Query Processing with Materialized Views
in a Traceable P2P Record Exchange Framework

Fengrong Li! and Yoshiharu Ishikawa?

! Graduate School of Information Science, Nagoya University
2 Information Technology Center, Nagoya University
Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
lifr@db.itc.nagoya-u.ac.jp, ishikawa@itc.nagoya-u.ac.jp

Abstract. Materialized views which are derived from base relations and
stored in the database are often used to speed up query processing. In
this paper, we leverage them in a traceable peer-to-peer (P2P) record
exchange framework which was proposed to ensure reliability among the
exchanged data in P2P networks where duplicates and modifications of
data occur independently in autonomous peers. In our proposed frame-
work, the provenance/lineage of the exchanged data can be available by
issuing tracing queries. Processing for tracing queries was based on the
“pay-as-you-go” approach. The framework can achieve low maintenance
cost since each peer only maintains minimum amount of information for
tracing. However, the user must pay relatively high query processing cost
when he or she issues a query. We consider that the use of materialized
views allows more efficient query execution plans. In this paper, we focus
on how to incorporate query processing based on materialized views in
our framework.

1 Introduction

With the advance of high-performance of computer and the wide spread of high-
speed network, peer-to-peer (P2P) network has become a new paradigm for
information sharing. However, unlike the traditional client-server architecture,
a P2P network allows a peer to publish information and share data with other
peers without going through a separate server computer. It brings us a critical
problem; since copies and modifications of data are performed independently
by autonomous peers without a specific central server control, it is difficult to
determine how data is exchanged among the peers and why the data is located
in a peer.

To interpret database contents and to enhance the reliability of data, the no-
tion of data provenance is considered very important. Practical and theoretical
methodologies for describing, querying, and maintaining provenance information
have been proposed, for example in [5,6]. The importance of understanding the
process by which a result was generated is fundamental to many real life applica-
tions, such as fields of bioinformatics and archaeology. Without such information,
users cannot reproduce, analyze or validate processes or experiments.

2 F. Li and Y. Ishikawa

Based on the background, to ensure the reliability of data exchanged in P2P
networks, we have proposed a traceable P2P record exchange framework in [16,
18]. In the framework, a record means a tuple-structured data item that obeys a
predefined schema globally shared in a P2P network. An important feature of the
P2P record exchange framework is that it is based on the database technologies
to support the notion of traceability. User can trace the lineage of target record
by issuing a tracing query. Processing for tracing queries was described in [19].

In this paper, we focus on the issue on how to improve query processing per-
formance by using materialized views. The remainder of this paper is organized
as follows. Section 2 describes the fundamental framework of the proposed P2P
record exchange system. Section 3 shows the current strategy for query process-
ing and analyzes its problems. Section 4 explains how materialized views are
used to improve efficiency in our context for query processing and discusses the
maintenance of materialized views. Section 5 reviews the related work. Finally,
Section 6 concludes the paper and addresses the future work.

2 Traceable P2P Record Exchange Framework

Figure 1 shows the overview of the traceable P2P record exchange framework
proposed in [16, 18], but some terminologies are revised.

User A User N
User Layer ves

browse, search, browse, search,
g register, delete @ register, delete
Record pmmmmm : /0¢9/ trace i Record pummEE local
1 Set view Set view E=R)
GlobalLayer DataView Chané'e View ExchangeView : global
[|] [|] [] virtual
b2\ ~ view

Local Layer

Data@'A’ Change@'A Data@’'N’ Change@’N’
[| | [1 1 | pee [|] [|]

From@'N’ To@'N’
[[] [| |

From@A To@A
] [] |1 []

Peer A Peer N

Fig. 1. Traceable P2P Record Exchange Framework

In the framework, we assume that each peer corresponds to a user and main-
tains the records owned by the user. Each record has the same structure, which
is defined by a predefined schema that globally shared within the network. The
framework has the following main features:

Query Processing with Materialized Views 3

— In our P2P record exchange framework, every peer can act as a provider
and a searcher. Records are exchanged between peers and peers can modify,
store, and delete their records independently. Each peer has its own record
set in the user layer, but their contents are not the same. Peers can behave
autonomously and exchange records when required. A peer can find desired
records from other peers by issuing a query.

