related Work

2.1 Direction-Based Spatial Queries in Euclidean
Space

There are several studies that consider the direction
properties in spatial databases. Among them, visible

nearest neighbor (VNN) queries [5,6] and nearest sur-
rounder (NS) queries [9] are most relevant.
Visible Nearest Neighbor Queries. Visible nearest

neighbor queries are to find nearest objects that are
visible (i.e., not blocked by any obstacle) to the query
point [5,6]. The concept of the invisible area shares

some similarity with the dominance region. To be more
specific, an invisible area corresponding to an obstacle o
is a region within which any object is not visible to the

user due to the existence of o. Similarly, the dominance
region of an object i is a region where all the objects
are dominated by i. In other words, a VNN query does

not consider objects falling inside the invisible area of
any obstacle.

We can regard an E-DBS query, proposed in this

paper, as a special type of VNN queries. We consider
each data point is an obstacle and derive its imaginary
dominance region as a sector shape defined by the an-

gular parameter θ. An E-DBS query does not consider
objects falling inside of the dominance region of any
object. Consider, for example, Fig. 6(a). For point a,

its dominance region is defined by the angle θ = π/3.
For the presentation purpose, assume that there is an
imaginary arc-shaped obstacle oa for point a. Objects

b and g are invisible from the query point O because
they are within the invisible region of oa. For each POI
object i considered by the E-DBS query, we can form

its imaginary obstacle oi in a similar manner. Thus, we
can transform an E-DBS query to a VNN query.

However, we cannot directly apply the algorithms

proposed for VNN queries [5,6] to DBS queries. The

main reason is that the existing VNN query methods

consider rectangular (or polygonal) obstacles. In Sec-
tion 4, we will explain how to exploit the properties of
arcs to handle our problem efficiently. Additionally, in

the continuous case, the arc obstacles are dynamic due
to the movement of the user. As shown in Fig. 6(b),
the positions of imaginary arc obstacles change when

the user moves from O to O′. Even if we can use VNN
search algorithms directly to tackle our problem, we
have to issue new VNN queries periodically according

to the user’s movement which obviously is not practi-
cal. Hence, we propose algorithms to update the DBS
continuously in Section 5.

a

b

c

d

e
f g

π/3

π/3

y

x

(a) Imaginary obstacles
according to query O

b
c

d

e f g

a

(b) Imaginary obstacles
according to query O′

Fig. 6: Imaginary obstacles of E-DBS queries

Nearest Surrounder Queries. Lee et al. [9,26,27]
studied the nearest surrounder (NS) query for retriev-
ing objects, each of which is a nearest neighbor of a

query point according to an associated angular range.
Fig. 7 shows an example of an NS query with a query
point (O) and several data objects (a to i). The result

set is {⟨a, [α1, α2)⟩, ⟨b, [α2, α3)⟩, ⟨c, [α3, α4)⟩, ⟨d, [α4, α5)⟩,
⟨e, [α5, α6)⟩, ⟨f, [α6, α1)⟩}. It means that a to f are near-
est neighbors of O within their associated angles. The

motivation of our E-DBS query is related to this idea.
Both of them focus on providing a whole picture of
nearest objects around the user. However, an E-DBS

query treats point objects and receives the angle thresh-
old θ, while an NS query assumes rectangular data ob-
jects. [26,27] proposed efficient algorithms to answer

NS queries for a moving query point and moving data
objects, but they do not consider the linear movement
of the user.

Other Direction-Based Queries. Patroumpas et al.
proposed the notion of an orientation-based query which
finds objects moving towards the query point [11]. Ex-

ample queries include “finding the trucks moving to-
wards the port from the west at a distance less than
2km”. The basic idea is to use a polar tree to index the

moving objects by their directions and retrieve the ob-

5

Fig. 7: Nearest surrounder query

jects within the required direction and distance ranges.
Chen et al. identified the path nearest neighbor query

which retrieves the nearest neighbor along the user’s
moving path [3]. To the best of our knowledge, our work
is the first study of direction-based surrounder queries

considering distance and direction attributes.

2.2 Nearest Neighbour Queries in Road Networks

Our R-DBS query presents all nearest objects around
a query position q considering both network distances
and network directions. Nearest neighbour queries in

road networks are well studied in the database area,
however, these studies recommend POI objects consid-
ering the network distances only.

The snapshot R-DBS query is related to kNN queries
in road networks. Papadias et al. [40] proposed a flexi-
ble architecture for spatial network databases in order

to answer spatial queries including kNN queries. Their
IER/INE algorithms find out kNN objects by perform-
ing network expansions which are inspired with the Di-

jkstra’s algorithm [28]. Kolahdouzan et al. [41] proposed
VN3 algorithms to answer kNN queries by partitioning
a spatial network into smaller Voronoi polygons over

objects and pre-computing some network distances. Hu
et al. [33,42] build indexes to facilitate kNN search in
road networks. In [33], they perform kNN searches by

retrieving a set of interconnected trees which are gener-
ated from the road network. In [42], they use distance
signatures to maintain approximate network distances

and build an index based on the distance signatures in
order to speed up kNN searches. Lee et al. [35] prune
the kNN search space by skipping Rnet which are sub-

spaces containing no objects.
The continuous R-DBS query is related to continu-

ous kNN queries for a moving query position on a query

path [37,44]. Kolahdouzan et al. [44] proposed IE/UBA
algorithms to find out kNN candidates first and then
split the query path into sub-paths where the kNN ob-

jects are the same. Cho et al. [37] proposed UNICONS

algorithms which divide the query path into valid inter-

vals considering the network distance functions of ob-
jects w.r.t. a moving query position. In the valid inter-
vals, the kNNs are the same no matter where the query

position is. The continuous R-DBS query is different
from the continuous kNN queries for a query path. An
extreme example is that the kNN queries return k ob-

jects but the R-DBS queries find the nearest object to
recommend if the shortest paths of the k − 1 nearest
objects passing by the nearest one.

There are many works studying dynamic kNN queries
which are different from the continuous kNN queries.
The dynamic kNN queries have dynamic objects of in-

terest or even dynamic road networks as well as a dy-
namic query position. Shahabi et al. [34] focused on
kNN queries for moving objects. TheirRNE algorithms

convert a road network to a higher-dimensional space
and retrieve approximate answers in the new space with
an acceptable precision. Jensen et al. [36] proposed a
framework and also implemented a prototype to an-

swer kNN queries for moving objects and a moving po-
sition. Mouratidis et al. [43] proposed IMA/GMA al-
gorithms which update results when the changes on

objects, query positions, and edges may influence the
current results. Demiryurek et al. [39] proposed more
efficient algorithms to solve the same problems in [43].

Their ER-CkNN algorithms avoid blind network expan-
sions in [39] by finding candidates which are selected
based on their Euclidean distances to the query posi-

tion. Samet et al. [38] proposed efficient algorithms to
answer kNN queries when many different queries are is-
sued or different sets of objects are used for a static road

networks. They proposed the shortest path quad tree
to avoid repeatedly calculating shortest paths between
two vertices for different query positions.

2.3 Multi-Objective Queries in Spatial Databases

Generally speaking, our DBS query belongs to multi-
objective queries which retrieve objects considering mul-

tiple attributes. In database area, multi-objective queries
are also called skyline queries [23]. It has received con-
siderable attentions since it was considered in relational

databases for the first time in 2001 [2]. Thereafter, many
subsequent algorithms were proposed to improve the
performance from different aspects. The well-known cen-

tralized algorithms include branch-and-bound skyline
algorithm (BBS) [10], sort-filter-skyline (SFS) [4], and
linear elimination sort for skyline (LESS) [13], etc. Re-

cently, distributed and parallel skyline processing al-
gorithms (e.g., [24], [25]) have received growing inter-
est with improvements of mobile processing capabili-

ties and developments of wireless networks. Many vari-

6

ations and extensions are derived from the classical sky-

line [2] with respect to different research focuses, such
as location-based skyline queries in spatial databases.

In spatial databases, the notion of a skyline query
provides a new perspective for realizing a location-based
service which considers multiple factors including spa-

tial and/or non-spatial attributes. Spatial preferences
or attributes (e.g., distance) are different from other
static attributes (e.g., price) because they depend on

the query point (e.g., location of the mobile user) which
moves continuously in most location-based applications.

Approaches [8,18] focus on a dynamic spatial at-
tribute (Euclidean distance) and static non-spatial at-
tributes. For example, [19,21] focus on both the dis-
tance information and some static non-spatial attributes,

and [22] focuses on two static spatial attributes, i.e.,
spatial network distance and detour. Huang et al. [8]
present skyline points for a continuously moving user

(query point) considering distance and static non-spatial
attributes. Among the objects given, some are perma-
nent skyline points no matter where the user is as they

are dominating static non-spatial values; while some are
volatile skyline points because their dominance proper-
ties depend on the distances to the moving query point.

However, the observation is that their dominance prop-
erties do not change abruptly while a user moves with
a constant speed. A change of the dominance property

happens when the distances of two data points share
the same distance to the query point. In this work, the
authors proposed a method to predict when two objects

actually share the same distance to the query point and
perform updates at these moments only.

Zheng et al. [18] proposed approaches to present
skyline points for a dynamic query point without as-
suming that the query point moves with a constant

speed and the spatio-temporal coherence exists as in [8].
Observing distributions of data points, they derive a
valid scope wherein all query points will receive an iden-

tical skyline. The skyline is updated if a new query
point falls outside of the valid scope of the original
query point. However, those algorithms [8,18] that con-

sider distances only cannot be directly applied to an-
swer DBS queries because we consider not only dis-
tances but also directions.

The skyline problem becomes more complicated when
we take multiple dynamic attributes into account [19,

21]. Chen et al. [19] predict a new skyline at a mo-
ment after the start moment for a moving query point
considering a dynamic distance, non-spatial dynamic

attributes (time-parameterized), and static attributes.
Data points are indexed by an extended TPS-tree which
integrates non-spatial dynamic attributes and static at-

tributes as well as dynamic distances indexed by tra-

ditional TPS-tree [20]. Skyline points are found out by

using a time-parameterized BBS algorithm on the ex-
tended TPS-tree. We can issue a new query at each
moment by using the predictive skyline query process-

ing algorithms in [19] to update skylines while a query
point moves.

Lee et al. [21] proposed alternative algorithms to
update skylines continuously for a moving query point

with dynamic distances and dynamic non-spatial at-
tributes. They assume the query point moves with a
constant speed and dynamic non-spatial attributes val-

ues also change linearly. By following the filter-and-
refinement principle, they first select candidates which
could possibly qualify as skyline points and then trace

changes of skylines by only evaluating those candidates.
During the candidates selection phase, they derive the
candidate region while filtering out the permanently

dominated regions and further reduce the candidate set
according to some pruning rules. The method efficiently
answers continuous skyline queries for moving objects

with dynamic attributes. However, it is impossible to
directly use that algorithm to solve E-DBS queries as
the dynamic direction attribute is different from other

dynamic attributes which usually can be described as
time-parameterized linear or quadratic functions.

Huang et al. [22] proposed another interesting spa-
tial skyline query problem in road network scenarios. In

their work, data points represent intermediate locations
(e.g., gas station) that a user wants to visit temporar-
ily on his way to a given destination. Skyline points

are found to balance distances of intermediate locations
and detours arose by visiting intermediate locations.

2.4 Borrowed Ideas for Implementing Our DBS
Algorithms

In order to facilitate continuous E-DBS query algo-

rithms, we borrow some ideas from continuous nearest
neighbor (CNN) queries proposed by Tao et al. in [15]
and we also employ the basic idea of the work presented

by Raptopoulou et al. in [12] to make use of the inter-
sections of distance functions to find changes of nearest
neighbors.

In order to facilitate snapshot R-DBS query algo-

rithms, we use the basic idea of the well-known Dijkstra
algorithms to find out shortest paths [28–30].

3 Preliminaries

In this section, we formalize DBS queries. There is a set
of target objects P = {p1, . . . , pn} and a query object q

in a space X. DBS queries recommend nearest objects

7

around q considering their distances di and directions

ωi w.r.t. q. Comparing two objects pi and pj , pi rep-
resents a better candidate than pj if di < dj and they
are directional close. In the paper, we consider DBS

queries in both a vector space E and a metric space R
(X ∈ {E,R}). In the vector space E, we compare ob-
jects using Euclidean distances and directions. While in

the metric space R, we compare objects using network
distances and directions.

