
Effective Top-k Keyword Search in Relational
Databases Considering Query Semantics

Yanwei Xu1,2, Yoshiharu Ishikawa1, and Jihong Guan2

1 Graduate School of Information Science, Nagoya University, Japan
2 School of Electronics and Information Engineering, Tongji University, China

Abstract. Keyword search in relational databases has recently emerged
as a new research topic. As a search result is often assembled from mul-
tiple relational tables, existing IR-style ranking strategies can not be
applied directly. In this paper, we propose a novel IR ranking strategy
considering query semantics for effective keyword search. The experimen-
tal results on a large-scale real database demonstrate that our method
results in significant improvement in terms of retrieval effectiveness as
compared to previous ranking strategies.

Key words: top-k,keyword search,effective,relational database

1 Introduction

With the amount of available text data in relational databases growing rapidly,
the need for ordinary users to effectively search such information is increasing
dramatically. Keyword search is the most popular information retrieval method
because the user needs to know neither a query language nor the underly-
ing structure of the data. Keyword search in relational databases has recently
emerged as an active research topic. In this paper, we focus on how to support
effective top-k keyword search in relational databases.

Although most of the popular DBMSs support full-text search, they only
provide support for retrieving tuples relevant to a query within the same relation.
A unique feature of keyword search in relational databases is that search results
are often joined tuples from multiple relations.

Example 1 : Suppose a user wants to search papers written by “Ralf Stein-
metz” with “p2p” in their titles from the DBLP3 database (its schema is shown
in Figure 1). He might give a query containing two keywords: “p2p Steinmetz”.
Our system will return the results shown in Table 1, where relevant tuples from
multiple relations (presented in bold font) are joined together to form a mean-
ingful answer to the query. Table 1 shows that three papers with “p2p” in their
titles were written by “Ralf Steinmetz”.

Recently, there have been many studies dedicated to keyword search in rela-
tional databases [1–5]. Among these, [3] was the first to consider top-k keyword

3 http://dblp.mpi-inf.mpg.de/dblp-mirror/index.php



2 Yanwei Xu, Yoshiharu Ishikawa, and Jihong Guan

Table 1. Top-3 results for query “p2p Steinmetz”

1 Article:Token-Based Accounting for
:::
P2P-Systems.→Author: Ralf

::::::::
Steinmetz

2 Article:An Adaptable, Role-Based Simulator for
:::
P2P Networks.→ Author:Ralf

::::::::
Steinmetz

3 Article:Self-protection in
::::
P2P Networks: Choosing the Right Neighbourhood.→ Author:Ralf

::::::::
Steinmetz

search in relational databases; it incorporates a state-of-the-art IR ranking for-
mula to address the retrieval effectiveness issue and presents several efficient
query execution algorithms optimized for returning top-k relevant answers. [4]
improves the ranking formula in [3] by adapting four normalizations. [5, 6] fur-
ther modify the ranking formula of [3] by introducing the concept of a virtual
document and present two efficient query evaluation algorithms for their rank-
ing formula. [7] takes another approach to address keyword search based on the
Steiner tree.

Due to the fuzzy nature of keyword queries, result ranking is vital for retrieval
effectiveness. Despite the results from previous studies, there are still several
issues with existing ranking methods, some of which may discourage users to
use keyword search systems. In this paper, we present a method for improving
the ranking formula by considering query semantics.

The main contributions of this paper are as follows:

– We introduce the concept of query semantics for keyword search in relational
databases. Although this concept has been mentioned in previous works [5],
it was not considered as a factor for ranking search results.

– We propose a method for incorporating query semantics into the ranking
formulas proposed in [3, 5]. To our knowledge, our paper is the first to rank
CNs.4

– We conduct comprehensive experiments on large-scale real databases. The
experimental results show that our approach is better than existing ones in
terms of effectiveness.