— For reliable data sharing in a P2P network, we want to know, for example, the
original creator of the given record and the path of the record in circulation
before reaching the current peer. We assume that each peer maintains its
own relational tables for storing record exchange and modification histories
in the local layer and facilitates traceability. All the information required for
tracing is maintained in distributed peers. When a tracing query is issued,
the query is processed by coordinating related peers in a distributed and
recursive manner.

— For ease of understanding and writing tracing queries, we provide an abstrac-
tion layer called the global layer which virtually integrates all distributed
relations and a datalog-like query language [2] for writing tracing queries in
an intuitive manner.

In the following, we briefly explain the three-layer model using an example.

User Layer For the ease of presentation, we assume that each peer in a P2P
network maintains a Novel record set that has two attributes title and author.
Figure 2 shows three record sets maintained by peers A to C. Each peer maintains
its own records and wishes to incorporate new records from other peers in order
to enhance its own record set. For example, the record (t1, a2) in peer A may
have been copied from peer B and registered in peer A’s local record management
system.

Peer A Peer B Peer C
titlelauthor titlelauthor titlelauthor

Fig. 2. Record Sets in Three Peers

Local Layer In the local layer, each peer maintains minimum amount of informa-
tion that is required to represent its own record set and local tracing information.
In our framework, every peer maintains the following four relations in its local
record management system implemented using an RDBMS.

— Data[Novel]: It maintains all the records held by peer. Figure 3 shows
Data[Novel] for peer A. Every record has its own record id for the mainte-
nance purpose. Each record id should be unique in the entire P2P network.
Note that there are additional records compared to Fig. 2; they are deleted
records and usually hidden from the user. They are maintained for data
provenance.

4 F. Li and Y. Ishikawa

— Change [Novel]: It is used to hold the creation, modification, and deletion
histories. Figure 4 shows an example for peer A. Attributes from_id and
to_id express the record ids before/after a modification. Attribute time
represents the timestamp of modification. When the value of the from_id
attribute is the null value (—), it represents that the record has been created
at the peer. Similarly, when the value of the to_id attribute is the null value,
it means that the record has been deleted.

id |[title] author from_id| to-id [time

#A01| t1 | a2 #;02 #602
#A02| t6 ab ..
#A03| t7 | a6 #A02 #203
— |#A04] ...
#A04| t3 | a3 wnoa | o
Fig. 3. Data[Novel] @A’ Fig. 4. Change [Novel] @’A’

— From[Novel]: It records which records were copied from other peers. When
a record is copied from other peer, attribute from_peer contains the peer
name and attribute from_id has its record id at the original peer. Attribute
time stores the timestamp information.

id ‘from,peer‘from,id‘time id ‘to,peer‘ to_id ‘time
#A01] B [#B02] ... #A04] C [#C02| ...
Fig. 5. From[Novel]@Q’A’ Fig. 6. To[Novel] @’A’

— To[Novel]: It plays an opposite role of From[Novel] and stores informa-
tion which records were sent from peer A to other peers. Fig. 6 shows the
To[Novel] relation of peer A.

Global Layer Three virtual global views are constructed by unifying all the
relations in distributed peers. Relation Data[Novel] in Fig. 7 expresses a view
that unifies all the Data[Novel] relations in peers A to C shown in Fig. 2. The
peer attribute stores peer names. Relation Change [Novel] shown in Fig. 8 is
also a global view which unifies all Change [Novel] relations in a similar manner.
Exchange [Novel] shown in Fig. 9 unifies all the underlying From[Novel] and
To[Novel] relations in the local layer. Attributes from peer and to_peer ex-
press the origin and the destination of record exchanges, respectively. Attributes
from_id and to_id contain the ids of the exchanged record in both peers.
Since recursive processing is required to collect historical information, our
framework provides a modified version of datalog query language [2]. For ex-

Query Processing with Materialized Views 5

peer| id |title|author peer|from_id|to_ id [time
A |#A01] t1 | a2 A — [#A02| ...
A |#A02| t6 | ab A | #A02| — | ...
A |#A03| t7 | a6 A | #A02 [#A03| ...
A |#A04] t3 | a3 A — |#A04 ...
B [#B01| t1 | al A | #A04 | -
B |#B02| t1 | a2 B |#Bo1| — |...
B |#B03| t5 | ab B | #B01 |#B02| ...
C |#C01| t1 | al B — |#B03| ...
C [#C02| t3 | a3 C — |#C01
Fig. 7. View Data[Novel] Fig. 8. View Change [Novell]
from,peer‘to,peer‘from,id‘ to_id |time

C B #CO01 |#Bo01]| ...

