
Skyline Queries Based on User Locations and Preferences
for Making Location-Based Recommendations

Kazuki Kodama† Yuichi Iijima† Xi Guo† Yoshiharu Ishikawa‡†
†Graduate School of Information Science, Nagoya University

‡Information Technology Center, Nagoya University
Nagoya, Aichi 464-8601 Japan

{kodama,iijima,guoxi}@db.itc.nagoya-u.ac.jp, ishikawa@itc.nagoya-u.ac.jp

ABSTRACT
Due to the recent development of mobile computing and

communication network technologies, information services
for mobile phone users and car navigation systems have be-
comeof some importance. Since these mobile devices have
limited display sizes, we often need to select carefully the
appropriate information to be presented to the user. How-
ever, it is not easy to select the “appropriate” information
because users have different contexts and preferences.

In this paper, we present an approach to recommending
items such as restaurants to a mobile user taking into ac-
count his current location and preferences. In our frame-
work, a user initially provides a profile, which records pref-
erences as relative orders within predefined categories such
as food types and prices. We then select items to be rec-
ommended from the database based on the user’s profile as
well as the current location. To select good items, we ex-
tend the notion of spatial skyline queries to incorporate not
only distance information but also categorical preference in-
formation.

Based on the proposed approach, a prototype system has
been implemented in a small mobile PC containing a small
embedded RDBMS. The facilities of the RDBMS, such as
spatial indexes, were used to process our skyline queries ef-
fectively.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query process-
ing ; H.2.8 [Database Management]: Database Applica-
tions—Spatial databases and GIS

General Terms
Algorithms, Design, Management

Keywords
Spatial databases, mobile databases, skyline queries, prefer-
ences, recommendation, location-based services

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM LBSN ’09, November 3, 2009. Seattle, WA, USA
c© 2009 ACM ISBN 978-1-60558-860-5 ...$10.00.

1. INTRODUCTION
Progress in the development of mobile device technolo-

gies, communication technologies, and GPS systems in re-
cent years has enabled the provision of rich information ser-
vices for users with changing contexts and locations. Since
the amounts of storage and processing power of mobile de-
vices are now quite substantial, it has become easy to em-
bed small databases in mobile devices for providing useful
services and information to users. Therefore, a promising
scenario for enabling a mobile information service based on
current technology would be to select appropriate informa-
tion from such a database based on the user’s situation and
preferences and use this information to make a recommen-
dation.

Although the amount of data that can be handled is in-
creasing, it is still difficult to browse and examine a large
amount of data using a mobile device. Reasons for this in-
clude the limited display size of such a device and the lack
of time a user to examine a large amount of data while mov-
ing. Carefully selected information is often favored because
it can be easily understood. Thus, it becomes important to
select a limited number of items to be recommended to the
user.

Currently, information recommendation is an important
research topic in many fields of computer science, includ-
ing web site design, e-commerce, and digital libraries [1].
Recommendation for mobile users is an important sub-topic
especially for location-based services [5]. The most common
approach is to consider the distances from the user to the
target items such as restaurants, with the nearest items be-
ing selected as most appropriate. There are many options for
computing distances: the Euclidean distance, the distance
in a road network, and a sophisticated adaptive distance [4].
However, the distance-based approach has a problem: the
nearest items may not satisfy the user’s preferences. Target
items such as restaurants have several features such as food
types and price ranges. When we recommend items to a
mobile user, we need to consider not only distances but also
the user’s preferences about such features.

We therefore propose an approach to recommending neigh-
borhood items such as restaurants and shops based on both
the location and the preferences of a user. We extend the
notion of skyline queries [2] for selecting a small number of
“good” items from a database. In our approach, we consider
two factors for selecting items:

• The distance between each item and the user, and

• The preferences of the user specified in a profile.

A profile specifies the relative order of the domain values
for each categorical attribute in the target database. Pro-
files will be described in more detail later. Although there
exist some proposals for spatial queries based on distances
[6, 8], our approach is novel because we consider preference
information in addition to distances. Moreover, we further
extend the query processing algorithm so that at least k
good items are extracted (where k is a number specified by
the user) even when the original skyline contains fewer than
k items.