Table 1: Symbols and descriptions

Symbol Description
−→pi Vector from q to pi in E

SP (q, pi) Shortest path from q to pi in R
di (dpi) Distance of pi: it is set to the length of −→pi in

E (dpi = |−→pi |) or the length of SP (q, pi) in R
(dpi = |SP (q, pi)|)

ωi (ωpi) Direction of pi: it is set to the angle between −→pi
and (1, 0) in E or the shortest path SP (q, pi)

in R
θ Threshold for an acceptable angle

λij (λpipj) Included angle between −→pi and −→pj
φij (φpipj) Partition angle between pi and pj

Before defining theDBS problem formally, we would
like to define the dominance relationship first.

Definition 1 (Dominance Relationship) In a met-
ric space X ∈ {E,R}, if two objects pi and pj are direc-

tional close and pi is closer to q than pj (i.e., di < dj),
we say that pi dominates pj , denoted as pi ≺ pj . 2

Note that objects that are not directional close are
not comparable. We will define the direction closeness
in the vector space E (Section 3.1) and in the metric

space R (Section 3.2) later. Accordingly, DBS queries
are defined in Definition 2.

Definition 2 (DBS Query) Given a set of POI ob-
jects P = {p1, . . . , pn} and a query point q in a space

X ∈ {E,R}, the objects that are not dominated by
any other object are direction-based surrounder points
(DBS points). A direction-based surrounder (DBS) query,

denoted as DBS(q, θ) in E and DBS(q,G) in R, is
to find all the direction-based surrounder points, i.e.,
{pi | pi ∈ P, @pj (̸= pi) ∈ P, pj ≺ pi}. 2

3.1 Directional Closeness for E-DBS Queries

Assume that a set of target objects P = {p1, . . . , pn}
and a query object q are in a two-dimensional Euclidean
space E. The vector −→pi from q to pi is used to capture

both the distance and direction of pi w.r.t. q. To be

more specific, the distance of pi to q is represented by

dpi (= |−→pi |) which is the Euclidean distance between pi
and q and the direction of pi w.r.t. q is represented by
ωpi (∈ [0, 2π)) that is the angle between vector −→pi and

the unit vector (1, 0)′. We use the abbreviations di and
ωi to refer to pi’s distance and direction if the context
is clear. For example, the vector −→a in Fig. 2 has the

distance da = |−→a | =
√
5 and the direction ωa = 27◦.

Now we explain how E-DBS actually evaluates ob-
jects by considering both the distance and direction.
Intuitively, two objects pi and pj are in the same direc-

tion if their directions w.r.t. q happen to be the same
(i.e., ωi = ωj). This definition, however, is too strict in
practice. Alternatively, we consider that two objects are

almost in the same direction if their directions are al-
most equivalent (ωi ≈ ωj). Towards this, we introduce
a threshold θ (∈ [0, π

2)), namely an acceptable angle,

which can be specified by the user in the query time to
evaluate the direction closeness. Given two objects pi
and pj , their included angle formed by vectors −→pi and
−→pj can capture their angular difference, mathematically
defined as follows:

λij = arccos
−→pi · −→pj

|−→pi | · |−→pj |
. (1)

Objects pi and pj are directional close w.r.t. a query
point q and a threshold θ iff their included angle λij is

bounded by θ. Its formal definition is given in Defini-
tion 3.

Definition 3 (Directional Close in E) For the given
target objects pi and pj , we say that pi and pj are di-

rectional close w.r.t. q and a given threshold θ iff the
condition 0 ≤ λij ≤ θ holds. 2

As we have shown in Example 1 (Fig. 2), given θ =
π/3 and q, object b is directional close to a since the
included angle λab between their vectors is smaller than

θ. On the other hand, object d is not directional close
to a due to the fact that λad > θ.

3.2 Directional Closeness for R-DBS Queries

Formally, a road network G = (V,E) consists of a set
of vertices vi ∈ V , and a set of edges e ∈ E with each
e(vi, vj) connecting nodes vi and vj . We assume the

query issuing position q and a set of POI objects P =
{p1, . . . , pn} are all located at some edges, i.e., ∀p ∈
q ∪ P , ∃e ∈ E ∧ p ∈ e. Let SP (q, pi) = {sp1, · · · spj} be

the shortest path from user q to a POI object pi with
{sp1, · · · spj} representing the ordered set of vertices
in V that SP (q, pi) passes sequentially, i.e., SP (q, pi)

starts from q, then visits vertices sp1, sp2, · · · , spj , and

8

finally reaches the destination pi. In Fig. 3, SP (q, a) =

{v6, v3} means that the shortest path from q to a passes
vertex v6 and v3 to reach a.

As explained previously, an R-DBS query is based
on both distance and direction, we strategically refor-

mat the shortest path SP (q, pi) as a two-tuple vector
(di, ωi). Here, di

1 refers to the distance from q to pi
(i.e., the length of the shortest path from q to pi), and

ωi denotes the direction of pi which is represented by
the set of nodes passed by SP (q, pi) (i.e., sp1, sp2, · · · ,
spj). Therefore, SP (q, a) = (9, v6v3), and SP (q, b) =

(10, v6v3) in Fig. 3.

Two objects are directional close on the road net-
work R iff their shortest paths from q overlap. Specif-
ically, one object pi must be on the shortest path of

another object pj in order to be directional close to
pi, as defined in Definition 4. Based on this defini-
tion, in Fig. 3, objects a and b are directional close

as SP (q, a).ωa = SP (q, b).ωb, and a is located on the
shortest path SP (q, b).

Definition 4 (Directional Close in R) On the road
network G = {V,E}, two target objects pi and pj are
directional close w.r.t. q iff SP (q, pi).ωi ⊆ SP (q, pj).ωj

or SP (q, pj).ωj ⊆ SP (q, pi).ωi. 2

3.3 Two Minor Issues for E-DBS Queries

Before we present the detailed search algorithms for
DBS queries, we would like to mention two minor issues

and their solutions for E-DBS queries.

1. In the following discussions, we consider the case of

0 < θ < π/2 but omit the case of θ = 0. This is be-
cause as θ = 0, the majority of target objects are not
dominated as an object pi can only be dominated

by objects pj lying along the radial line from q to pi
(i.e., ωi = ωj). In the case that all the objects have
different directions w.r.t. q, all the objects are E-
DBS objects. This contradicts the main objective of
our searches which is to find a small set of domina-
tive objects out of a large object set to ease objects

selection/analysis process.
2. We assume a query will not be issued at a target

object pi. In other words, the query can only be

issued from a position that is different from any the
target objects, i.e., ∀q, @pi ∈ P, dpi = 0. The reason
behind is that when dpi = 0, pi actually dominates

all the other target objects in all the directions, and
becomes the only E-DBS object.

1 In this paper, both |SP (q, pi)| and SP (q, pi).di refer to the

shortest distance from q to pi on a road network.

4 Snapshot DBS Queries

In this section, we present snapshot E-DBS queries and
R-DBS queries and their corresponding search algo-

rithms. When a direction-based surrounder query is is-
sued at a fixed query point q, it is a snapshot DBS
query. As mentioned in Section 1, a snapshot DBS query

finds the “best view” objects based on the user’s cur-
rent position.

A näıve solution to support snapshot queries is to

compare every object with all the other objects. If the
object is not dominated by any other object, it is a DBS
point. This approach is developed directly based on the

definition of a snapshot DBS query, and has O(n2) time

complexity with n = |P |. Although we can improve the
performance by saving the comparison of an object pj
against others once it is detected to be dominated by

some object pi, it is still inefficient. In the following,
we present some efficient search algorithms to support
E-DBS queries and R-DBS queries, respectively.

4.1 Snapshot E-DBS Queries

At first, we introduce two observations based on which
an efficient search algorithm is developed to answer
snapshot DBS queries. Notice that our search algorithm

examines the target objects of P based on ascending
distance order w.r.t. q, i.e., nearby objects are evalu-
ated earlier2.

Observation 1: Search space pruning

Given an object pj ∈ P , it can only be dominated by
another object pi that is directional close to pj . Conse-

quently, there is no need to evaluate objects that are not
directional close to pj as they for sure will not dominate
pj . In other words, the search space for a dominative

object pi can be pruned based on directional closeness.
In our algorithm, objects are evaluated based on as-
cending order of their distances to q. pj can only be

dominated by those objects visited earlier and mean-
while are directional close to pj . In order to facilitate
the checking of directional closeness, we introduce the

notions of a direction order list and adjacent objects
defined in Definition 5 and Definition 6, respectively.

Definition 5 (Direction Order List) Given a set of
objects P ′ and a query point q, its direction order list
LP ′ = ⟨p1, p2, · · · pk⟩ is formed by the objects of P ′

2 To simplify the presentation, we assume all the objects have
different distances to query point q. However, our algorithm can
be easily adjusted to cater for the cases where multiple objects

have the same distances to the query point.

9

based on ascending order of their directions w.r.t. q,

i.e., i) ∀pi, pi+1 ∈ LP ′ , ωpi ≤ ωpi+1 ; ii) ∀pi ∈ LP ′ ,
pi ∈ P ′; and iii) |LP ′ | = |P ′|. 2

Definition 6 (Adjacent Object) Given a set of ob-
jects P ′ = {p1, p2, · · · pk} and a query point q, objects

pi and pj are adjacent to each other iff they are next
to each other in the corresponding direction order list
LP ′ , i.e., there is no other object pm in LP ′ such that

ωpi < ωpm < ωpj . Notice that the head entry of LP ′ is
adjacent to tail entry of LP ′ due to the circular aspect
of this notion. 2

For each object pi in P ′, it has two adjacent objects,
i.e., the predecessor located ahead of pi in LP ′ , denoted

as p−i and the successor located right after pi, denoted
as p+i . Due to the circular aspect of adjacency, the head
entry of LP ′ has the tail entry of LP ′ as its predecessor

and similarly, pk, the tail entry of LP ′ has the head
entry of LP ′ as its successor. Please refer to Example 5
for the detailed explanation.

Example 5 Let us consider the example in Fig. 2 again.

Assume objects are evaluated based on ascending or-
der of their distances to q, and those objects that have
been evaluated form the set P ′ = {a, b, d} with LP ′ =

⟨a, b, d⟩, as shown in Fig. 8(a). Object a is adjacent to b
and d. Object b has object a as its predecessor and has
d as its successor, i.e., b− = a and b+ = d. Suppose we

are now evaluating object f . As f for sure will not be
dominated by any object that has not been evaluated
due to shorter distance to q, we only need to consider

objects in P ′. As objects in P ′ are closer to q than f ,
they for sure satisfy the distance requirement specified
in the dominance relationship of DBS queries. There-

fore, we only need to consider the directional closeness.
Obviously, the object in P ′ that has the smallest in-
cluded angle with f must be either d or a, i.e., the

predecessor and successor of f if we consider the set of
objects P ′ ∪ {f}. Therefore, by comparing λaf and λdf

with θ, we can decide whether f is dominated.

Based on this observation, we develop the follow-

ing property to prune away objects that do not need
evaluation when we evaluate an object pi.

Property 1 Let object pi be the target object cur-
rently evaluated, and suppose set P ′ maintains all the

objects evaluated (i.e., those objects being closer to q
compared with pi). Assume pj and pk are the predeces-
sor and successor of pi. Object pi is a DBS object iff

both included angles λij and λik are larger than θ. 2

a

b

d

f

O

y

xλfd
λfa

(a) Observation 1

a

b

d

f

y

x

φab
φbd

φdf φfa

c

e g

(b) Observation 2

Fig. 8: Two observations

Observation 2: Early termination

The second observation is that the directional closeness
enables us to terminate the object evaluation process
earlier without examining all the objects in P . We use

Example 6 to explain the basic idea. Notice that a new
concept partition angle is used in Example 6 and its
formal definition is presented in Definition 7.

Definition 7 (Partition Angle) Given a set of ob-
jects P ′, let pj ∈ P ′ be the successor object of pi ∈ P ′.
The partition angle φij is defined based on pi and its

successor pj , as expressed in Eq. (2):

φij = (ωj − ωi) mod 360◦. (2)

2

Example 6 Let us continue our running example. As-

sume that we have checked the objects a, b, d, and f
already, i.e., P ′ = {a, b, d, f}. As shown in Fig. 8(b),
four partition angles are formed. They are φab = 26◦,

φbd = 105◦, φdf = 112◦, and φfa = 117◦. In other
words, the 2π angular range is partitioned by the ob-
jects of P ′ into four sub-angular regions. For a new ob-

ject, it for sure will be located into one sub-angular
region, and have objects {a, b} (or {b, d}, or {d, f},
or {f, a}) as its adjacent objects. Given the fact that
all the partition angles are smaller than or equal to

2θ = 120◦, the new object will be definitely dominated
by at least one of its adjacent objects, as stated in Prop-
erty 2.