The rest of the paper is organized as follows: Section 2 presents the basic
concepts and the method for generating the relevant answers of a query. Section
3 introduces the ranking strategies used in previous works. Section 4 presents the
concept of query semantics and our method of ranking answers by considering
query semantics. Section 5 shows the experimental results. Section 6 discusses
the related works. Section 7 concludes this paper.

2 Preliminaries

In this section, we describe the framework for generating answers for a given
keyword query. Section 2.1 describes some basic concepts such as Candidate
Network (CN) and Joint-Tuples-Tree (JTT). We follow the definitions of previ-
ous work [5, 8]. Section 2.2 describes the framework of generating query answers.

4 CN is short for candidate network, which will be introduced in Section 2



Effective Top-k Keyword Search Using Query Semantics 3

2.1 Basic Concepts

We first define some terms used throughout the paper. A relational database
composed of a set of relations R1, R2, · · · , Rn. A Schema Graph (SG) is a di-
rected graph with the relations as its nodes and the foreign key to primary key
relationships of the relations as its edges. Figure 1 shows the schema graph of
DBLP used in this paper. A Joint-Tuple-Tree (JTT) T is a joining tree of dif-
ferent tuples. Each node ti is a tuple in the database, and each pair of adjacent
tuples in T is connected via a foreign key to primary key relationship. The three
results in Table 1 are examples of JTTs. A JTT is an answer to a keyword query
if it contains more than one keyword of the query and each of its leaf tuples must
contain at least one keyword. A Query Tuple Set RQ is a set of all tuples which
belong to relation R; these tuples contain at least one keyword of the query Q.
We call RF the free tuple set, which is the set of all tuples in relation R and
we use R∗ to denote a tuple set, which can be either a query tuple set or a free
tuple set. A Candidate Network (CN) is a tree of tuple sets RQ or RF with the
restriction that every leaf node must be a query tuple set. Every edge (R∗i , R

∗
j )

in a CN corresponds to an edge (Ri, Rj) in the schema graph SG. A CN can be
easily transformed into its equivalent SQL statement and executed through the
DBMS. The size of a CN is the number of its tuple sets.

Fig. 1. DBLP schema graph

2.2 Answer Generation

Given a keyword query, the system first generates all the non-empty query tuple
sets RQ for all the relations R. These non-empty query tuple sets and the schema
graph are inputted to the CN generator to generate all the valid CNs. For this
purpose, [8] has proposed a breadth-first algorithm that is both sound and com-
plete. It can enumerate all the CNs of size no more than a specified number
without violating any pruning rules. There are three pruning rules used in [5],
which are listed below. We show the traces of the CN generation algorithm for
query “p2p Steinmetz” in Example 1 in Table 2 (for simplicity, suppose there are
only two non-empty query tuple sets articleQ and authorQ, and omit relation
aCite).

Rule 1 Prune duplicate CNs
Rule 2 Prune non-minimal CNs i.e., CNs with free tuple sets as leaf nodes



4 Yanwei Xu, Yoshiharu Ishikawa, and Jihong Guan

Fig. 2. Query processing framework

Rule 3 Prune CNs of type: RQ ← S∗ → RQ. The rationale is that every re-
sulting JTT would contain the same tuple from RQ for two times.

Finally, the generated CNs are evaluated to identify the top-k query results
based on some relevance formulas. Figure 2 shows query processing framework,
which is a modified version of [3].

Table 2. Enumerating CNs for query “p2p Steinmetz”

Size CN ID CN Valid?

1 CN1 articleQ Y

1 CN2 authorQ Y

2 articleQ ← aWriteF n

2 articleQ → journalF n

2 articleQ ← aCrossRefF n

3 CN3 articleQ ← aWriteF → authorQ Y

3 articleQ ← aWriteF → authorF n

3 CN4 articleQ → journalF ← articleQ Y

3 articleQ → journalF ← articleF n

3 articleQ ← aCrossRefF → procF n

3 authorQ ← aWriteF → articleQ n

4
.
.
.

.

.

.
.
.
.