We have constructed a prototype recommendation system
by implementing our algorithms in a mobile PC with a small
embedded RDBMS. The use of an RDBMS enables us to
manipulate a large amount of data with a high-level inter-
face and to process queries efficiently using its spatial index
facility. The prototype system has some additional features
such as ranking based on an additional condition specified
by the user. We demonstrate a restaurant recommendation
system running on the prototype system.

The rest of this paper is organized as follows. In Section 2,
we discuss a motivating example. Section 3 describes how
queries for recommendation are performed, and we present
query processing algorithms. In Section 4, we explain the
system framework, describing the features of the underlying
RDBMS and the system architecture. Section 5 evaluates
the outputs of the prototype system based on different sce-
narios. In Section 6, we describe related work. Finally, in
Section 7, we present our conclusions.

2. A MOTIVATING EXAMPLE
Let us consider the task of providing recommended restau-

rant information to mobile users. The example is referred
to throughout the paper.

A restaurant database is managed by the RDBMS in the
user’s mobile device. Figure 1 shows an example restaurant
database. The database has a Location attribute, which
stores the two-dimensional coordinates of restaurants. In
addition, the database has two other categorical fields: Type
and Price.

Restaurant Location Type Price
a (3, 9) Chinese Low
b (7, 5) French Medium
c (7, 7) Japanese Low
d (5, 1) Italian High
e (3, 4) Japanese Medium
f (4, 8) French Low
g (5, 6) Chinese High
h (1, 3) Italian Low
i (5, 2) Japanese Medium
j (9, 3) Chinese High

Figure 1: Restaurant Database

Let us assume that the user’s current location is (5, 5). In
Fig. 2, we show the user’s location and the locations of the
restaurants.

In our system, we assume that a user provides a profile
which describes the users’ preference information before he
or she starts moving. For example, suppose a user Alice has
the following preferences:

1. She likes Italian food best. She does not want to go to
a Chinese restaurant today because she had Chinese

Figure 2: Restaurant Locations

food earlier for lunch. Japanese food and French food
are not bad, but she cannot decide which is better.
This means that there exist preference relationships
between Type values: Italian ≺ Japanese � French ≺
Chinese. The symbol ‘�’ indicates a tie (i.e., indiffer-
ence) between two items.

2. Higher prices are preferable because she wants to cele-
brate her birthday. These preferences can be expressed
as an order between Price values: High ≺ Medium ≺
Low.

In our framework, we assume that such preference infor-
mation (preference orders) is stored in a mobile device as
the user’s profile. A profile should satisfy the following two
conditions:

• it should cover all categorical attributes (Type and
Price in this example), and

• for each category attribute, an order between category
values (possibly with ties) is specified by the user.

We assume that a user can specify a total order for each cat-
egorical attribute in most cases. This would not be a com-
plicated task for a categorical attribute with a small domain
size. The user may also specify a partial order. For exam-
ple, the preferences {Italian ≺ Japanese, Italian ≺ French,
Japanese ≺ Chinese, and French ≺ Chinese} look similar
to the example above, but the difference is that there is no
preference relationship between French and Japanese. Our
algorithm, shown later, can also deal with partial orders but
the number of skyline objects will increase in general.

In addition to the categorical attributes, we assume the
existence of a Location attribute that stores the location of
each item which is included in the database. We can also
consider the existence of other non-categorical attributes.
For example, the database can have a Score attribute which
contains the evaluation score for each restaurant, where the
score is a real number in the interval [0.0, 10.0]. If the do-
main values of an attribute have a total order (larger is bet-
ter or smaller is better), we can easily incorporate such an at-
tribute in our algorithms. However, we omit non-categorical

attributes in the following discussion to simplify the presen-
tation.

Let us consider what the result set would be for the ex-
ample shown above. Obviously, restaurants b and g are in
the result set. Restaurant d is also in the result set because
its Type and Price attribute values are good although it is
not close to the user. In contrast, a and f can be omitted
as they are far from the user and the user does not like their
categorical values. Restaurants c and e are not bad due to
their closeness, but b is actually better than them. We can
easily see that i, h, and j are not good items.