Property 2 If all the partition angles formed by the
checked objects are not larger than 2θ, the remaining

objects that have not been evaluated are dominated and
the evaluation can be terminated safely. 2

The algorithm to answer snapshot DBS queries is
developed based on the above two observations. Before
we explain the details of the search algorithm, we first

use Example 7 to illustrate the basic idea.

10

a

b

c

d

e f g

O
x

y

(a) Checking a

a

b

c

d

e f

O

y

g

x

(b) Checking b

a

b

c

d

e f g

xO

y

(c) Checking d

a

b

c

d

e f g

x
O

y

(d) Checking f

Fig. 9: Processing snapshot DBS query (θ = π/3)

Example 7 Given P = {a, b, c, d, e, f, g}, a snapshot
DBS query is issued at point O with θ = π

3 . Objects

are evaluated based on ascending order of their dis-
tances to O. Consequently, a is evaluated first, and it
can be output as a DBS object immediately, as depicted

in Fig. 9(a). After the evaluation of a, P ′ = {a}, and
φaa = 03. Next, we check the second-nearest object b,
as illustrated in Fig. 9(b). As λab < θ, it is dominated

by a. Since there is one partition angle φba > 2θ, the
early termination condition is not satisfied and the pro-
cedure continues. Then, we examine object d, the third

nearest object to O, as depicted in Fig. 9(c). It can be
returned as a DBS object as its two adjacent objects
(i.e., a and b) are not directional close to d, i.e., λdb > θ

and λda > θ. After the evaluation, P ′ = {a, b, d}, and
partition angles φab (≤ 2θ), φbd (≤ 2θ), and φda (> 2θ)
are formed. The procedure continues and we examine

object f , as shown in Fig. 9(d). It is also a DBS ob-
ject as it is not dominated by its adjacent objects, and
meanwhile the procedure terminates since all the par-

tition angles (i.e., φab, φbd, φdf , and φfa) are smaller
than 2θ. All the DBS objects (i.e., a, d, f) are found.

Algorithm 1 lists the pseudo-code of the snapshot

DBS query processing algorithm. First, we invoke an
existing NN search algorithm to retrieve the nearest
neighbor object using a spatial index (lines 3 -4). This

object is for sure a DBS object as it is closer to q than
any other object. After initializing variables, we check
the target objects according to the increasing distance

order (lines 8-15). In the algorithm, we maintain all the

3 Notice that we use Property 2 as a termination condition

when we have checked more than one object.

object that have been checked in P ′, sorted by their di-

rections w.r.t. q. Whenever a new object p is evaluated,
it is first inserted into P ′, and its predecessor and suc-
cessor are retrieved, denoted as p− and p+ respectively

(line 10). Based on Property 1, we compare included
angles of p and its adjacent objects to decide whether
p is dominated (lines 11-12). Thereafter, we update the

partition angle set (line 14). The process repeats until
early termination condition is satisfied (based on Prop-
erty 2) or all the objects are evaluated (line 15).

Algorithm 1 Snapshot DBS Query

1: procedure SnapshotDBSQuery(q, θ)

2: S ← ∅;
3: InitNNQuery(q); ◃ Initialize the NN query
4: p← GetNext(); ◃ Get the first NN object
5: S ← {p}; ◃ result set

6: P ′ ← [p]; ◃ Initialize the evaluated object set
7: Φ← {φpp}; ◃ Initialize the partition angle set
8: repeat

9: p← GetNext(); ◃ Get the next NN object
10: ⟨p−, p+⟩ ← P ′.insert(p);

◃ Insert p to P ′ and get its adjacent objects
11: if λpp− ≥ θ ∧ λpp+ ≥ θ then

12: S ← S ∪ {p}; ◃ p is on the DBS
13: end if
14: Φ← (Φ− {φp−p+}) ∪ {φp−p, φpp+};

◃ Update the partition angle set

15: until ∀φ ∈ Φ, φ ≤ 2θ or all the objects are processed
16: output S;
17: end procedure

Now we analyze the time complexity of Algorithm 1.
The cost of the algorithm comes from the loop (lines 8-

15), if we ignore the costs of function InitNNQuery
and function GetNext. In the best case, the loop will
terminate after checking ⌈2π/2θ⌉ nearest neighbors. In

the worst case, the loop will terminate after checking
all objects (e.g., all of them are on some ray originating
from the user) which is rather uncommon. In general,

the time complexity of the loop is O(1). The experimen-
tal results of snapshot queries shown in Section 6.1.1
also demonstrates the efficiency of Algorithm 1 in sup-

porting snapshot DBS queries.

4.2 Snapshot R-DBS Queries

As the dominance relationship in R relies on distance

metric and directional closeness that are different from
those in E, a new search algorithm is needed. In the
following, we first define an important property to fa-

cilitate the process, and then explain the search algo-
rithm.

11

Property 3 Given a DBS query issued at point q on

a road network G(V,E), object pi dominates another
object pj iff pi is on the shortest path from q to pj , i.e.,
if pi ∈ SP (q, pj), pi ≺ pj . 2

Property 3 inspires a simple approach to answering a

snapshot DBS query on a road network. Assume the
shortest paths from the query point to each of the ob-
jects pi ∈ P is available. Take Fig. 3 as an example. Sup-

pose all the shortest paths from q to p ∈ P = {a, b, c, d}
are known, i.e., SP (q, a) = (9, v6v3), SP (q, b) = (10, v6v3),
SP (q, c) = (5, v4), SP (q, d) = (9, v4v5). As a locates on

SP (q, b) and is closer to q than b, a is a DBS point. On
the other hand, c and d are the only points located on
their shortest paths and they are also DBS points. Con-

sequently, DBS(q,G) = {a, c, d}. Given the fact that
shortest path searches have been well studied in the lit-
erature [28–30], we assume the shortest paths from q to

each object p ∈ P is identified by some existing search
algorithm (e.g., the Dijkastra algorithm used in our ex-
periments), and the DBS objects could be found based

on Property 3 to form the answer set.

5 Continuous DBS Queries

In this section, we extend the original DBS queries to a
dynamic scenario. In addition to considering snapshot
DBS queries issued at fixed query points, we consider

the case where users keep moving when issuing DBS
queries. Accordingly, we form continuous DBS queries
to represent the processing of DBS queries when the

query point keeps moving.

As pointed out in Section 1, a continuous DBS query
presents up-to-date DBS objects while the user keeps
moving. Naturally, we can issue a new snapshot DBS

query whenever the user changes her position. In other
words, a continuous DBS query can be converted to
snapshot DBS queries. However, this simple approach

is not preferred as a large number of snapshot DBS
queries will be generated and many of them share the
same results. Alternatively, we propose a prediction-

based approach, i.e., predicting when and how the DBS
objects change in the near future.

In a dynamic moving environment, the user’s posi-
tion keeps changing with different movement patterns.

Our goal is to develop flexible algorithms which can
support continuous DBS queries issued by mobile users
with various movement patterns. As the first step, this

work focuses on the prediction of the future locations
of mobile users moving in a constant speed. To be more
specific, let t = 0 be the current time, and the loca-

tion of the user at a future time t (≥ 0), denoted as

−→q = (xq, yq)
′, is mathematically expressed in Eq. (3).

−→q =

(
xq

yq

)
=

(
xv

yv

)
t+

(
x̄q

ȳq

)
, (3)

where the user moves from (x̄q, ȳq)
′ with a constant

velocity (xv, yv)
′.

Accordingly, a continuous DBS query is formally de-

fined in Definition 8. Note that the following definition
can be easily extended to an interval-based DBS query
that is based on a given time interval [ts, te], instead of

the time duration [0, τ]. For R-DBS queries, we assume
the user moves on the road network within the time du-
ration [0, τ]. For E-DBS queries, users can move freely.

Definition 8 (Continuous DBS Query) In a space

X ∈ {E,R}, a continuous DBS query with parame-
ter τ (τ > 0), which is issued by a user at position
(x̄q, ȳq)

′ moving in constant velocity (xv, yv)
′, locates

all the DBS points corresponding to the user locations
during the time interval [0, τ]. 2

5.1 Processing Continuous E-DBS Queries

In order to illustrate the concept of continuous E-DBS

queries, we extend our running example, as shown in
Example 8.

a

b

c

d

e f

O

x

y

0 100v

g

Fig. 10: Example of a continuous E-DBS query

Example 8 Let us extend our example of snapshot E-
DBS queries to the continuous case. Fig. 10 illustrates
that the user is moving from position (0, 0)′ with a con-

stant speed (1, 0)′. The user issues a continuous DBS
query for the time interval [0, 100] with θ = π/3. It
means that we need to predict the changes of DBS dur-

ing [0, 100]. The result will be as follows:

DBS =


{a, d, f} t ∈ [0, 4)

{a, d, f, g} t ∈ [4, 23)
{a, f, g} t ∈ [23, 59)
{a, g} t ∈ [59, 100].

(4)

12

The output indicates that initially, objects a, d and

f are the DBS points. These three objects remain as
the only DBS points until user reaches (4, 0)′ at t = 4.
At that point, object g becomes new DBS object and

hence the result set is changed to {a, d, f, g}. It remains
the same until the user moves to (23, 0)′ at t = 23 at
which the DBS object d is dominated by a and hence

removed from the result set. Finally, DBS object f is
also removed from the result set at t = 59 when the
user reaches (59, 0)′.

Based on this example, we understand that although
the user keeps changing her position from t = 0 to t =
100, the change of the DBS points happens only at t =

4, t = 23, and t = 59. We therefore name those moment
as change moments, and a continuous DBS query can be
easily converted to snapshot DBS queries issued from

user’s locations at those change moments. For example,
if we can detect that t = 4, t = 23, and t = 59 are
the only three change moments corresponding to our

example continuous query, we can issue 4 snapshot DBS
queries w.r.t. the user’s positions at time t = 0, t = 4,
t = 23, and t = 59. Consequently, our algorithm focuses

on how to predict the change moments effectively.

5.1.1 Basic Idea

The solution to continuous DBS queries shares the same
framework as snapshot DBS queries. In processing snap-
shot queries, we check the target objects one by one
based on ascending order of their distances to the fixed

query point. For each target object pi evaluated, we
compare its included angles formed with its adjacent
objects against the angular threshold θ to evaluate if pi
is dominated, according to Property 1. The evaluation
process can be safely terminated if all the partition an-
gles formed by examined objects are bounded by 2θ or

all the target objects have been evaluated.

Similarly, a continuous DBS query intends to eval-

uate those objects nearer to the query point earlier.
However, the user, who issued a continuous query, keeps
moving and hence the distance from a target object to

the user’s current location keeps changing. Like in Ex-
ample 8, object a is nearest to q when t = 0 and object
g becomes nearest when t = 75. How to determine the

ordering of objects based on their distance to the query
point (i.e., user’s current location) in a dynamic sce-
nario is critical. In our work, we propose a process tree

to facilitate the ordering.

As illustrated in Fig. 11, a process tree is in tree

structure, and the height of the tree is bounded by the
number of target objects considered. Its root node n00

includes the time interval [0, τ] considered by the given

continuous DBS query (e.g., (0, 100) in our example).

, (0,100)

, (0,75)a , (75,100)g

, (0,71)b , (71,75)g

, (0,7)d , (7,45)f , (45,71)g

, (7,32)d , (32,45)g, (0,7)f , (45,71)f

, (71,75)b

, (71,75)f

, (75,100)a

, (75,100)b

, (75,100)f

...

-

...............

n00

n11 n12

n21 n22 n23

n31 n32 n33 n34 n35

n41 n42 n43 n44 n45 n46

Fig. 11: Process tree for continuous DBS query

Let the root node be at level 0, its immediate child
nodes (e.g., n11) be at level 1, its immediate grand-

child nodes (e.g., n21) be at level 2, and so on. Each
child node nij at level i actually corresponds to an ith

nearest neighbor to q within certain time interval. Con-

sequently, each non-root node nij is in the format of
⟨pk, Ipk

⟩ with pk being the ith nearest neighbor to q
within the time duration Ipk

= (t1, t2) ⊆ [0, τ]. For ex-

ample, as shown in Fig. 11, node n22 at level 2 has its
content ⟨g, (71, 75)⟩, meaning that object g is the sec-
ond nearest neighbor to q during the interval (71, 75),

and node n33 at level 3 has its content ⟨g, (45, 71)⟩
which means object g is the third nearest neighbor to
q during the interval (45, 71).