B A #B02 |#A01] ...

A C #A04 [#C02| ...

Fig. 9. View Exchange [Novell

ample, the following query detects whether peer X copied the record (t1, a2)
owned by peer A or not:

Reach(P, I1) :- Data[Novel] (’A’, I2, ’t1’, ’a2’),

Exchange [Novel] (’A’, P, I2, I1,)
Reach(P, I1) :- Reach(P, I2), Change[Novell] (P, I2, I1, _), I1 != NULL
Reach(P, I1) :- Reach(P1, I2), Exchange[Novell (P1, P, I2, I1, _)
Query(I) :- Reach(’X’, I)

Datalog is so flexible that we can specify various types of queries using the
three global views; please refer to [16, 18] for the detail.

3 Query Processing Approach and Problem Statement

In our original framework, every peer only maintains the minimum amount in-
formation for tracing in the local layer. In order to process tracing queries which
are described in datalog using virtual global views, it is necessary to transform
the given query to suit the organization of the local layer.

According to the mapping rules [16], the example query in Section 2 can
be mapped as follows. The symbol @ is a location specifier which indicates the
location (peer id) of relation in the local layer.

Reach(P, I1) :- Data[Novel]@’A’(I2, ’t1’, ’a2’),
To[Novel]@’A’(I2, P, I1, _)
Reach(P, I1) :- Reach(P, I2), Change[Novel]l@P(I2, I1, _), I1 != NULL
Reach(P, I1) :- Reach(P1, I2), To[Novel]@Pi(I2, P, I1, _)
Query(I) :- Reach(’X’, I)

In [17], we compared two major strategies for datalog query execution, the
seminaive method and the magic set method, in our context. Both of them are

6 F. Li and Y. Ishikawa

based on the “pay-as-you-go” approach [14] for tracing. It means that we need
to aggregate the required historical information from the distributed peers when
a tracing query is issued from a user; the user should pay the cost when he or
she traces information.

The advantage is that this method is simple and there is no wastefulness
in respect of the storage cost. However, when we perform the query processing,
since it is necessary to spread a requirement to all the related distributed peers.
We should trace the path along the process that the records were exchanged.
Generally, the cost for query processing is relatively large. To solve this problem,
we consider to construct materialized views which are often used to speed up
query processing.

4 Query Processing with Materialized Views

4.1 Definitions of Materialized Views

Materialized views play important roles in databases [12]. In our case, all of
the materialized views do not store all of the information in the whole P2P
network. They are only used to store the information at the peers in the target
scope. A target scope is determined by a materialized view maintenance policy.
In this paper, we assume that materialized views at each peer store the related
information to k hops. Hops means the number of peers involved in a record
exchange. For example, if peer A received a record from peer B and peer B
received the record from peer C, peer C is in two hops from peer A in terms of
the record.

Fig. 10. Target Scope for Peer X (k = 2)

For instance, Fig. 10 shows the target scope of the materialized views for peer
X in case of kK = 2. A solid line arrow shows the route of the record that has
been copied. A dotted line arrow shows the copy route of the offered records.
Peer A, D, E, F, and H are the peers in the scope of the materialized views
at peer X since there were record exchanges between them and peer X directly
or indirectly in two hops. In this paper, we assume that each peer maintains
four materialized views: MVData, MVChange, MVFrom, and MVTo. Each of
them corresponds to Data, Change, From, and To relations in the local layer,
respectively.

Query Processing with Materialized Views 7

Like a tracing query, materialized views are expressed in datalog and using
Data, Change and Exchange virtual views in the global layer. In the following,
we show the representations of them in case of k = 2.