Using the query processing algorithm described later, we
can find the “good” restaurants (skyline objects) b, d, and g
for this case.

3. QUERY PROCESSING

3.1 Skyline Queries
A skyline query is an approach to select a limited num-

ber of “good” items from a large database [2], and there are
many proposals for implementing this approach. For ex-
ample, some papers focus on processing spatial skylines [6,
8], which consider the skyline query problem in the context
of spatial databases. In short, a skyline object is an object
which is superior to other objects at least in terms of the
combination of some attributes. The set of all the skyline
objects in a database is called the skyline, and a query to
find a skyline is called a skyline query .

We now formally define these concepts. Let the set of all
objects be O. Each object o (o ∈ O) has an ID, a location (a
spatial coordinate l = (x, y)), and a value for each attribute
a ∈ A, where A is the set of other attributes. For simplicity
we assume that all attributes in A are category attributes.
In the example of Section 2, Type and Price are category
attributes. In the following, we denote the coordinates of
object o by o.l, and o.a represents the value of attribute a
(a ∈ A) for object o.

An important notion in skyline queries is that of a dom-
inance relationship between objects. To define the domi-
nance relationship, we assume that there is a total order ≺
for each attribute. When o.a ≺ o′.a, we say that o is su-
perior to o′ in terms of attribute a. The definitions of a
dominance relationship and a skyline query are as follows.

Definition 1 (Dominance Relationship). Given two
objects o and o′, if o is equal to or better than o′ in terms of
all attributes, and if o is better than o′ at least one attribute,
we say o dominates o′, and write o ≺ o′. Formally, we have

o ≺ o′ : (∀a ∈ A+, o.a � o′.a) ∧ (∃a ∈ A+, o.a ≺ o′.a),

where A+ is the union of all the categorical attributes A and
the location attribute l (A+ = A∪{l}). The precedence rela-
tionship for the location is based on the Euclidean distance.

Definition 2 (Skyline Query). A skyline query is a
query to select the set S of all the objects such that are not
dominated by other objects. S is called the skyline and for-
mally given as follows:

S(O) = {o ∈ O | ¬∃o′ ∈ (O − {o}) ∧ o′ ≺ o}.
3.2 Preference-Based Query Processing

In our work, we extend the notion of skyline queries shown
in the previous subsection and consider a variation of spatial

skylines [6, 8]. We utilize the Euclidean distance and treat
closer objects as candidate skyline objects. We assume that
the dominance relationship for each category attribute can
be obtained from the user’s profile. For efficient query pro-
cessing, we employ the concept of nearest neighbor queries
and evaluate progressively whether each object belongs to
the skyline. If an object is not dominated by other objects
in terms of the distance and all the category attributes, it
belongs to the skyline.

We illustrate the idea of query processing using the ex-
ample discussed in Section 2. Since we check objects in
order, from the nearest neighbor object to further objects,
we can determine the dominance relationship by examining
categorical attributes, as described later. First, we do some
preprocessing. We project the table shown in Fig. 1 for
category attributes Type and Price. In addition, since the
equivalence relationship “Japanese � French” holds in the
profile, we merge two attribute values. Figure 3 shows the
resulting table after preprocessing. We call it the category
table. It represents all the combinations of attribute values
that appear in the database.

Type Price
Italian High
Italian Low

Japanese/French Medium
Japanese/French Low

Chinese High
Chinese Low

Figure 3: Category Table

Next, we retrieve the nearest restaurant using a nearest
neighbor query. In our case, we get restaurant g (Chinese,
High) which is obviously not dominated by other restaurants
in terms of distance, so it belongs to the skyline. Thus,
we get S = {g} as the intermediate state of the skyline.
Then, we delete the entries which are dominated by the cur-
rent skyline. In this example, restaurant g (Chinese, High)
dominates the patterns (Chinese, High) and (Chinese Low).
Therefore, we delete these two patterns. Step (1) in Fig. 4
shows the transition, where IT, JP, FR, and CN correspond
to Italian, Japanese, French, and Chinese, respectively, and
H, M, N represent High, Medium, and Low. After Step (1),
we have a category table with four entries. A restaurant
whose pattern is not contained in this table does not belong
to the skyline.