Note that given a parent node nij = ⟨pk, Ipk
⟩ and a

child node n(i+1)j′ = ⟨pm, Ipm⟩, the interval associated
with the child node n(i+1)j′ is always bounded by that
associated with the parent node nij , i.e., Ipm ⊆ Ipk

.
In order to fulfill this requirement, for an object pi
that is the jth nearest neighbor to q at duration Ii,
multiple nodes ⟨pi, Iik⟩ might have to be generated at
level j with each corresponding to a sub-interval Iik of

Ii (∪kIik = Ii). For example, nodes n34 and n35 at
level 3 both correspond to object b with n34 associated
with interval (71, 75) and n35 associated with interval

(75, 100), and nodes n44, n45, n46 at level 4 all corre-
spond to object f , with n44 associated with time inter-
val (45, 71), n45 associated with time interval (71, 75),

and node n46 associated with time interval (75, 100).
We will explain the reason behind this design when we
illustrate how to utilize process trees to conduct contin-

uous DBS searches in the following. It is worth noting
that the process tree is similar to a partially persistent
data structure for an ordered list.

Given the process tree, we can conduct the contin-

uous DBS search by evaluating the target objects one
by one based on ascending order of their distances to
q. Initially, the nodes at level 1 will be evaluated. As

they are the nearest objects to q (corresponding to dif-

13

ferent time intervals), they are DBS objects. As shown

in Fig. 11, object a is nearest to q (and hence a DBS
object) during the time interval (0, 75), and object g
is nearest to q (and hence a DBS object) during the

rest time interval (i.e., (75, 100)). Since there are two
objects at level 1, the continuous DBS query is split
into two sub-queries q11 and q12, each of which corre-

sponds to time intervals (0, 75) and (75, 100), respec-
tively. The reason we split the query into sub-queries
associated with disjointed time intervals is to facilitate

the distance-based ordering of objects.

Consider to process sub-query q11. We need to eval-

uate objects that are the second nearest to q during
interval (0, 75). Based on the process tree, we can un-
derstand that objects b and g are the second near-

est objects during intervals (0, 71) and (71, 75), respec-
tively. Hence, the sub-query q11 is further split into
two sub-queries q21 and q22, each of which is associ-

ated with time intervals (0, 71) and (71, 75), respec-
tively. For q21, it has its own set of examined objects
P ′
21 = {a, b}, and q22 also has its own set of examined

objects P ′
22 = {a, g}. Based on Property 1, we can de-

cide whether b (or g) is dominated by comparing its
included angle with its adjacent objects4. Thereafter,
we can form the partition angles, as in a snapshot DBS

query processing, and safely terminate the processing
of the subquery if the early termination condition is
satisfied. Otherwise, we need to find out the next near-

est neighbor within the time interval associated with
the current sub-query (e.g., (0, 71) of q21) by visiting
the child nodes (e.g., n31, n32, n33), and continue the

above process.

Based on this example, we understand that actually

each node of the process tree corresponds to a sub-query
of the initial continuous DBS query. Take node n42 as
an example. It corresponds to sub-query q42 with time

interval (7, 32). Within this interval, q has a, b, f , and
d as the top-4 nearest objects, which are captured by
node n42 and its ancestor nodes (i.e., n32, n21, and n11).

Now we understand how the process tree can facil-
itate the ordering of objects based on their distances

to q. The next issue we have to address is how to con-
struct a process tree. The construction of process tree
is an incremental process and the tree is generated level

by level. We regard the user’s moving trajectory as the
query line segment, and invoke an existing continuous
nearest neighbor (CNN) search algorithm to find all

the nearest neighbors (or k nearest neighbors). Natu-
rally, the retrieved nearest objects will form the nodes
of level 1. After evaluating all those nearest objects,

we can invoke the CNN search algorithm to find the

4 How to locate the adjacent objects for a given object when q

keeps changing will be explained next.

second nearest neighbors to form the nodes of level 2.

The process continues until the continuous DBS query
processing terminates. As to be presented next, the ex-
pansion of the process tree is well integrated with the

processing of continuous DBS queries.

Algorithm 2 presents the pseudo-code of the contin-
uous DBS query processing algorithm. It invokes func-

tion FindDBS recursively following the expansion of
the process tree explained above. Function FindDBS
first invokes function CNNQuery to retrieve the k-th

nearest neighbor objects ⟨p, Ip⟩ for the moving query
point −→q within the time interval I and expands the
process tree accordingly5 (line 8). For each ⟨p, Ip⟩, it
then invokes function FindAdjacentObj to locate the
adjacent objects of p and invokes function DomCheck
to decide whether p is dominated based on Property 1

(lines 9-12). Notice that ⟨p, Ip⟩ may correspond to mul-
tiple nodes in the process tree, i.e., time interval Ip is
split into several sub-intervals. This is caused by the de-

sign of the process tree that the time interval of a child
node could not be larger than that of the parent node.
Thereafter, the early termination condition is checked

via function CannotTerminate. If it is not satisfied,
the objects evaluation continues by examining the next
nearest objects via function FindDBS (lines 14-15).

Algorithm 2 Continuous E-DBS Query

1: procedure ContinuousEDBSQuery(q, θ, I)
◃ I is the target time interval: I = [0, τ].

2: r ← CreateRootNode(); ◃ Create a root node.
3: S ← ∅;
4: FindDBS(−→q , I, 1, r, S);
5: output S;

6: end procedure

7: procedure FindDBS(q, I, k, n, S)
8: foreach ⟨p, Ip⟩ ∈ CNNQuery(−→q , I, k) do

◃ Find k-th NN object(s) while I.
9: A ← FindAdjacentObj(p, Ip);

◃ Find p’s adjacent objects while Ip.
10: foreach ⟨p−, p+, I′⟩ ∈ A do
11: DomCheck(p, ⟨p−, p+, I′⟩, S);

◃ Check dominance.
12: S ← UpdateDBS(S);

13: end for
14: if CannotTerminate(p, Ip) then

◃ Termination condition is not satisfied.
15: FindDBS(−→q , Ip, k + 1, S);

◃ Expand the child nodes.
16: end if
17: end for

18: end procedure

5 In Appendix A.1, we explain how to implement the function
CNNQuery by extending the existing incremental NN algorithm

proposed by Tao et al. in [15].

14

In the following subsections, we will explain three

major components of above algorithm. They are i) func-
tion FindAdjacentObj to find adjacent objects; ii)
function DomCheck to conduct a dominance test; and

iii) function CannotTerminate to evaluate the early
termination condition in the dynamic scenario.

5.1.2 Finding Adjacent Objects

In processing a snapshot DBS query, we form a direc-

tion order list L for all the examined objects w.r.t. q.
By simply inserting a new object pi to L, those objects
next to pi in L are the adjacent objects. However, in

a dynamic scenario, the position of q and the direction
λpi keep changing. We use Example 9 to demonstrate
its complexity.

Example 9 Let us consider our example in Fig. 11
again. Assume we are evaluating sub-query q42 asso-
ciated with time interval (7, 32), and the object cur-

rently evaluated is d. Based on the process tree, we
can know that objects a, b, and f (i.e., those associ-
ated with ancestor nodes of n42) are closer to q than d

within interval (7, 32). When t = 7, the direction order
list Lt=7 = ⟨a, b, f⟩ and d’s adjacent objects are b and
f , as depicted in Fig. 12(a). When t = 32, the direction

order list Lt=32 = ⟨b, a, f⟩ and d’s adjacent objects are
a and f , as shown in Fig. 12(b). The change (i.e., a
replaces b as the new adjacent object to d) happens at

t = 18 when a and b are co-linear with q (i.e., λa = λb).
In other words, b and f are adjacent to d during interval
(7, 18), and a and f are adjacent to d during interval

(18, 32). Accordingly, we maintain two direction order
lists ⟨a, b, d, f⟩(7,18) and ⟨b, a, d, f⟩(18,32).

a

b

c

d

e f
g

7
x

y

0 100

(a) t = 7

a

b

c

d

e f
g

32
x

y

0 100

(b) t = 32

Fig. 12: Change of direction order

Based on the above observation, we develop Prop-
erty 4 to guide the detection of the moment where ob-

jects in the direction order list switch their positions.

Property 4 If two objects are in the same side of the

user’s moving trajectory, their direction order changes
when they are co-linear w.r.t. the query point. 2

We can employ a sweeping line algorithm to find the
point along the moving trajectory −→q where two objects

change their positions in the direction order list L. To
be more specific, let ⟨a, b⟩ be a pair of objects that lie
in the same side of −→q , and let line(a, b) represent a

line passing by both a and b. The intersection between
line(a, b) and −→q is the point when a and b change their
positions in L. Thereafter, we can easily derive the time

t when the user reaches the detected intersection point.

Example 9 (Continued) Fig. 13 illustrates the process
of forming direction order lists for a sub-query q42. At
the beginning, we traverse the node n11 = ⟨a, (0, 75)⟩
of the process tree and initialize the direction order list
to ⟨a⟩. Then, we reach its child node n21 = ⟨b, (0, 71)⟩,
and update the direction order list to ⟨a, b⟩. However,

the objects b and a are co-linear when t = 18. Thus,
we split the interval into two sub-intervals (0, 18) and
(18, 71), and maintain two direction order lists accord-

ingly, with L(0,18) = ⟨a, b⟩ and L(18,71) = ⟨b, a⟩. Next we
reach the node n32 = ⟨f, (7, 45)⟩ and insert f into both
list L(7,18) and list L(18,45). Notice that the time inter-

val corresponding to both lists shrink as f is the third
nearest neighbor only within interval (7, 45). As object
f has no co-linear objects in both lists, no changes are

detected. Finally, we reach node n42, and we can update
the direction order lists similarly.

Tree Node Time Interval Direction Operation

Order List

n11⟨a, (0, 75)⟩ (0, 75) ⟨a⟩ insert a

n21⟨b, (0, 71)⟩ (0, 18) ⟨a, b⟩ insert b
(18, 71) ⟨b, a⟩ swap(a, b)

n32⟨f, (7, 45)⟩ (7, 18) ⟨a, b,f⟩ insert f

(18, 45) ⟨b, a,f⟩ insert f

n42⟨d, (7, 32)⟩ (7, 18) ⟨a, b,d, f⟩ insert d
(18, 32) ⟨b, a,d, f⟩ insert d

Fig. 13: Incremental maintenance of direction order lists

The detailed algorithm to detect the adjacent ob-
jects is shown in Algorithm 3. It takes a process tree
node n = ⟨p, Ip⟩ as input and returns the adjacent ob-

jects of p within Ip. We assume that the direction or-
der list corresponding to the parent node n is known
and maintained by parameter Dparent. For each list

⟨l, I⟩ ∈ Dparent, we first insert p into the list (line 6),
and then invoke function ColinearObjList to find
out all the objects that are co-linear with p within the

time interval I, maintained in set C in the format of

15

⟨p′, t′⟩ where p′ is p’s co-linear object at time t′ (line 7).

To ease the update, we assume that objects in C are
sorted based on ascending order of t′.

In the sequel, we evaluate each co-linear object of C
and make necessary update to the direction order list

l accordingly (lines 8-13). For a given co-linear object
p′ within t′, we first find out p’s predecessor p− and
the successor p+ within the time interval (ts, t

′), and

maintain them in A (line 9). Then, we switch the order
of p and p′ in the list l to form a new direction order
list l′, preserved in D (line 11). The process repeats

until all the co-linear objects are evaluated. We deal
with the last subinterval (t′, Ie) at line 14 and line 15.
We then attach D, the set of direction order list of p

within interval Ip, to the tree node ⟨p, Ip⟩ which will
be used for function FindAdjacentObj. Finally, the
algorithm terminates by returning A.

Algorithm 3 Finding Adjacent Objects

1: function FindAdjacentObj(p, Ip)
◃ p: object, Ip = ⟨Is, Ie⟩: time interval.

2: A ← ∅; ◃ Set of p’s adjacent objects while Ip.
3: D ← ∅; ◃ Set of p’s direction order lists while Ip.
4: foreach ⟨l, I⟩ ∈ Dparent do

◃ Dparent is the direction lists of p’s parent node.
5: ts ← Is;
6: l← l.Insert(p); ◃ Insert p into l.