3 Ranking Strategy

In this section, we first present the ranking strategies of previous works, then
motivate our work by presenting an observation that reveals a problem in existing
schemes.

3.1 Existing Ranking Strategies

Due to the fuzzy nature of keyword queries, result ranking is vital for retrieval
effectiveness. The initial attempt was to simply rank results according to the size



Effective Top-k Keyword Search Using Query Semantics 5

of JTTs [2, 8]. Later, IR-Style [3] proposed a ranking formula based on a state-of-
the-art IR scoring function e.g., formulas based on the TF-IDF weighting. The
basic idea of the ranking method used in [3] is:

1. Assign to each tuple in the JTT a score by using a standard IR-ranking
formula5; and

2. Combine the individual scores together by using a monotonic aggregation
function to obtain the final score.

[4] suggested four sophisticated normalizations to the scoring function in [3]:
tuple tree size normalization, document length normalization, document fre-
quency normalization and inter-document weight normalization. The scoring
function of [4] is not monotonic due to the four normalizations, and therefore
the optimized query evaluation algorithms in [3] cannot be applied.

SPARK [5] models the entire JTT as a virtual document while the entire
results produced by a CN is modeled as a document collection. SPARK computes
the relevance score for a JTT T as follows:

score(T, Q) = scorea(T, Q) · scoreb(T, Q) · scorec(T, Q), (1)

scorea(T, Q) =
∑

w∈T∩Q

1 + ln(1 + ln(tfw(t)))
1− s + s · dlT

avdl(CN∗(T ))

· ln(idfw), (2)

where tfw(T ) =
∑

t∈T tfw(t), idfw = N(CN∗(T ))+1
dfw(CN∗(T )) ,

scoreb(T, Q) = 1− (

∑
1≤i≤m (1− T.i)p

m
)

1
p , (3)

where T.i = tfwi
(T )

max1≤j≤mtfwj
(T ) ·

idfwi

max1≤j≤midfwj
,

scorec = (1 + s1 − s1 · size(CN)) · (1 + s2 − s2 · size(CNnf )), (4)

where tfw(t) denotes the number of instances of w in t, dlT denotes the length
of all the text attributes of T , CN(T ) denotes the CN T belongs to, CN∗(T ) is
identical to CN(T ) with the exception that each tuple set is free, avdl(CN∗(T ))
is the average length of JTTs for CN∗(T ), N(CN∗(T )) denotes the number of
JTTs for CN∗(T ), and size(CNnf ) is the number of non-free tuple sets for the
CN. scorea is an IR-style ranking score based on the TF-IDF weighting. scoreb

acts as the completeness factor and gives biases toward the JTTs which contain
all of the keywords in query Q to those which only contain a few keywords.
The tuning parameter p in Eq.(3) can smoothly switch the completeness factor
biased towards the OR semantics to the AND semantics. scorec is a JTT size
factor and its degree of penalties for large CN is between [3] and [4]. The ranking
function of SPARK addresses an important deficiency in existing methods and
results in substantial improvement of the quality of search results [5].
5 This score is often automatically computed by the DBMS by using the full-text

indexing engine.



6 Yanwei Xu, Yoshiharu Ishikawa, and Jihong Guan

3.2 Problems with Existing Ranking Functions

The vector space model based on TF-IDF weighting is used to compute the
relevance between a keyword query and documents from a document collection.
In the setting of the keyword search in relational databases, there will be multiple
document collections (each collection is either a relation or a CN). The above
scoring functions only compute a document’s relative relevance to the query in
the document collection it belongs to. However, these document collections have
different levels of importance to the query, and therefore the final score of a
document must reflect the importance of the document collection it belongs to.
For example, the top ten results of the query in Example 1 returned by SPARK
with p = 2 (a value of 2.0 is already good enough to enforce the AND-semantics
[5]) are listed in Table 3. We can see that most of the results are not useful
to the user: no papers written by “Ralf Steinmetz” with “p2p” in the title are
returned.