Type Price
IT H Type Price
IT L (1) IT H (2) Type Price

JP/FR M =⇒ IT L =⇒ IT H
JP/FR L JP/FR M × IT L

CN High × JP/FR L ×
CN Low ×

Figure 4: Transition of Category Table

Let us continue the example. We now retrieve the sec-
ondary nearest neighbor object. In this case, we get restau-
rant b. Since b’s attribute pair (French, Medium) is con-
tained in the current category table, we know that b is not
dominated by the current skyline. Thus, b belongs to the
skyline and we get S = {g, b}. Then we delete the patterns
(Japanese/French, Medium) and (Japanese/French, Low)

from the category table as shown in Step (2) of Fig. 4.
Continuing the nearest neighbor query, we get restaurant

e. Since the attribute pair (Japanese, Medium) is not in
the category table, we know that e is already dominated by
other objects and, therefore, e is not a skyline object. As
we continue the process, we find that c (Japanese, Low), f
(French, Low), and i (Japanese, Medium) are already dom-
inated and not skyline objects. After retrieving d (Italian,
High), we know that d belongs to the skyline (S = {g, b, d})
because its attribute pair is in the table. Then we delete
the two entries (Italian, High) and (Italian, Low), which
are dominated by (Italian, High), from the table. Then the
category table is now empty. This means that even if we
continue the process, the target objects never belong to the
skyline. Thus, we can quit the process, and the resulting S
is output as the skyline.

Based on the above example, we formalize the algorithm
in Algorithm 1. In the algorithm, S represents the result-
ing set of skyline objects. The function get category table()
creates the initial category table from the user’s profile. The
function NN init(q) initializes the underlying nearest neigh-
bor query using the query point q (we assume that we can
use a spatial index for this purpose). After that, we can get
objects from the nearest one by repeated calls of NN fetch().
The Boolean function match(T, o) tries to find an entry e
of T such that the categorical attribute values of o exactly
match with e. At lines 11 and 12, we delete the entries dom-
inated by o from the category table T . The repeating loop
ends when T becomes empty.

Algorithm 1 Spatial Skyline with Preferences

1: function SSP(p, q)
2: � p: user’s profile, q: user’s location
3: S ← ∅ � Skyline objects
4: T ← get category table(p)
5: NN init(q) � Initialize nearest neighbor query
6: repeat
7: o← NN fetch() � Get next nearest object
8: if match(T, o) then
9: � o is a skyline object

10: S ← S ∪ {o}
11: Remove the matched entry e ∈ T from T
12: Remove all the entries e ∈ T such that o ≺ e
13: end if
14: until T is empty
15: return S
16: end function

3.3 Multi-level Skyline Query
The skyline query algorithm shown in Algorithm 1 presents

good items based on the dominance relationship. The algo-
rithm works well, but it has the problem that the resulting
skyline may consist of a small number of objects. This hap-
pens when one or two objects are very strong compared to
other objects, or when the number of category attributes is
small. For example, we only have three skyline objects in
the result of the example query shown in Fig. 5. A user who
wants to compare several candidates would not be satisfied
by such a result.

As a solution for this problem, we propose the idea of
multi-level skyline queries. We call the skyline objects ob-
tained by the algorithm in the previous section the first-

Figure 5: Skyline Objects

level skyline objects. If the number of the first-level skyline
objects is smaller than k, which is a number specified by
the user, we compute the second-level skyline objects. For
this computation, we eliminate the first-level skyline objects
from consideration.

We explain the idea using the example from Section 2. As-
sume that the user needs at least five objects and so specifies
k = 5. Using the skyline query algorithm shown above, we
get the first-level skyline S1 = {b, d, g}. Since the number is
smaller than the threshold k, we try to find the second-level
skyline objects by eliminating the objects in S1 from the can-
didates. Using the same algorithm, we get the second-level
skyline objects: in this case, S2 = {e, h, j}. Since we get six
skyline objects in total, we can end the procedure here. If
the total number were still smaller than k, we would con-
tinue to the third-level selection. Figure 6 shows the result-
ing skyline objects. A star mark and a circle represent the
first-level and the second-level skyline objects, respectively.

