Background

- Uncertain Location Information
 - Sensor environments: GPS consumes batteries
 - Mobile robots: Localization may not be accurate
 - Location privacy: Exact locations are hidden

- Location-based Queries
 - Range queries, nearest neighbor queries
 - Spatial index-based processing
 - What’s happen for uncertain locations?

Objectives

- Query Processing Based on Uncertain Location Information
 - Location of a query object is specified as a Gaussian distribution
 - Target data: spatial points

- Probabilistic Nearest Neighbor Query (PNNQ)
 - Find objects such that the probabilities that they are the nearest neighbors of \(q \) are greater than \(\theta \)

Naïve Approach

- \(\Pr_{NN}(q, o) \): Probability that target object \(o \) is the nearest neighbor of query object \(q \)
 - Can be calculated by integrating \(p_q(x) \) over Voronoi region \(V_o \)
 \[
 \Pr_{NN}(q, o) = \int_{V_o} p_q(x) \, dx
 \]
 - If the result is greater than \(\theta \), object \(o \) satisfies the condition

- Compute \(\Pr_{NN}(q, o) \) for each object \(o \) using numerical integration: quite costly!

Our Approach

- Use of Filtering
 - Prune non-candidate objects using low-cost filtering conditions
 - Only the remaining candidate objects require numerical integration
 - Filtering should be conservative: no false negatives

 We propose two filtering strategies

Strategy 1: \(\theta \)-Region-Based Approach

- \(\theta \)-Region: Ellipsoidal region for which the integration of \(p_q(x) \) becomes \(1 - 2\theta \):

 \[
 \int_{(x-q)'\Sigma^{-1}(x-q) \leq r_{\theta}^2} p_q(x) \, dx = 1 - 2\theta
 \]

 Ellipsoidal region
 \[
 (x-q)'\Sigma^{-1}(x-q) \leq r_{\theta}^2
 \]
 is the \(\theta \)-region

 - \(\theta \)-region can be derived using \(r_{\theta}-table \) and transformation

Strategy 2: Use of SES and \(p_q^T(x) \)

- Compute the smallest enclosing sphere (SES) for each Voronoi region beforehand
 - Idea: Calculate integration

 \[
 \int_{\text{SES}_o} p_q(x) \, dx > \Pr_{NN}(q, o),
 \]
 which overestimates \(\Pr_{NN}(q, o) \)

 - Integration over a spherical region is more easier to compute

 Additional approximation: Use of upper bounding function \(p_q^T(x) \)
 - It gives the upper bound for \(p_q(x) \), and has a spherical isosurface
 - Easy to compute integration using a pre-computed table

 In summary, we perform two-step approximations

 \[
 \int_{\text{SES}_o} p_q^T(x) \, dx \geq \int_{\text{SES}_o} p_q(x) \, dx > \Pr_{NN}(q, o)
 \]

Experimental Results

- Performance of two strategies depends on parameters and given queries
 - No apparent winner
 - The hybrid strategy shows the best performance

- Query Example (see figure)
 - Enclosing box: bounding box for the \(\theta \)-region
 - Red cells: candidate cells
 - Green cells: answer cells

Our Related Work

 - Consider the case for range queries