7: C ← ColinearObjList(p, l, I);
◃ C carries p’s co-linear objects and moments.

8: foreach ⟨p′, t′⟩ ∈ C do
◃ p′ is co-linear with p at t′.

◃ Process items in increasing order of t′.
9: A ← A∪ {⟨p−, p+, (ts, t′)⟩};

◃ Add p’s adjacent objects while (ts, t′).
10: l′ ← l.Swap(p, p′);

◃ Create a new list by swapping p and p′.
11: D ← D ∪ {⟨l′, (ts, t′)⟩};

◃ Add the new list to D.
12: ts ← t′;
13: end for
14: A ← A∪ {⟨p−, p+, (ts, Ie)⟩};
15: D ← D ∪ {⟨l, (ts, Ie)⟩};
16: end for
17: Attach D to the tree node ⟨p, Ip⟩;
18: return A;
19: end function

Let us consider the time complexity of Algorithm 3.
Assume before processing the target tree node ⟨p, Ip⟩,
the number of checked objects in the branch is m. In

the worst case, the outer loop (lines 4 to 16) will be
executed

(
m
2

)
+ 1 times, because m objects may have

at most
(
m
2

)
co-linear moments which separate the in-

terval into
(
m
2

)
+ 1 sub-intervals. Lines 6 and 7 have

O(m) cost respectively in the worst case. The inner
loop executes m times in the worst case in which the

target object becomes co-linear with all the checked ob-

jects. Therefore, the time complexity of Algorithm 3 is

O((
(
m
2

)
+1)×3m) = O(m3) in the worst case. Although

the time complexity in the worst case is high, in general
there is no need to expand the processing tree too deep

due to the early termination strategy in Section 5.1.4.

5.1.3 Checking Dominance

After confirming the adjacent objects of the target ob-

ject during a certain time interval, the next step is
to determine the dominance relationships between the
target object and its adjacent objects, i.e., function

DomCheck in Algorithm 2. Unlike in snapshot DBS
query, the included angle between two objects changes
while the user moves in the dynamic environment. Ex-

ample 10 provides an example to demonstrate the dy-
namic nature of the included angle between two objects.
Based on the observation made from the example, Prop-

erty 5 is developed.

a

b

c

d

e f
g

λ=θ

λ>θ x

y

0 10075 95

(a) t = 75

a

b

c

d

e f
g

λ=θ

95

λ<θ

x

y

0 10075

(b) t = 100

Fig. 14: Change of dominance relationship

Example 10 Take Fig. 11 as an example again. As-
sume that we are evaluating sub-query q46 associated

with time interval (75, 100), and the object evaluated
currently is f . We have known that the adjacent ob-
jects of f is a and g during (75, 100), returned by the

function FindAdjacentObj, and we want to evalu-
ate whether f is dominated by a and/or g. Take the
evaluation of g as an example. As shown in Fig. 14(a),

when t = 75, λfg > θ = π/3. However, as shown in
Fig. 14(b), when t = 100, λfg < θ. The change hap-
pens at the moment t = 95 when λfg = θ. In other

words, f is not dominated by g during (0, 95), but it
is dominated by g during (95, 100). The dominance re-
lationship of two adjacent objects changes when their

included angle equals to θ.

Property 5 Object pi is not dominated by its adjacent
object pj during the time interval when their included
angle λij ≥ θ, i.e.,

λij = arccos
−→p i · −→p j

|−→p i||−→p j |
≥ θ (0 ≤ λij ≤ π). (5)

16

2

Note that −→p i and
−→p j are time-parameterized vec-

tors that change with parameter t. To obtain the time

intervals for which the formula holds, we need to find
out the critical moments when λij = θ. Since λij is a
continuous function, these critical moments divide the

time interval into two sub-intervals where λij > θ in
one sub-interval and λij < θ in the other. In fact, the
equation λij = θ is a quartic equation with variable

t ∈ [ts, te] and the solutions ti ∈ [ts, te] (i = 1, . . . , 4)
of the equation returned by GNU Scientific Library [7]
(see Appendix A.2 for details) form the critical mo-

ments. We use the midpoints of every sub-intervals to
determine whether λij ≥ θ or λij < θ, namely,

λab(t)|t=[tjs,t
j
e]∈Ij

{
≥ θ, if cosλab(

tjs+tje
2) ≤ cos θ

< θ, if cosλab(
tjs+tje

2) > cos θ
, (6)

where [tjs, t
j
e] represents a sub-interval Ij .

For object p, we need to consider two adjacent ob-
jects p− and p+. We calculate the time intervals I− and
I+ when λpp− ≥ θ and λpp+ ≥ θ, respectively. Then we

take their intersection to obtain the time interval while
p is on the DBS.

The pseudo-code of DomCheck is depicted in Al-

gorithm 4. It invokes the function UndomInterval to
find out the un-dominated intervals I− and I+ for ob-
ject p where λpp− ≥ θ or λpp+ ≥ θ. Then, the inter-

section of two interval sets I− and I+ is derived. The
time complexity of Algorithm 4 is O(1).

Algorithm 4 Checking Dominance

1: function DomCheck(p, ⟨p−, p+, I⟩)
2: I− ← UndomInterval(p, p−, I);

◃ Set of intervals where p is not dominated by p−

3: I+ ← UndomInterval(p, p+, I);
◃ Set of intervals where p is not dominated by p+

4: Idbs ← I− ∩ I+;

◃ Set of intervals where p is on the DBS
5: S ← S ∪ {⟨p, Idbs⟩};

◃ Add p and its intervals to DBS set S
6: return S;

7: end function

5.1.4 Checking Termination Condition

Property 2 allows us to terminate the processing of the
snapshot DBS query when all the partition angles are
smaller than 2θ. In the dynamic scenario, a continuous

DBS query is split into disjoint sub-queries qi with each
corresponding to a certain time interval. Similarly, we
can safely terminate the processing of a sub-query qi if

all the partition angles are smaller than 2θ.

Consider Example 10 again. After evaluating sub-

query q46 corresponding to (75, 100), if the four parti-
tion angles φba, φaf , φfg and φgb are all smaller than 2θ
during (75, 100), we can terminate the checking process

on this branch.
A partition angle φab formed by two objects a =

(xa, ya)
′ and b = (xb, yb)

′ changes with the time pa-

rameter t ∈ I. We want to decide whether φab is al-
ways smaller than 2θ within the interval I = [Is, Ie].
To simplify the problem, we transform the coordinates

by setting the user’s start position (x̄q, ȳq)
′ to the ori-

gin (0, 0)′, then we get −→q = (xv, yv)
′t. This does not

change the essence of the problem. The vectors from q

to a and b are given as follows:

−→a =

(
xa

ya

)
−

(
xv

yv

)
t (7)

−→
b =

(
xb

yb

)
−
(
xv

yv

)
t. (8)

We analyze the variation of φab by observing the
properties of function cosφab. The detailed derivations
are in Appendix A.3.

– Case A: It corresponds to the case when a and b

are on the same side of the user’s trajectory and
−→
ab

is not parallel to −→q . The condition is expressed as
follows:

(
−→
ab ×−→q ̸= 0) ∧ ((−→a ×−→q)(

−→
b ×−→q) > 0). (9)

The notation −→a ×−→q represents the outer product of
−→a and

−→
b 6. The condition (

−→
ab ×−→q ̸= 0) represents

that
−→
ab is not parallel to −→q . The condition ((−→a ×

−→q)(
−→
b ×−→q) > 0) means that a and b are on the same

side of the user’s trajectory. In this case, cosφab

takes a local maximum 1 at

t =
−→a ×

−→
b

−→
ba ×−→q

, (10)

and takes two local minima at

t =
−|−→q |(−→a ×

−→
b)± |

−→
ab|

√
(−→a ×−→q)(

−→
b ×−→q)

|−→q |(
−→
ab ×−→q)

.

(11)

– Case B : It is the case when a and b are on the
opposite sides of the user’s trajectory, namely,

(
−→
ab ×−→q ̸= 0) ∧ ((−→a ×−→q)(

−→
b ×−→q) < 0). (12)

6 The outer product of two vectors −→v = (vx, vy)′ and −→w =
(wx, wy)′ in the two-dimensional case is defined as

−→v ×−→w = vxwy − vywx = |−→v ||−→w | sin η,

where η is the angle between two vectors.

17

In this case, cosφab takes a local minimum −1 at

t =
−→a ×

−→
b

−→
ba ×−→q

. (13)

– Case C : It corresponds to the case when the vector−→
ab is parallel to −→q , namely,

−→
ab ×−→q = 0. (14)

The function cosφab takes a local minimum at

t =
(|−→a |2

−→
b − |

−→
b |2−→a)×−→q

2|−→q |2(
−→
b ×−→a)

. (15)

Note that the situation that a (or b) is on the user’s tra-

jectory, where (−→a ×−→q)(
−→
b ×−→q) = 0, does not happen

in our problem setting.

Example 11 Let us consider examples of case A, B,
and C. We assume that the query vector is given as
−→q = (1, 1)′t.

– Case A: In Fig. 15, cosφab takes a local maximum

at t = 2.5 and two local minima at t = 1.63 and
t = 3.67.

b (1, 4)

a (2, 3)

x

y

(a)Point layout

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

-2 0 2 4 6 8

co
s

t

a=(2,3), b=(1,4)

(b) Function cosφab

Fig. 15: Case A: a = (2, 3)′, b = (1, 4)′

– Case B : In Fig. 16, cosφab takes a local minimum
t = 2.2.

b (4, 1)

a (1, 3)

x

y

(a) Point layout

-1

-0.5

 0

 0.5

 1

-10 -5 0 5 10 15

co
s

t

a=(1,3), b=(4,1)

(b) Function cosφab

Fig. 16: Case B: a = (1, 3)′, b = (4, 1)′

– Case C : In Fig. 17, cosφab takes a local minimum

t = 3.

b (3, 5)

a (1, 3)

x

y

(a) Point layout

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-4 -2 0 2 4 6 8 10

co
s

t

a=(1,3), b=(3,5)

(b) Function cosφab

Fig. 17: Case C: a = (1, 3)′, b = (3, 5)′

Then we need to check whether cosφab > cos 2θ
holds during the given time interval I = [Is, Ie]. In or-

der to check this condition, we calculate the minimum
value of cosφab for the given interval I. If the minimum
value is greater than cos 2θ, the condition holds. Oth-

erwise, the condition does not hold. We summarize the
minimum values and their corresponding conditions in
decision tables shown in Tables 2, 3, and 4.

Table 2: Decision table for case A

Condition Minimum Value

Ie ≤ t1 cosφab|t=Ie

(Is ≤ t1) ∧ (t1 < Ie ≤ t2) cosφab|t=t1

(Is ≤ t1) ∧ (t2 < Ie ≤ t3) min{cosφab|t=t1 , cosφab|t=Ie}
(Is ≤ t1) ∧ (t3 < Ie) min{cosφab|t=t1 , cosφab|t=t3}

(t1 < Is < t2) ∧ (Ie = t2) cosφab|t=Is

(t1 < Is < t2) ∧ (t2 < Ie ≤ t3) min{cosφab|t=Is , cosφab|t=Ie}
(t1 < Is < t2) ∧ (t3 < Ie) min{cosφab|t=Is , cosφab|t=t3}
(t2 ≤ Is < t3) ∧ (Ie ≤ t3) cosφab|t=Ie

(t2 ≤ Is ≤ t3) ∧ (Ie > t3) cosφab|t=t3

t3 < Is cosφab|t=Is

Note: t1 and t3 are two t-values when cosφab takes two local
minima of cosφab (Eq. (11)), and t2 is the t-value when cosφab

takes the local maximum of cosφab (Eq. (10)).

Table 3: Decision table for case B

Condition Minimum Value

Ie ≤ t∗ cosφab|t=Ie

(Is < t∗) ∧ (t∗ < Ie) −1
t∗ ≤ Is cosφab|t=Is

Note: t∗ is the t-value when cosφab takes a local minimum

(Eq. (13))

Note that, the constitution of the partition angles
changes when the user moves. In Example 9, the sub-

query q42 generates two direction lists L(7,18) = ⟨a, b, d,
f⟩ and L(18,32) = ⟨b, a, d, f⟩ as shown in Fig. 13. Their
partition angle sets are Φ(7,18) = {φab, φbd, φdf , φfa}
and Φ(18,32) = {φba, φad, φdf , φfb}, respectively. The

18

Table 4: Decision table for case C

Condition Minimum Value

Ie ≤ t∗ cosφab|t=Ie

(Is < t∗) ∧ (t∗ < Ie) cosφab|t=t∗

t∗ ≤ Is cosφab|t=Is

Note: t∗ is the t-value when cosφab takes a local minimum

(Eq. (15)).

procedure can terminate when all angles in Φ(7,18) and
Φ(18,32) are bounded by 2θ during (7, 18) and (18, 32),
respectively. Therefore, we need to check partition an-

gles for every list in order to determine whether we have
found out all DBS objects.