Figure 6: Multi-Level Skyline Objects

Algorithm 2 shows the multi-level spatial skyline algo-
rithm. The algorithm is straightforward and the result S
contains the sets of skyline objects for different levels (S =
{S1, S2, . . .}). At line 7, the algorithm calls function SSP2,
which is an extended version of SSP (Algorithm 1). For

SSP2, we need to make the following modifications to Algo-
rithm 1:

line 1: function SSP2(p, q, S)
line 8: if match(T, o) ∧ o /∈ S then

The modification in line 8 means that the algorithm finds
new skyline objects and ignores existing ones S.

Algorithm 2 Multi-Level Spatial Skyline with Preferences

1: function MSSP(p, q, k)
2: � k: minimum number of result objects
3: S ← ∅
4: count← 0
5: level← 1
6: while count < k do
7: Slevel ← SSP2(p, q, S)
8: count← count + |Slevel|
9: level← level + 1

10: S ← S ∪ {Slevel}
11: end while
12: return S
13: end function

4. SYSTEM FRAMEWORK
In this section, we describe the framework for our proto-

type system.

4.1 Embedded RDBMS Entier
Entier [3] is provided by the Hitachi company as a compact

RDBMS for embedded systems. Although multi-user trans-
action facilities are not supported, Entier provides standard
SQL features. In addition, the system supports spatial data
types and quadtree-based spatial indexes. The feature is
helpful for supporting mobile applications and car naviga-
tion systems.

In the following, we describe some features of Entier re-
lated to our prototype. Entier applications can be written
in C, C++, or Java. We have used C++, together with
ECLI (Entier Call Level Interface) functions for searching
and updating databases.

The Restaurants relation discussed in Section 2 is created
as follows.

CREATE TABLE Restaurants (

id int,

name varchar(128),

location geompoint,

type varchar(16),

price varchar(16)

);

The datatype geompoint is provided by Entier, and encodes
the (x, y) coordinates of a spatial point. We can also create
a spatial index for the relation as follows:

CREATE INDEX loc_idx

ON Restaurants(location) EMPTY;

With this command, a quadtree-based index is created for
the location attribute.

In addition to the above facilities, Entier supports efficient
spatial query support using spatial indexes. For example, a
distance-based range query is written as follows.

SELECT id, name

FROM Restaurants

WHERE WITHIN("location", ..., ...) = TRUE

In the second and third arguments of the WITHIN predicate
we need to encode the range-query condition in a binary
representation (the detail is omitted here). Unfortunately,
Entier does not have a direct support for nearest neighbor
queries in the version we used. Therefore, we wrote a sim-
ple wrapper to perform a nearest neighbor query using the
distance-based query feature: we simply perform a range
query with a predefined distance threshold then iterate over
the sorted objects.

4.2 System Organization
The system organization is shown in Fig. 7. The prototype

was implemented on a small Windows note PC. We used a
Web browser as the interface of the system. We could have
constructed a more sophisticated interface using the features
of the chosen mobile device, but we decided to simplify the
implementation.

Figure 7: System Organization

A user initially specifies his preferences as a profile and
sets parameter k, the minimum number of result objects, us-
ing a Web browser. The profile and the parameter are stored
in the query processing module. The query processing mod-
ule is the main part of our framework and performs skyline
query processing. When the user starts moving, GPS signals
are obtained periodically and queries are performed based
on the user’s current location. Some part of query process-
ing is performed in the underlying database system Entier.
The query processing module issues spatial SQL queries to
Entier, if required. When skyline objects are computed, the
query processing module constructs an HTML file, which is
displayed on the Web browser. We used Google Map (called
via the Google API) to provide a map-based interface and
Ajax to implement interactive features.

5. SYSTEM EVALUATION
In this section, we evaluate the results of our prototype

system. Since comparison-based evaluation is hard for our
problem, we examine how the system features were imple-
mented.