Table 3. Top ten results for query “Steinmetz p2p” by SPARK

JTT Score CN

E.
:::::::
Steinmetz 3.40 authorQ

Uli
::::::::
Steinmetz 3.37 authorQ

2
:::
P2P or Not 2

:::
P2P? 3.35 articleQ

2
:::
P2P or Not 2

:::
P2P? 3.35 articleQ

Ralf
::::::::
Steinmetz 3.34 authorQ

Arnd
:::::::
Steinmetz 3.34 authorQ

Rita
::::::::
Steinmetz 3.34 authorQ

Aase
:::::::
Steinmetz 3.34 authorQ

Oliver
:::::::
Steinmetz 3.28 authorQ

Ulrich
:::::::
Steinmetz 3.28 authorQ

The total number of tuples in every relation that contain the two keywords
in DBLP are shown in Table 4, and enumerated CNs whose size is less than 4
are listed in Table 5.

Table 4. Statistics of keyword Steinmetz and p2p
Relation Column Keyword Count
proc title P2P 11
article title P2P 1855
procEditor Name Steinmetz 1
author author Steinmetz 20

Table 5. Enumerated CNs for query “Steinmetz p2p”

CN ID CN

CN1 articleQ

CN2 authorQ

CN3 procEditorQ

CN4 procQ

CN5 articleQ ← aCrossRefF → procQ

CN6 articleQ ← aWriteF → authorQ

CN7 articleQ → journalF ← articleQ

CN8 pEditorsQ ← procEditorF → procQ

Table 4 shows that the two keywords Steinmetz and p2p mostly occur at
relation author and article, respectively. From a human perspective, results for



Effective Top-k Keyword Search Using Query Semantics 7

CN6 should be ranked higher than results from other CNs on the basis of the
data in Table 4, even if we do not know the user’s intentions. Unfortunately,
p2p is such a popular keyword in article as compared to Steinmetz in author
that idfp2p in Eqs. (2) and (3) is very small as compared to idfSteinmetz. As a
result, answers from CN1 and CN2 containing Steinmetz are ranked as the top
ten answers as Table 3 shows. Of course, scorea and scoreb of the answers for
CN6 will be larger than the answers for CN1 and CN2. However, the degree of
increase is very small because idfp2p � idfSteinmetz and is counteracted by the
decrease of scorec, as the JTT size is 3.

We will show our solution to this problem in next section.

4 Ranking with Query Semantics

In this section, we will first introduce the concept of query semantics, and then
discuss how to use it to improve the ranking strategy. Our proposed method
shows a notable improvement in the effectiveness of keyword search.

4.1 Query Semantics

We believe that the problem in Table 3 is caused by the fact that the keyword
search system does not understand the user’s true intention. This is why some
keyword search systems allow a query to contain database schema data such as
“author:Steinmetz”. However, requiring an ordinary user to write queries con-
taining database schema data is not realistic and violates the original motivation
for keyword search systems.

In actual commercial databases, there is always a large number of relations.
Due to the E-R model and the normalization requirement, each relation stores
information of a certain kind of entities, and hence it has its own special keyword
set. For example, keywords in relation author in DBLP are unlikely to occur in
relation article or proc.

When a user inputs a short query, we can assume that there is a strong
possibility that he has a preference for the relation selection for each keyword.
For example, he prefers the relation author to relation article when he inputs
the name of person. The implicit relationship between keywords and relations
specifies the hidden user’s intention for the query.

We refer to such relation preference of keywords as the semantics of the
query. If a CN contains all the relations in the semantic set of a query, results
from this CN will be more relevant to the query

Example 2: a query contains an author name Steinmetz and a research area
keyword p2p, which shows that the user wants to search papers about p2p that
were written by an author named Steinmetz. Hence, the semantic set of query
“Steinmetz p2p” is {article, author}. JTTs for CN6 in Table 5 are more relevant
to the query “Steinmetz p2p” than JTTs for CN8.