For checking, we examine whether all φ’s in every

direction order list are bounded by 2θ within the time
interval attached to the tree node. Assume that we are
given a direction list ΦI (e.g., Φ(7,18) = {φab, φbd, φdf ,

φfa}). Obviously, if |ΦI | < 2π/2θ, the termination con-
dition is not satisfied because the angles in the list
cannot cover 2π angles. If |ΦI | ≥ 2π/2θ, we need to

check whether each partition angle φ in the list satis-
fies φ ≤ 2θ while the time interval I = [Is, Ie].

Algorithm 5 Checking Termination Condition

1: procedure CannotTerminate(p, Ip)
2: foreach ⟨l, I⟩ ∈ D do

◃ Each list in list set D of node ⟨p, Ip⟩.
3: cnt← 0; ◃ Counter for valid φ’s.
4: foreach i← 1 to |l| do

◃ Fetch every object oi in l.
5: if φI

i,(i+1)
≤ 2θ then

◃ φI
i,(i+1)

is formed by oi and oi+1.

◃ Assume that φI
|l|,|l|+1

= φI
|I|,1.

6: cnt← cnt+ 1; ◃ Increment cnt.

7: end if
8: end for
9: if cnt ̸= |l| then
10: return true;

◃ Not all φ’s are valid. Cannot terminate.
11: end if
12: end for
13: return false;

◃ All φ’s are valid. We can terminate.
14: end procedure

The pseudo-code of the algorithm to check the ter-
mination condition (i.e., functionCannotTerminate)

is listed in Algorithm 5. We process every direction or-
der list of the tree node ⟨p, Ip⟩ using the outer loop
(lines 2-12). The counter cnt is the number of valid par-

tition angles which are bounded by 2θ during the time
interval I. The inner loop (lines 4 - 8) processes (|l|−1)
partition angles formed by every two adjacent objects

from o1 to o|l| in the list l. If some partition angles

are larger than 2θ, we return true directly to indicate

that we cannot terminate on this branch (line 10). After
checking all direction lists and we do not stop before-
hand, we return false to indicate that we can terminate

on this branch.

The time complexity of Algorithm 5 depends on the

number of direction lists of the tree node and the num-
ber of objects in every direction list. Assume that ev-
ery direction list has l objects. In the worst case, the

number of direction lists is (
(
l
2

)
+1) as analyzed in Sec-

tion 5.1.2. Thus, the time complexity of the algorithm
is O((

(
l
2

)
+ 1) × l) = O(l3) in the worst case. In fact,

however, the number of lists in practice is very small;
we can always consider it as a constant.

5.2 Processing Continuous R-DBS Queries

We extend our running example in order to illustrate
the concept of continuous R-DBS queries.

Example 12 Let us extend our snapshot R-DBS query

example to the continuous case. Fig. 18 shows that the
user q is moving along the edge e(v6, v4) from v6 to v4
with a constant speed (1, 0)′. The user issues a contin-

uous query for the time interval [0, 6]. The continuous
DBS query predicts the changes of DBS during [0, 6].
The result will be:

DBS =

{
{a, c, d} t ∈ [0, 3.5)

{c, d} t ∈ [3.5, 6]
(16)

The result indicates that when started at v6, objects a,

c, and d are DBS objects. These three objects remain as
DBS objects until the user reaches q′ at t = 3.5. After
that position, object a becomes dominated by object c

and hence the result set is changed to {c, d}. It remains
the same until the user reaches v4.

{a,c,d}

{c,d}

q'

a b
c

d

v1

v2

v3v4

v5

v6

Fig. 18: Example of a continuous R-DBS query

Snapshot R-DBS queries are to retrieve DBS points
based on a fixed query point. However, query points
might move along road networks. For example, users

who carry mobile devices may submit DBS queries even

19

when they are moving. Consequently, we propose con-

tinuous R-DBS queries to support DBS query process-
ing when the location of the query point q keeps chang-
ing in a road network. Given a road network G =

{V,E}, and a set of POI objects P = {p1, . . . , pn} lo-
cated on the edges of G, a continuous R-DBS query
specifies an edge e(vi, vj) as the moving trajectory of a

user, and wants to find out all the objects p ∈ P that
are not dominated by any other object w.r.t. any point
q ∈ e(vi, vj). To simplify our discussion, we assume q

moves only along an edge e of the road network, and
the algorithm developed can naturally support the case
where q moves along multiple edges.

Similar to continuous E-DBS queries, we need to
find out the change moment where the DBS results

change, and then convert the continuous DBS query to
snapshot DBS queries corresponding to those change
moments. However, unlike a continuous E-DBS query

which has a time interval parameter τ , a continuous
R-DBS query uses the position along the moving tra-
jectory e to indicate the moment DBS results change,

i.e., change positions to be distinguishable from change
moment used by continuous E-DBS queries. The change
positions partition the moving trajectory e into dis-

joint sub-segments e′ ⊆ e with DBS queries correspond-
ing to the points of one sub-segment sharing the same
result. In other words, the answer set DBS(q,G) =

∪e′(e′.l,e′.r)⊆e⟨DBS(e′.l, G), e′⟩ where i) e′.l and e′.r re-
fer to the left and right endpoints of the sub-segment e′;
ii) ∪e′ = e(vi, vj); and iii) ∀e′ ∧ ∀q ∈ e′, DBS(q,G) =

DBS(e′.l, G). In the following, we first identify three
important properties related to continuous R-DBS query,
and then present the search algorithm.

As observed that as long as query point q moves
along the edge e(vi, vj), the shortest path from q to an

object p located outside e definitely passes either vi or
vj as the first vertex, i.e., ∀q ∈ e(vi, vj) ∧ p /∈ e(vi, vj),
SP (q, p).sp1 ∈ {vi, vj}. In other words, p changes its

direction w.r.t. q only when SP (q, p) changes its first
vertex from vi to vj (or verse visa). Property 6 is there-
after developed to locate the position sp along e(vi, vj)

that p changes its direction.

Property 6 Given a query point q moving on an edge

e(vi, vj) from vertex vi to vertex vj and an object p, p
changes its direction only when q reaches point sp along
e with dist(vi, sp) expressed in Equation (17)7.

dist(vi, sp) =
1

2
· (|e|+ ||SP (vj , p)| − |SP (vi, p)||), (17)

7 To simplify the presentation, we assume edge e(vi, vj) aligns
with x-axis, and vi is located at the origin. Consequently, the

position of sp can be represented by dist(vi, sp).

where |e| is the length of edge e, and |SP (vi, p)| and
|SP (vj , p)| are the shortest distances from vi, vj to p,
respectively. Specifically, object p does not change its
direction while q moves from vi to sp along e. 2

Example 13 An example is depicted in Fig. 19. As-

sume q moves along edge e(v6, v4). Since |SP (v6, a)| =
6, |SP (v4, a)| = 7, and |e(v6, v4)| = 6, dist(v6, sa) =
1
2 · (6 + 7 − 6) = 3.5. Based on Property 6, we under-

stand that when q moves along the sub-segment (0, 3.5),
the shortest path SP (q, a) takes v6 as the first vertex;
when q moves along the sub-segment (3.5, 6), the short-

est path SP (q, a) takes v4 as the first vertex. In other
words, a remains its direction w.r.t. q when q moves
along the sub-segment (0, 3.5), then it changes the di-

rection when q reaches 3.5, and remains its direction
w.r.t. q again when q moves along (3.5, 6).

q

v1

v2

v3v4

v5

v6

a b
c

d

Fig. 19: Property 6 of continuous R-DBS queries

We also observe that the dominance relationship has

the continuity property as presented in Properties 7 and
8, respectively.

Property 7 Given an object p and a query point q
moving on an edge e(vi, vj), if p is dominated when q

is located at vi, and p is dominated when q is located
at vj , object p is guaranteed to be dominated when q
is located at any point on the edge e(vi, vj). 2

Property 8 Given an object p and a query point q
moving on an edge e(vi, vj), if p is a DBS point when q
is located at vi, and p is a DBS point when q is located

at vj , object p is guaranteed to be a DBS point when q
is located at any point on the edge e(vi, vj). 2

Due to the space limitation, the proofs for Prop-
erty 7 and Property 8 are presented in Appendix A.4.

Example 14 An example is depicted in Fig. 20. When

q = v6, SP (q, a) = (6, v6v3), SP (q, b) = (7, v6v3) and
thus a ≺ b. When q = v4, SP (q, a) = (7, v4v3), SP (q, b)
= (8, v4v3) and hence a ≺ b. Based on Property 7, b is

dominated when q is located at any point on the edge

20

e(v6, v4), and hence b will not be a DBS point when q

moves along e(v6, v4). On the other hand, c is a DBS
point w.r.t. q = v6 and q = v4. Consequently, based
on Property 8, c is the DBS point w.r.t. q located at

any position along e(v6, v4). However, a is a DBS point
w.r.t. q = v6, but is not a DBS point w.r.t. q = v4.

q

v1

v2

v3v4

v5

v6

a b
c

d

(a)

v1

v2

v3
v4

v5

v6

a
b

c

d

(b)

Fig. 20: Properties 7 and 8 of continuous R-DBS queries

Given a continuous DBS query issued at edge e(vi, vj),
Property 7 guarantees that objects dominated w.r.t.

q = vi and q = vj are excluded from the answer set, and
Property 8 guarantees that DBS points w.r.t. both q =
vi and q = vj are for sure DBS points w.r.t. q located at

any position of e(vi, vj). In other words, DBS(vi, G) ∪
DBS(vj , G) form the superset of the answer set, i.e.,
candidates of DBS points w.r.t. to q ∈ e(vi, vj) must be

inDBS(vi, G)∪DBS(vj , G). Consequently, we can first
issue two snapshot R-DBS queries on point vi and vj .
Based on the returned resultsDBS(vi, G) andDBS(vj ,
G), two sets, denoted as Sint and Sdif , are derived.

Here, set Sint refers to the intersection of DBS(vi, G)
andDBS(vj , G), i.e., Sint = DBS(vi, G)∩DBS(vj , G);
and set Sdif refers to the rest, i.e., Sdif = DBS(vi, G)∪
DBS(vj , G) − Sint. Based on Property 8, all the ob-
jects in Sint must be DBS points for any point along
trajectory e(vi, vj) and hence only objects in Sdif re-

quire evaluations. For each object p ∈ Sdif , we find the
position sp along e(vi, vj) that p changes its direction
based on Property 6. If p ∈ DBS(vi, G), p is a DBS

point when q moves along subsegment (0, sp). Other-
wise, p ∈ DBS(vj , G), and p is a DBS point when q
moves along subsegment e′(sp, |e(vi, vj)|).

Let us consider our example again. We issue two
snapshot R-DBS queries at the endpoints of e(v6, v4),
and then obtainDBS(v6, G) = {a, c, d} andDBS(v4, G) =

{c, d}. Accordingly, we have Sint = {c, d}, and Sdif =
{a}. As object a is the only point in Sdif , we derive
sa = 3.5 based on Eq (17) and thus a is a DBS point

along subsegment (0, 3.5). Consequently, the continuous
DBS query issued at edge e(v6, v4) has {⟨{a, c, d}, (0,
3.5)⟩, ⟨{c, d}, (3.5, 6)⟩} as the answer set. Algorithm 6

presents the procedure of continuous R-DBS Queries.

Algorithm 6 Continuous R-DBS Query

1: procedure ContinuousRDBSQuery(G,P ,eq(v1, v2))
2: DBSv1 ← SnapshotRDBSQuery(v1, G, P);

◃ DBS objects when q is at v1
3: DBSv2 ← SnapshotRDBSQuery(v2, G, P);

◃ DBS objects when q is at v2
4: X ← ∅; ◃ positions where an object’s direction changes

5: foreach p ∈ DBSv1 ∪DBSv2 −DBSv1 ∩DBSv2 do
6: distv1,p ← Dist(v1, p);

◃ the length of the shortest path from v1 to p
7: distv2,p ← Dist(v2, p);

◃ the length of the shortest path from v2 to p
8: x← (|eq |+ |distv2,p − distv1,p|)/2;

◃ the position where p’s direction changes
9: X ← X ∪ x; ◃ Add x into X.