5.1 System Images
Figure 8 shows a displayed image of the resulting map in-

terface on a Web browser. It shows the downtown area of
Nagoya, Japan and the user is assumed to be in the center
of the map. Selected restaurants (skyline objects) are repre-
sented by “markers”. The points A, B, and C are explained
in the following subsection.

Figure 8: System Image (Profile P1, Location A)

If we click a displayed marker, we can see the detailed
information for the restaurant. Figure 9 shows an example
of this feature.

Figure 9: Displaying Detailed Information. The
Japanese text displayed means (Restaurant Name:
DANTE, Type: Italian, Price, Medium, Level: 1) in
English.

5.2 Scenario-Based Experiments
We performed some scenario-based experiments. Here we

briefly report the results.
The target area is the downtown area of Nagoya. We col-

lected information about 100 restaurants in this area from a

Web site1. As described in the former examples, the restau-
rant database has a Location attribute and two category
attributes Type and Price. The attribute Type has four do-
main values: Japanese, Chinese, French, and Italian. Each
type has 25 instances in the restaurant database. The at-
tribute Price has three domain values: High, Medium, and
Low. We used two sample user profiles and checked how the
results change depending on the preferences. The contents
of these profiles are summarized in Fig. 10.

Profile Type Price
P1 IT ≺ JP � FR ≺ CN H ≺ M ≺ L
P2 JP ≺ CN ≺ IT ≺ FR L ≺ M ≺ H

Figure 10: Sample Profiles

We explain the system behavior based on an example sce-
nario using the location A, B, and C shown in Fig. 8. The
user starts from A and goes to C via B. We assume that the
user examines the current skylines at each place. For profile
P1, the query result at A is shown in Fig. 8. The result
changes when the user reaches B as shown in Fig. 11. Fig-
ure 12 shows the skyline objects at C for profile P1. Since
locations B and C are close, their results are quite similar.

Figure 11: Skyline Objects (Profile P1, Location B)

For skyline computation, we employed two different thresh-
old values k = 10 (default) and k = 5. The results are sum-
marized in Table 1. The columns “Level 1”, “Level 2”, and
“Level 3” report the number of objects in each skyline level
for the default case k = 10. For profile P2, the query results
at locations B and C do not have level 3 results because the
threshold k = 10 is reached at level 2. The “Elapsed Time
(ms; k = 10)” columns show the processing (wall clock) time
in milliseconds for the case k = 10 (default) and k = 5.

From the table, we can see that query processing is quite
fast and a user will not become frustrated during interactive
browsing. Of course, this is partly due to the fact that we
only used 100 restaurants in the experiments; the query re-
sponse time will increase when the number of restaurants is
increased. However, we estimate that the response time will

1http://www.gnavi.co.jp/

Table 1: Experimental Results

Profile Location Level 1 Level 2 Level 3 Elapsed Time (ms; k = 10) Elapsed Time (ms; k = 5)
A 3 3 9 172 47

P1 B 3 6 4 157 78
C 3 6 4 157 78
A 3 6 8 187 78

P2 B 4 6 — 125 94
C 4 6 — 125 94

Figure 12: Skyline Objects (Profile P1, Location C)

not increase much. The first reason for this is that the den-
sity of restaurants will not increase even if we cover a larger
area and the database becomes huge. The second reason is
that we do not have to consider restaurants located far from
the user’s position due to the existence of a spatial index.

6. RELATED WORK
Skyline queries [2] are used for selecting a limited number

of interesting items from a large database, and the topic is
currently being intensively studied. Many skyline query al-
gorithms have been proposed for different types of databases
and different situations.

The topic most related to our work is the spatial skyline
query. Zheng et al. [8] propose a query processing method to
produce spatial skylines for location-based services. They fo-
cus on location-dependent spatial queries (LDSQ) and con-
sider a continually changing user location (query point). In
this situation, it is not easy to decide how often we should
update the current skyline presented to the user. If the up-
date period is long, we may fail to catch a change of skyline
objects. On the other hand, if the update period is too
short, the query processing cost becomes high. Zheng et al.
[8] introduce the idea of a valid scope, which is a region in
space. While a moving user is still located in the valid scope,
the skyline query returns the same result so that the system
does not have to issue a new query. Although our current
algorithm does not use this technique, we might be able to
enhance the algorithms to incorporate the idea.