MVData@X: MVData is a materialized view that stores the exchanged records
owned by peers which locate in the target scope. MVData stored at peer X can
be described as below:

RDatal(P, I1, T, A, H) :- Data[Novell] (°X’, I2, T, A),

Exchange [Novell (P, ’X’, I1, I2, _), H=1
RDatal(P, I1, T, A, H) :- RDatal(P, I2, T, A, H), Change[Novell (P, I1, I2, .)
RDatal (P, Ii, H) :- RDatal(P1, I2, T, A, H1),

Exchange [Novell (P, P1, I1, I2,), H=H1+1, H<=2
RData2(P, I1, T, A, H) :- Data[Novel] (°X’, I2, T, A),

Exchange [Novel] (°X’, P, I2, I1,), H=1
RData2(P, I1, T, A, H) :- RData2(P, I2, T, A, H), Change[Novell (P, I1, I2, .)
RData2(P, I1, T, A, H) :- RData2(P1, I2, T, A, H1),

Exchange [Novel] (P1, P, I2, I1,), H=H1+1, H<=2
RData(P, I, T, A) :- RDatal(P, I, T, A, H)
RData(P, I, T, A) :- RData2(P, I, T, A, H)
MVData@X(P, I, T, A) :- RData(P, I, T, A)

=)
=

3

The variable H is used to count the number of hops. The maximum value of H
should be set to be equal to k. RDatal is the collection of the records related
to the copied record owned by peer X in two hops. RData2 stores the infor-
mation that which peer copied the records owned by peer X in two hops and
also stores the contents of records in these peers. RDatal and RData2 are finally
combined into MVData®X. Peer X executes the program and stores DataMV@X
as a materialized view.

MVChange@X: The following is the definition of the materialized view for
storing the change histories of the exchanged records:

RPeer1(P, I1, T, A, H) :- Data[Novel] (°X’, I2, T, A),

Exchange [Novel] (P, ’X’, I1, I2,), H=1
RPeer1(P, I1, T, A, H) :- RPeer1(P, I2, T, A, H), Change[Novell (P, I1, I2, .)
RPeer1(P1, I1, T, A, H) :- RPeeri(P2, I2, T, A, H1),

Exchange [Novel] (P1, P2, I1, I2, _), H=H1+1, H<=2
RChangel (P, I1, I2, _, H) :- RPeer1(P, _, _, _, H), Changel[Novell (P, I1, I2, .)
RPeer2(P, I1, T, A, H) :- Data[Novel] (°X’, I2, T, A),

Exchange [Novel] (°X’, P, I2, I1,), H=1
RPeer2(P, I1, T, A, H) :- RPeer2(P, I2, T, A, H), Change[Novell (P, I1, I2, .)
RPeer2(P, I1, T, A, H) :- RPeer2(P1, I2, T, A, H1),

Exchange[Novel] (P1, P, I2, I1,), H=H1+1, H<=2
RChange2(P, I1, I2, _, H) :- RPeer2(P, _, _, _, H), Changel[Novell (P, I1, I2, .)
RChange(P, I, I1, _) :- RChangel(P, I, I1, _, H)
RChange(P, I, I1, _) :- RChange2(P, I, I1, _, H)
MVChange@X(P, I, I1, _) :- RChange(P, I, I1, .)

8 F. Li and Y. Ishikawa

Both MVData and MVChange will increase the cost for storage and management
in the operation and maintenance of materialized views. But they not only are
used to improve query processing efficiency, but also can be used for the recovery
of the lost data when some peer disappeared suddenly.

MVFrom@X: This materialized view stores the information of copied records
from other peers in two hops.

FromH(I2, P, I1, H) :- Data[Novel] (°X’, I2, T, A),

Exchange [Novell (P, ’X’, I1, I2, .), H=1
FromH(I2, P, I3, H) :- FromH(I1, P, I2, H), Change[Novel] (P, I3, I2, _.)
FromH(I2, P, I1, H) :- FromH(I1, P, I2, H1),

Exchange [Novell (P, P1, I1, I2, _), H=H1+1, H<=2
MVFrom@X (I, P, I1, H) :- FromH(I, P, I1, H)

MVFrom is effective for tracing the record retrospectively. Management cost
is negligible though the storage cost is additionally needed. Path information
caching and the record insertion to the materialized view can be executed one
when the record is exchanged.