10: end for
11: SG← GetSubSegments(eq , X);

◃ sub-segments split by X
12: foreach ei ∈ SG do

13: DBSmidi ← SnapshotRDBSQuery(midi, G, P);
◃ DBS objects when q is at the midpoint midi of ei.

14: DBS ← DBS ∪ {⟨DBSmidi , ei⟩};
◃ Add {⟨DBSmidi , ei⟩} to DBS.

15: end for
16: return DBS;
17: end procedure

6 Experiments

In this section, we report the experimental evaluation.

In the following, we first explain the detailed settings
of the experimental study, and then present the exper-
imental results in the Euclidean space E and the road
network R, respectively.

6.1 E-DBS Queries

In the Euclidean space E, we use both real and syn-
thetic datasets, with their properties summarized in Ta-
ble 5. For the real dataset, denoted as Real, we consider
the road line segments of Long Beach in the TIGER
database [17], and extract the midpoint for each road
line segment to form a point dataset. It in total consists

of 50, 747 points normalized in [0, 1000]×[0, 1000] space.
The synthetic datasets, denoted as Synρ%, are gener-
ated based on the uniform distribution in the [0, 1000]×
[0, 1000] spaces, with density ρ indicating the average
number of points falling into [0, 1]× [0, 1] unit. All the
datasets are indexed in R∗-trees [1] with the page size

set to 8, 192 bytes. All the algorithms are implemented
in GNU C++ and conducted on an Intel Core2 Duo
2.40 GHz PC with 2.0 GB RAM running Ubuntu Linux

2.6.31.

21

Table 5: Datasets

Dataset Cardinality Density (ρ)

Real 50, 747 −
Syn8% 80, 000 0.08

Syn5% 50, 000 0.05

Syn2% 20, 000 0.02

6.1.1 Performance of Snapshot E-DBS Queries

First, we evaluate the performance of snapshot E-DBS
queries. We consider the number of DBS objects, the

number of checked nearest neighbors, and the CPU
costs, denoted as DSS, checked NN, and CPU, as the
performance metrics. The performance of snapshot queries

under different θ values for different datasets is depicted
in Fig. 21.

 0

 10

 20

 30

 40

 50

 60

 70

15° 25° 35° 45° 55° 65° 75° 85°
 0

 0.2

 0.4

 0.6

 0.8

 1
number time (sec)

DSS
checked NN

CPU

(a) Real

 0

 10

 20

 30

 40

 50

 60

 70

15° 25° 35° 45° 55° 65° 75° 85°
 0

 0.2

 0.4

 0.6

 0.8

 1
number time (sec)

DSS
checked NN

CPU

(b) Syn8%

 0

 10

 20

 30

 40

 50

 60

 70

15° 25° 35° 45° 55° 65° 75° 85°
 0

 0.2

 0.4

 0.6

 0.8

 1
number time (sec)

DSS
checked NN

CPU

(c) Syn5%

 0

 10

 20

 30

 40

 50

 60

 70

15° 25° 35° 45° 55° 65° 75° 85°
 0

 0.2

 0.4

 0.6

 0.8

 1
number time (sec)

DSS
checked NN

CPU

(d) Syn2%

Fig. 21: Performance of snapshot queries w.r.t. θ

As shown in Fig. 21, the total number of DBS ob-
jects changes when θ varies in the range of [15◦, 85◦].

The number decreases while θ increases. The reason be-
hind is that an object can dominate larger angle ranges
given a larger θ and hence more objects are dominated

and excluded from the DBS result. On the other hand,
we also observe that the number of DBS objects is not
affected by the densities of datasets.

The number of checked NN also changes with differ-
ent θ’s. It decreases when θ increases because it is easier
to reach the early termination condition with a larger θ.

Consequently, fewer nearest neighbors are approached

to obtain the final results. We also observe that the

number of NNs evaluated is much smaller than the to-
tal number of the objects in the dataset, as roughly only
0.14% of data points are evaluated. These results show

that our algorithms can respond to snapshot queries
promptly and have good performance. Additionally, the
number reduces fast when θ is small (θ < π/4) and re-

duces steadily when θ is relatively large (θ > π/4). It
means that our algorithms can achieve more stable per-
formance with relatively larger θ’s.

The CPU cost depends on the number of checked
nearest neighbors. It decreases when θ increases, but
the CPU cost is independent on the densities of the

datasets.

(a) θ = 15◦ (b) θ = 30◦

(c) θ = 45◦ (d) θ = 45◦

Fig. 22: Images of snapshot queries

We also capture some images of the DBS points cor-
responding to different θ’s and user position for the
snapshot case, as depicted in Fig. 22. The triangular

shape point in the center refers to the user’s position
(i.e., q), the red solid points are the DBS objects, and
the blue hollow ones are the checked nearest neighbors.

Fig. 22(a), Fig. 22(b) and Fig. 22(c) refer to the case
where the user position is fixed but θ value changes.
We can observe that as θ increases, both the number

of DBS objects and the number of checked NN objects
reduce. On the other hand, Fig. 22(c) and Fig. 22(d)
demonstrate the case where θ value is fixed at 45◦ but

user positions change.

In addition, we also evaluate the impact of data dis-
tributions on the search performance. Three synthetic

datasets (denoted as Corr, Anti and Uni) are generated

22

with each consisting of 10, 000 objects in [0, 1000] ×
[0, 1000] space. Corr simulates correlated distribution
with a correlated coefficient 0.6, Anti simulates the anti-
correlated distribution with a correlated coefficient−0.6,

and data set Uni simulates the uniform distribution. 100
random queries are issued and the average performance
is reported in Fig. 23. We observe that the average num-

ber of DBSs, the number of checked NNs, and the CPU
cost are not affected by the object distributions.

 0

 2

 4

 6

 8

 10

 12

20° 40° 60° 80°

DBS

(a) No. of DBS in Uni

 0

 10

 20

 30

 40

 50

 60

20° 40° 60° 80°
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

number time (sec)
CPU

checked NN

(b) Performance in Uni

 0

 2

 4

 6

 8

 10

 12

20° 40° 60° 80°

DBS

(c) No. of DBS in Corr

 0

 10

 20

 30

 40

 50

 60

20° 40° 60° 80°
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

number time (sec)
CPU

checked NN

(d) Performance in Corr

 0

 2

 4

 6

 8

 10

 12

20° 40° 60° 80°

DBS

(e) No. of DBS in Anti

 0

 10

 20

 30

 40

 50

 60

20° 40° 60° 80°
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

number time (sec)
CPU

checked NN

(f) Performance in Anti

Fig. 23: Performance of snapshot queries for data sets
with different distributions

6.1.2 Performance of Continuous E-Queries

In the experiments of continuous DBS queries, we eval-
uate the number of change moments, the size and the

depth of the process tree, and the CPU cost under dif-
ferent θ values. We consider the scenario such that the
user randomly select a position as the starting point

and then keeps moving with a constant speed of 0.06

unit distance per unit time8 along the positive x-axis

during different time intervals (i.e., [0, 10], [0, 20] and
[0, 30]).

 0

 1

 2

 3

 4

 5

 6

30° 40° 50° 60° 70° 80°

number
[0,10]
[0,20]
[0,30]

(a) Real

 0

 1

 2

 3

 4

 5

 6

30° 40° 50° 60° 70° 80°

number
[0,10]
[0,20]
[0,30]

(b) Syn8%

 0

 1

 2

 3

 4

 5

 6

30° 40° 50° 60° 70° 80°

number
[0,10]
[0,20]
[0,30]

(c) Syn5%

 0

 1

 2

 3

 4

 5

 6

30° 40° 50° 60° 70° 80°

number
[0,10]
[0,20]
[0,30]

(d) Syn2%

Fig. 24: Number of change moments of continuous

queries w.r.t. θ

Fig. 24 shows the number of change moments un-
der different θ’s and different time intervals of differ-

ent datasets. It is observed that in general the num-
ber of change moments decreases while θ increases in
a small θ-range, but it keeps steady once θ reaches a

large value. This is because an object pi can dominate
all the objects pj with pj ∈ [wi− θ, wi+ θ] and dj > di.
Given a large θ, the range [wi − θ, wi + θ] does not

change much when the user moves. It also means that
result to a continuous DBS query becomes stable for
a large θ. We also observe that the number of change

moments becomes smaller when the dataset has a lower
density. When the dataset has less objects, each DBS
point dominates less points and hence the user’s move-

ment causes less changes on the objects dominated by
p. Last but not least, the number of change moments
also decreases while the time interval becomes shorter.

Fig. 25 illustrates the sizes of the process trees and

the CPU costs under different θ’s when the time interval
is fixed at [0, 30]. In general, the process tree reduces

8 We simulate the user’s moving speed as human’s average
walking speed 1 m/s. In the space of our datasets, 1 unit dis-
tance equals to 1 kilometer approximately and we regard 1 unit

time as 1 minute.

23

 0

 100

 200

 300

 400

 500

 600

 700

30° 40° 50° 60° 70° 80°
 0

 0.5

 1

 1.5

 2

 2.5

number time (sec)
tree nodes

CPU

(a) Real

 0

 100

 200

 300

 400

 500

 600

 700

30° 40° 50° 60° 70° 80°
 0

 0.5

 1

 1.5

 2

 2.5

number time (sec)
tree nodes

CPU

(b) Syn8%

 0

 100

 200

 300

 400

 500

 600

 700

30° 40° 50° 60° 70° 80°
 0

 0.5

 1

 1.5

 2

 2.5

number time (sec)
tree nodes

CPU

(c) Syn5%

 0

 100

 200

 300

 400

 500

 600

 700

30° 40° 50° 60° 70° 80°
 0

 0.5

 1

 1.5

 2

 2.5

number time (sec)
tree nodes

CPU

(d) Syn2%

Fig. 25: Tree sizes and CPU costs of continuous queries
vs. θ w.r.t. time interval [0, 30]

its size when θ increases; because the larger the θ is,
the easier the termination condition is achieved. It is

observed that only a small number of objects (in aver-
age around 1.4% of the dataset) require evaluation. It
demonstrates that our termination strategy works well

for continuous queries and it is possible to respond to
continuous queries promptly. Additionally, the object
density has a direct impact on the size of the process

tree. This is because the process tree is constructed
based on the distance order of objects, and the or-
der changes less frequently when the dataset density

is smaller.

The CPU cost depends on the size of the process
tree and thus it has the same tendency as the tree size—

the query cost also decreases when θ grows and/or the
object density decreases.

In Fig. 26, we also present tree depths for continous
queries under different θ’s and different time intervals.
The tree depth decreases when θ grows because we can

terminate the query procedure earlier when θ is larger.
On the other hand, the tree depth is not affected by
object density. It means that the growth of the tree size

is caused by the increase of the branches. In addition,
the tree depth is not affected by the length of the time
interval. Therefore, our algorithms for continuous DBS

queries are stable enough for different object densities
and different time interval lengths.

We also evaluate performance of continuous DBS

queries using data sets Uni, Corr and Anti with different

 0

 5

 10

 15

 20

 25

30° 40° 50° 60° 70° 80°

level
[0,10]
[0,20]
[0,30]

(a) Real

 0

 5

 10

 15

 20

 25

30° 40° 50° 60° 70° 80°

level
[0,10]
[0,20]
[0,30]

(b) Syn8%

 0

 5

 10

 15

 20

 25

30° 40° 50° 60° 70° 80°

level
[0,10]
[0,20]
[0,30]

(c) Syn5%

 0

 5

 10

 15

 20

 25

30° 40° 50° 60° 70° 80°

level
[0,10]
[0,20]
[0,30]

(d) Syn2%

Fig. 26: Tree depths of continuous queries

object distributions. Fig. 27 (a) shows the numbers of
change moments for the three data sets with different

object distributions. Fig. 27 (b) shows the CPU costs
for the three data sets. The number of change moments
and the CPU costs are not influenced by object distri-

butions obviously.