Sharifzadeh and Shahabi [6] present another type of spa-
tial skyline problem. In their scenario, the query is issued
by a group of users. They are located in different positions
and want to find nearby facilities. Support for multiple users
is not considered in our current system, but it would be an
interesting direction for future research.

Wong et al. [7] propose a query processing method to
find skyline objects in a database that includes nominal
attributes. Typically, a nominal attribute (categorical at-
tribute in our terminology) does not have an inherent order
and the order between the domain values depends on each
user. For a database with many nominal attributes, the
paper proposes the construction of a kind of index (called
a TPO-tree) which summarizes the order structure for the
user. Although they consider categorical attributes with or-
ders specified by users, they do not consider dynamic dis-
tances for computing skylines. We might be able to extend
our algorithms to use such additional data structures.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed an approach to recom-

mending items to a mobile phone user taking into account
his current location and preferences. The main feature is
that we consider not only the distances between items and
the user, but also preference orders for categorical attributes.
Such preferences are user-dependent and represented by a
profile for the user. The query processing algorithm we pro-
pose is an extended version of spatial skylines. In addition,
we have extended the algorithm to output at least k good
items, where k is a threshold specified by the user.

A prototype system was implemented using Entier, a small
embedded relational database system. This RDBMS sup-
ports SQL-based database manipulation together with spa-
tial query and spatial index facilities. As an example appli-
cation, we created a restaurant recommendation system. It
considers the user’s current position and his preferences for
food type and price range. We performed some experiments
using real datasets and evaluated the behavior of the system
and its query processing performance.

Apart from future work based on ideas suggested by re-
lated research (see previous section), we are considering pos-
sible improvements to the way results are displayed. The
current system displays all the skyline objects together. To
make the system easier-to-understand, we could present sky-
line objects incrementally based on the level: first, the sys-
tem presents the level-1 objects; if the user is not satisfied,
the system displays additional level-2 objects, and so on.
In this case, the user does not need to specify parameter k
since he can request the next level if he is not satisfied with
the current result. Another idea is to present dominance re-

lationships between objects graphically on the display. For
example, we can display “arrows” from a level-1 object to
the level-2 objects it dominates. It is not difficult to display
the reason why a level-2 object is worse than the level-1 ob-
ject when the arrow between them is clicked. We are also
planning to enhance the system to incorporate other types
of preference information, such as user movement histories
and interaction with other users.

8. ACKNOWLEDGMENTS
This research was partly supported by a Grant-in-Aid for

Scientific Research, Japan (19300027, 21013023).

9. REFERENCES
[1] Gediminas Adomavicius and Alexander Tuzhilin.

Toward the next generation of recommender systems:
A survey of the state-of-the-art and possible extensions.
IEEE TKDE, 17(6):734–749, 2005.

[2] Stephan Börzsönyi, Donald Kossmann, and Konrad
Stocker. The skyline operator. In Proc. ICDE, pages

421–430, 2001.

[3] Embedded database Entier (in Japanese).
http://www.hitachi.co.jp/Prod/comp/soft1/Entier/.

[4] Yoshiharu Ishikawa, Hiroyuki Kitagawa, and Tooru
Kawashima. Continual neighborhood tracking for
moving objects using adaptive distances. In Proc.
IDEAS, pages 54–63, Edmonton, Canada, 2002.

[5] Jochen Schiller and Agnès Voisard. Location-Based
Services. Morgan Kaufmann, 2004.

[6] Mehdi Sharifzadeh and Cyrus Shahabi. The spatial
skyline queries. In Proc. VLDB, pages 751–762, 2006.

[7] Raymond Chi-Wing Wong, Ada WaiChee Fu, Jian Pei,
Yip Sing Ho, Tai Wong, and Yubao Liu. Efficient
skyline querying with variable user preferences on
nominal attributes. In Proc. VLDB, pages 1032–1043,
2008.

[8] Baihua Zheng, Ken C. K. Lee, and Wang-Chien Lee.
Location-dependent skyline query. In Proc. MDM,
Beijing, China, 2008.