MVTo@X: A similar idea can be applied to the side of the To relation. This
materialized view stores the information that which peer copied records from
peer X in the scope of two hops .

ToH(I2, P, I1, H) :- DatalNovell (°X’, I2, T, A),

Exchange [Novel] (’X’, P, I2, I1,), H=1
ToH(I2, P, I3, H) :- ToH(I1, P, I2, H),

Change [Novel] (P, I2, I3,), I3 != NULL
ToH(I2, P, I1, H) :- ToH(I1, P1, I2, H1),

Exchange [Novel] (P1, P, I2, I1, _), H=H1+1, H<=2
MVTo@X(I, P, I1, H) :- ToH(I, P, I1, H)

The management cost for the MV To is not negligible. For example, in Fig. 10,
when the record is copied from peer D to peer E, it is necessary to pass on the
information of the copy event to peer X. In other words, not only peer D and E
but also peer X should be involved in the transaction of the copy of the record
from peer D to peer E. This becomes an additional overhead to some extent.

4.2 Query Processing with Materialized Views

Materialized views stored locally as base relations can improve query perfor-
mance through query rewrites. We illustrate their use in query processing using
our example.

Based on the materialized views, we can rewrite the example query in Section
2 as below:

Reach(P, I1) :- Data[Novel]@’A’(I2, ’t1’, ’a2’),
To[Novel]@’A’ (I2, P, I1,)
Reach(P, I1) :- Reach(P1, I2), MVTo[Novell@’A’(I2, P, I1, _)
Reach(P, I1) :- Reach(P, I2), MVChangel[Novel]l@P(I2, I1,), I1 != NULL
Reach(P, I1) :- Reach(P1, I2), MVTo[Novel]@P1(I2, P, I1, _)
Query(I) :- Reach(°X’, I)

Query Processing with Materialized Views 9

In this example, peer A wants to detect that whether peer X copied the record
(t1, a2) or not. In the following, we describe the query processing referring to
the Fig. 10.

In our original approach without materialized views, the query processing
which is based on the seminaive method starts at peer A and the query fragments
generated at peer A are first forwarded to peer H, and then peer H forwards them
to Peer X. The query is executed in this way until it reaches the fixpoint.

With the materialized views, peer A can do the execution locally since peer
X copied the record (t1, a2) in the target scope of peer A. Assuming that mate-
rialized view MVTo about the record (t1, a2) shown in Fig. 11 is stored at peer
A. At peer A, notice that when the first rule is executed, the result (H, #HO01)
will become a tuple in Reach which is shown in Fig. 12. When the second rule
is executed, a new tuple (X, #X01) should be inserted in Reach. Finally, when
the last rule is executed, the #X01 as a result should return to the query. That
is to say, peer X copied the record (t1, a2) from peer A.

id ‘to,peer‘ to_id ‘#hop P| I
#A01| H |#HO01| 1 H|#HO01
#H01| X |#X01| 2 X|#X01
Fig. 11. Relation MVTo at Peer A Fig. 12. Relation Reach

The example indicates that the materialized views speed up the query pro-
cessing. Like this case, with the materialized views, processing for queries which
include recursive operation does not have to do the forward processing and
queries can be answered immediately at the local peer. It is thought that the
materialized views work well effectively in the query processing. Of course, pro-
cessing for many tracing queries still needs forwarding operations until it reaches
the fixpoint based on the seminaive method. If the query processing can not be
done using materialized views, then it will be executed ordinarily as before.

4.3 Maintenance for Materialized Views

View maintenance which means the processing of updating a materialized view in
response to changes to the underlying data. As we described above, materialized
views can speed up query processing greatly. But they have to be kept up to date.
If some of the base relations are changed, materialized views must be recomputed
to ensure correctness of results to query processing. For maintaining general
recursive views, [13] proposed the DRed (Delete and Rederive) algorithm that
can handle incremental updates. However, the algorithm assumes a centralized
environment, and it is quite costly to apply the algorithm in our context because
the maintenance process is propagated among distributed peers. Materialized
view maintenance problem in deductive databases was described in [12,21].