 0

 0.5

 1

 1.5

 2

30° 50° 70° 90°

Uni
Corr
Anti

(a) No. of Change Moments

 0

 0.2

 0.4

 0.6

 0.8

 1

30° 50° 70° 90°

Uni
Corr
Anti

(b) CPU Cost (second)

Fig. 27: Performance of continuous queries for data sets

with different distributions

6.2 R-DBS Queries

In evaluating the performance of R-DBS queries, we
adopt the map of Oldenburg (OL) with 6105 nodes

and 7035 edges as the road network which is obtained
from [32] and also used in [31]. Six object sets with
different cardinalities are generated via randomly ex-

tracting the points from the line segments of the road

24

network. All the algorithms are implemented in GNU

C++ and the experiments are conducted on an Intel
Core2 Duo 2.40 GHz PC (2.0 GB RAM) with a Fedora
Linux 2.6.32.

6.2.1 Snapshot R-DBS Queries

In the experiments of snapshot R-DBS queries, 100
snapshot DBS queries are generated randomly on the
road network, and the average performance under dif-

ferent object set cardinalities is reported in Fig. 28. As
observed, the number of DBS objects decreases while
the size of object set increases. This is because an ob-

ject is more likely to be dominated if there are more
objects. On the other hand, the cardinality does not
have a significant impact on the CPU cost. We use the

Dijkstra algorithm to check the shortest paths for can-
didate objects rather than all. After finding out the
shortest path for an vertex, we only consider the near-

est objects on each adjacent edge because the further
ones are definitely dominated by the nearest one. In or-
der to illustrate the DBS objects in road network, we

show an image of a snapshot query at an edge in the
OL road network in Appendix A.5.

 0

 5

 10

 15

 20

 25

 30

1K 2K 3K 4K 5K 6K

(a) No. of DBS

 0

 0.2

 0.4

 0.6

 0.8

 1

1K 2K 3K 4K 5K 6K

(b) CPU cost (second)

Fig. 28: Performance of snapshot R-DBS queries w.r.t.

the cardinality of the object set

6.2.2 Continuous R-DBS Queries

In the experiments of continuous queries in the OL road
network, we also issue 100 random queries and compare

the average number of change moments in Fig. 29 (a)
and the average CPU cost in Fig. 29 (b). The horizon-
tal axis represents the cardinalities of object set vary-

ing in the range of {1K, 2K, . . . , 6K} and the vertical
axis represents the number of change moments and the
CPU cost, respectively. It is observed that the change

moments decreases while the object set size increases,
and the CPU cost is independent of the object set size.
We also show images of a continuous query at an edge

in the OL road network in Appendix A.5.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1K 2K 3K 4K 5K 6K

(a) No. of change moments

 0

 0.2

 0.4

 0.6

 0.8

 1

1K 2K 3K 4K 5K 6K

(b) CPU cost (second)

Fig. 29: Performance of continuous R-DBS queries

7 Conclusions

In this paper, we have proposed a new type of spatial
queries called direction-based surrounder (DBS) queries.

In particular, we have studied two classes of DBS queries,
including snapshot DBS queries and continuous DBS
queries. We developed efficient algorithms for process-

ing snapshot DBS queries and continuous DBS queries,
respectively. Based on extensive experiments with both
real and synthetic datasets, we demonstrated the per-

formance of our proposed algorithms. The experimental
results confirm that the proposed algorithms work well
for both the snapshot case and the continuous case.

In the future, we would like to extend our work in
the following four interesting directions. First, we in-

tend to explore other approaches (e.g., using the MBR-
trimming method in [45]) to tackle the DBS query. Sec-
ond, we plan to extend our work considering non-spatial

attributes. For example, we can consider a query such
as “find near and less expensive hotels around me”. In
this case, we should consider the non-spatial attribute

“price” as well as the distance and the direction. The
third interesting one is the situation of a moving user
along with several moving objects. Assuming that a

football game is going on, a player wants to pass the
ball to his teammate. His teammates and adversaries
have different directions and distances according to his

current position. In this situation all the objects are
moving including the user. We can help this football
player to make a good decision of passing the ball by

considering distances and directions. The last one is
to construct a prototype system to provide DBS query
services for mobile users based on the proposed ideas.

Acknowledgements Xi Guo and Yoshiharu Ishikawa were partly
supported by the Grant-in-Aid for Scientific Research (#21013023,
#22300034) from the Japan Society for the Promotion of Science

(JSPS) and the FIRST Program, Japan. Yunjun Gao was sup-
ported in part by NSFC Grant 61003049, ZJNSF Grant Y1100278,
the Fundamental Research Funds for the Central Universities un-
der Grant No.2010QNA5051, the Key Project of Zhejiang Uni-

versity Excellent Young Teacher Fund (Zijin Plan), and the Re-

25

turned Scholar Funds for the Personnel Office of Zhejiang Province.
The authors are grateful to the anonymous reviewers and Prof.

Dr. Ralf Hartmut Güting and Prof. Dr. Nikos Mamoulis, the
guest editors, for their constructive and insightful advice. They
also appreciate the valuable comments from Prof. Dr. Cyrus Sha-

habi, Prof. Dr. Hiroyuki Kitagawa, and Dr. Xin Xie.

References

1. N. Katayama, “R∗-tree Library,” Dec. 1997; http:

//research.nii.ac.jp/~katayama/homepage/research/

srtree/English.html.
2. S. Börzsönyi, D. Kossmann, and K. Stocker, “The Skyline
Operator,” ICDE, pp. 421-430, 2001,

3. Z. Chen, H. T. Shen, X. Zhou, and J. X. Yu, “Monitoring Path
Nearest Neighbor in Road Networks,” SIGMOD, pp. 591-602,

2009.
4. J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with
Presorting,” ICDE, pp. 717-719, 2003.

5. S. Nutanong, E. Tanin, and R. Zhang, “Visible Nearest Neigh-

bor Queries,” DASFAA, pp. 876-883, 2007.
6. Y. Gao, B. Zheng, G. Chen, W.-C. Lee, and G. Chen, “Contin-
uous Visible Nearest Neighbor Queries,” EDBT, pp. 144-155,
2009.

7. GNU, “GNU Scientific Library,” http://www.gnu.org/

software/gsl/.
8. Z. Huang, H. Lu, B. C. Ooi, and A. K. H. Tung, “Continuous
Skyline Queries for Moving Objects,” TKDE, vol.18, no.12, pp.

1645-1658, 2006.
9. K. C. K. Lee, W.-C. Lee, and H. V. Leong, “Nearest Sur-
rounder Queries,” ICDE, pp. 85, 2006.

10. D. Papadias, Y. Tao, G. Fu, and B. Seeger, “An Optimal

and Progressive Algorithm for Skyline Queries,” SIGMOD, pp.
467-478, 2003.

11. K. Patroumpas and T. Sellis, “Monitoring Orientation of
Moving Objects Around Focal Points,” SSTD, pp. 228-246,

2009.
12. K. Raptopoulou, A. Papadopoulos, and Y. Manolopoulos,
“Fast Nearest-Neighbor Query Processing in Moving-Object
Databases,” GeoInformatica, vol.7, no.2, pp. 113-137, 2003.

13. P. Godfrey, R. Shipley, and J. Gryz, “Maximal Vector Com-
putation in Large Data Sets,” VLDB, pp. 229-240, 2005.

14. J. Schiller and A. Voisard, Location-Based Services, first ed.,
Morgan Kaufmann, 2004.

15. Y. Tao, D. Papadias, and Q. Shen, “Continuous Nearest
Neighbor Search,” VLDB, pp. 287-298, 2002.

16. X. Guo, Y. Ishikawa, and Y. Gao, “Direction-Based Spatial
Skylines,” MobiDE, pp. 73-80, 2010.

17. “TIGER, U.S. Census Bureau,” http://tiger.census.gov/.
18. B. Zheng, K. C. K. Lee, andW.-C. Lee, “Location-Dependent
Skyline Query,” MDM, pp. 148-155, 2008.

19. N. Chen, L. Shou, G. Chen, Y. Gao and J. Dong, “Predictive
Skyline Queries for Moving Objects,” DASFAA, pp.278-282,

2009.
20. S. Šaltenis, C.S. Jensen, S.T. Leutenegger, and M.A. Lopez,
“Indexing the Positions of Continuously Moving Objects,” SIG-
MOD, pp.331-342, 2000.

21. M.-W. Lee and S.-W. Hwang, “Continuous Skylining on
Volatile Moving Data,” DBRank, pp.1568-1575, 2009.

22. X. Huang and C.S. Jensen, “’In-Route Skyline Querying for
Location-Based Services,” W2GIS, pp.120-135, 2004.

23. W.-T. Balke and U. Güntzer, “Multi-objective Query Pro-
cessing for Database Systems,” VLDB, pp. 936-947, 2004.

24. A. Vlachou, C. Doulkeridis and Y. Kotidis, “Angle-based
Space Partitioning for Efficient Parallel Skyline Computation,”

SIGMOD, pp.227-238, 2008.

25. Z. Huang, C.S. Jensen, H. Lu, and B.C. Ooi, “Skyline

Queries Against Mobile Lightweight Devices in MANETs,”
ICDE, pp.66, 2006.

26. K. C. K. Lee, J. Schiffman, B. Zheng, W.-C. Lee, and
H. V. Leong, “Tracking Nearest Surrounders in Moving Ob-

ject Environments,” ICPS, pp. 3-12, 2006.
27. K. C. K. Lee, J. Schiffman, B. Zheng, W.-C. Lee, and
H. V. Leong, “Round-Eye: A system for tracking nearest sur-
rounders in moving object environments,” JSS, vol.80, issue 12,

pp. 2063-2076, 2007.
28. E. W. Dijkstra, “A Note on Two Problems in Connexion with
Graphs,” Numerische Mathematik, vol. 1, pp. 269-271, 1959.

29. N. Jing, Y.-W. Huang, and E. A. Rundensteiner, “Hierarchi-

cal Encoded Path Views for Path Query Processing: An Op-
timal Model and Its Performance Evaluation,” TKDE, vol.10,
no.3, pp. 409- 432, 1998.

30. F. Wei, “TEDI: efficient shortest path query answering on

graphs,” SIGMOD, pp. 99-110, 2010.
31. M. Yiu and N. Mamoulis, “Clustering Objects on a Spatial
Network,” SIGMOD, pp. 443-454, 2004.

32. T. Brinkhoff, “A Framework for Generating Network-Based
Moving Objects,” GeoInformatica, vol.6, no.2, pp.153-180,
2002.

33. H. Hu, D.L. Lee, and J. Xu, “Fast Nearest Neighbor Search

on Road Networks, ” EDBT, pp. 186-203, 2006.
34. C. Shahabi, M.R. Kolahdouzan, and M. Sharifzadeh, “A
Road Network Embedding Technique for K-Nearest Neighbor
Search in Moving Object Databases, ” GIS, pp. 94-100, 2002.

35. K.C.K. Lee, W.-C. Lee, and B. Zheng, “Fast Object Search
on Road Networks, ” EDBT, pp. 1018-1029, 2009.

36. C. Jensen, J. Kolářvr, T. Pedersen and I. Timko, “Nearest
Neighbor Queries in Road Networks,” GIS, pp. 1-8, 2003.

37. H.-J. Cho, and C.-W. Chung, “An efficient and scalable ap-
proach to CNN queries in a road network, ” VLDB, pp. 865-876,
2005.

38. H. Samet, Hanan, J. Sankaranarayanan, and H. Alborzi,
“Scalable network distance browsing in spatial databases, ”
SIGMOD, pp. 43-54, 2008.

39. U. Demiryurek, F. Banaei-Kashani, and C. Shahabi, “Effi-

cient Continuous Nearest Neighbor Query in Spatial Networks
Using Euclidean Restriction, ” SSTD, pp. 25-43, 2009.

40. D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, “Query
processing in spatial network databases,” VLDB, pp. 802-813,

2003.
41. M. Kolahdouzan and C. Shahabi, “Voronoi-based K nearest
neighbor search for spatial network databases,” VLDB, pp. 840-
851, 2004.

42. H. Hu, D.L. Lee, and V.C.S. Lee, “Distance indexing on road
networks,” VLDB, pp. 894-905, 2006.

43. K. Mouratidis, M. Yiu, D. Papadias, and N. Mamoulis, “Con-
tinuous nearest neighbor monitoring in road networks,” VLDB,

pp. 43-54, 2006.
44. M.R. Kolahdouzan and C. Shahabi, “Continuous K Near-
est Neighbor Queries in Spatial Network Databases,” STDBM,

pp.44-50, 2004.
45. Y. Tao, D. Papadias, and X. Lian, “Reverse kNN Search in
Arbitrary Dimensionality,” VLDB, pp. 744-755, 2004.