In our case, we can utilize a feature of our framework. Every update can
be handled as a tuple insertion. Assume that the related peer in the first hop

10 F. Li and Y. Ishikawa

for peer X is peer Y, and peer Z is related peer in the second hop. Of course,
related peers for peer Z in two hops are peer Y and peer X. Depending on the
update types, a record is inserted in each of the following local relations and
materialized views:

— record update in peer X: Data@X, Change®X, MVData@Y, MVData@Z,
MVChange@Y, and MVChange@Z
— record modification in peer X: Data@X, Change@X, MVData@Y, MVData@Z,
MVChange@Y, and MVChange@Z
— record deletion in peer X: Change@X, MVChange@Y, and MVChange@Z
record copy from peer X to peer Y: To@X, From@Y, Data@Y, MVData®@X,
MVData@Z, MVTo@X, and MVFrom@Y

It means that there only exists insertion in the database updates in our
framework. Materialized view maintenance for insertion can use the seminaive
method for computation easily. When the fixpoint is found, the current incre-
mental maintenance should be finished [13].

5 Related Work

Understanding provenance of documents is not a new problem. The impor-
tance of provenance goes well beyond verification. It is used in a wide range
of fields, including data warehousing [7], uncertain data management [3,22], cu-
rated databases [5], and other scientific fields such as bioinformatics [4]. In this
area, one of the well-known projects would be the Trio project at Stanford Uni-
versity, in which both of the uncertainty and lineage issues are considered [22].
Our research is devoted to the data provenance issue in P2P information ex-
change, where data provenance is important but there is few proposals for this
topic.

There are a variety of research topics regarding P2P databases, such as cop-
ing with heterogeneities, query processing, and indexing methods [1]. One re-
lated project with our problem is the ORCHESTRA project [9,15], which aims
at collaborative sharing of evolving data in a P2P network. In contrast to their
approach, our research focuses on a simple record exchange scenario and does
not consider schema heterogeneity. One of the features of our framework is to
employ database technologies as the underlying foundation to support reliable
P2P record exchange.

As proved in the declarative networking project [20], declarative recursive
queries are very powerful in writing network-oriented database applications such
as sensor data aggregation. In contrast to their approach, our focus is compact
and understandable tracing query specifications.

Materialized views can be used to summarize, pre-compute, and replicate
data. Maintenance for them is very important in database. We can find the
recent survey about maintenance of materialized views in [11]. The incremental
maintenance of views has received a lot of attention in database research, many
incremental methods have been already proposed in the literature[8, 10, 21, 23].

Query Processing with Materialized Views 11

In all papers, only [12,21] described materialized view maintenance problem
in deductive databases. In our research, for tracing queries, especially for the
queries asking past histories, materialized views [12] are quite helpful to reduce
query response time. For that purpose, we develop a query processing method
which effectively uses materialized views and a view selection and maintenance
method which considers the trade-off of cost and benefit.

6 Conclusions and Future Work

For the efficient query processing, data replication and caching are popular tech-
niques. Considering practical requirements of tracing, we added some incorpo-
rate additional features and constructs to our fundamental P2P record exchange
system. Although the storage and maintenance cost will increase, the query pro-
cessing cost can be reduced.

In this paper, we described how to define materialized views and how to use
them to improve query processing in our proposed P2P record exchange system.
The maintenance of materialized views was also discussed. Nevertheless much
work remains to be done. We need to consider how to take trade-off considering
the total cost reduction. Several future research issues are summarized as follows:

— Full specification of complete query processing strategies: We need to en-
hance the strategies to handle more complex tracing queries. The effective-
ness and limitation of the declarative language-based approach will become
more clear.

— Fault-tolerance: In this paper, we omitted the issue of fault tolerance, but it
is important for supporting P2P networks in which failure occurs frequently.
We need to consider that how to use materialized views to do the data
recovery for left peer in detail.

— Prototype system implementation and experiments: We are currently devel-
oping a prototype system of our P2P record exchange framework. Also, we
started to construct a P2P network simulator that can be used for simulat-
ing our prototype system in a virtual P2P network. Their developments will
have positive feedbacks to improve our fundamental framework.

Acknowledgments
This research was partly supported by the Grant-in-Aid for Scientific Research

(#21013023, #22300034) from the Japan Society for the Promotion of Science
(JSPS).

References

1. K. Aberer and P. Cudre-Mauroux. Semantic overlay networks. In VLDB, 2005.
(tutorial notes).

12

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

F. Li and Y. Ishikawa

S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

O. Benjelloun, A. Das Sarma, A. Halevy, and J. Widom. ULDBs: Databases with
uncertainty and lineage. In Proc. VLDB, pp. 953-964, 2006.

D. Bhagwat, L. Chiticariu, W.-C. Tan, and G. Vijayvargiya. An annotation man-
agement system for relational databases. In Proc. VLDB, pp. 900-911, 2004.

P. Buneman, J. Cheney, W.-C. Tan, and S. Vansummeren. Curated databases. In
Proc. ACM PODS, pp. 1-12, 2008.

P. Buneman and W.-C. Tan. Provenance in databases (tutorial). In Proc. ACM
SIGMOD, pp. 1171-1173, 2007.

Y. Cui and J. Widom. Lineage tracing for general data warehouse transformations.
In Proc. VLDB, pp. 471-480, 2001.

J. Goldstein and P.-A. Larson. Optimizing queries using materialized views: A
practical, scalable solution. In Proc. ACM SIGMOD, pp. 331-342, 2001.

T. J. Green, G. Karvounarakis, N. E. Taylor, O. Biton, Z. G. Ives, and V. Tannen.
ORCHESTRA: Facilitating collaborative data sharing. In Proc. ACM SIGMOD, pp.
1131-1133, 2007.

T. Griffin and L. Libkin. Incremental maintenance of views with duplicates. In
Proc. ACM SIGMOD, pp. 328-339, 1995.

A. Gupta and I. S. Mumick. Maintenance of materialized views: Problems, tech-
niques, and applications. IEEE Data Engineering Bulletin, 18(2):3-18, 1995.

A. Gupta and I. S. Mumick eds. Materialized Views. MIT Press, 1999.

A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views incrementally.
In Proc. ACM SIGMOD, pp. 157-166, 1993.

A. Halevy, M. Franklin, and D. Maier. Principles of dataspace systems. In Proc.
ACM PODS, pp. 1-9, 2006.

Z. Ives, N. Khandelwal, A. Kapur, and M. Cakir. ORCHESTRA: Rapid, collaborative
sharing of dynamic data. In Proc. Conf. on Innovative Data Systems Research
(CIDR 2005), pp. 107-118, 2005.

F. Li, T. Iida, and Y. Ishikawa. Traceable P2P record exchange: A database-
oriented approach. Frontiers of Computer Science in China, 2(3):257-267, 2008.
F. Li, T. lida, and Y. Ishikawa. ’Pay-as-you-go’ processing for tracing queries
in a P2P record exchange system. In Proc. DASFAA, Vol. 5463 of LNCS,
pp. 323-327, 2009. A long version is available from http://www.db.itc.nagoya-
u.ac.jp/papers/2009-dasfaa-li-long.pdf.

F. Li and Y. Ishikawa. Traceable P2P record exchange based on database tech-
nologies. In Proc. APWeb, Vol. 4976 of LNCS, pp. 475-486, 2008.

F. Li and Y. Ishikawa. Query processing in a traceable P2P record exchange
framework. IEICE Transactions on Information and Systems, E93-D(6), 2010.
(accepted for publication).

B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis,
R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative networking: Language,
execution and optimization. In Proc. ACM SIGMOD, pp. 97-108, 2006.

M. Staudt and M. Jarke. Incremental maintenance of externally materialized views.
In Proc. VLDB, pp. 75-86, 1996.

J. Widom. Trio: A system for integrated management of data, accuracy, and
lineage. In Proc. Conf. on Innovative Data Systems Research (CIDR 2005), pp.
262-276, 2005.

Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View maintenance in a
warehousing environment. In Proc. ACM SIGMOD, pp. 316-327, 1995.