If the semantics for a keyword query can be obtained exactly and used to
rank query results, query effectiveness can be drastically improved. For example,



8 Yanwei Xu, Yoshiharu Ishikawa, and Jihong Guan

the papers with p2p in the title written by Ralf Steinmetz will be ranked at the
top of the answers. We present our method for obtaining the query semantics
and using it to rank answers in the next section.

4.2 Incorporating Query Semantics into Ranking

We propose modeling a relation as a document, in which case tuples in relations
will be modeled as words or sentences. Consequently, the database is a document
collection composed of relations as documents. By adopting such a model, we can
naturally compute the IR-style relevance score of each relation for a keyword.

For a keyword w, we can easily find all the relations R1, R2, · · · , Rt that have
tuples containing w and the corresponding numbers of tuples by using a full-text
index. Then, for each Ri(1 ≤ i ≤ t), we use the following formula, which is based
on TF-IDF weighting, to compute its relevance to keyword w:

pw(Ri) =
p0 + ln(1 + ln(1 + dfw(Ri)))

(1− s) + s · ln(1 + tcRi

avtc )
, (5)

where p0 indicates the initial preference score for a keyword to an arbitrary
relation, dfw(Ri) is the number of tuples of Ri that contains keyword w, tcRi

is the number of total tuples in Ri, avtc is the average number of tuples of the
relations in the database.

p0 and s in Eq.(5) acts as two tuning parameters: small p0 give higher prefer-
ence to relations that have a large dfw(Ri), while larger s gives higher preference
to relations that have a small number of tuples. In our experiments, p0 is tuned
between 0.2 and 1 and s is tuned between 0.1 and 0.5. We observed that p0 = 0.6
and s = 0.2 is appropriate for all the tested queries.

Then the preference of CN for a query Q is computed as:

scores(CN, Q) =
∑
w∈Q

maxRi∈CNpw(Ri). (6)

We refer to scores(CN, Q) as the semantic score of a CN .
Finally, the relevance score of a JTT T to a keyword query Q is computed

as:
SCORE(T, Q) = score(T, Q) · scores(CN(T ), Q), (7)

where score(T, Q) is computed by Eq.(1).
The calculated scores for the eight CNs in Table 5 are listed in Table 6 with

p0 = 1.0, s = 0.25. We also suggest the application of a modification to Eq.(3)
as

T.i =
ln(1 + tfwi

(T ))
ln(1 + max1≤j≤mtfwj (T ))

· ln(idfwi
)

ln(max1≤j≤midfwj )
, (8)

to increase the impact of a keyword w that has a small idf (e.g., keyword p2p).
Table 7 shows the top ten results of SPARK for query “p2p Steinmetz” with
p = 1.8 and our modification when computing scoreb. We find that the six results
which belong to CN6 are ranked at the top of the results. More importantly, the
result belonging to CN8 is ranked appropriately.



Effective Top-k Keyword Search Using Query Semantics 9

Table 6. Calculated scores of the eight CNs

CN1 CN2 CN3 CN4 CN5 CN6 CN7 CN8

3.24 2.59 3.04 2.14 3.44 4.66 3.24 3.7

Table 7. Top ten results for query “p2p Steinmetz”

JTT CN ID score
Token-Based Accounting for

:::
P2P-Systems.→ Ralf

:::::::
Steinmetz CN6 33.25

An Adaptable, Role-Based Simulator for
:::
P2P Networks.→ Ralf

::::::::
Steinmetz CN6 32.28

Self-protection in
:::
P2P Networks: Choosing the Right Neighbourhood.→ Ralf

::::::::
Steinmetz

CN6 31.29

Globase.KOM - A
:::
P2P Overlay for Fully Retrievable Location-based Search.→ Ralf

::::::::
Steinmetz

CN6 30.88

Ralf
:::::::
Steinmetz→ Proceedings

:::
P2P’08, Eighth International Conference on Peer-to-

Peer Computing, 8-11 September 2008, Aachen, Germany

CN8 30.78

Overlay Design Mechanisms for Heterogeneous Large-Scale Dynamic
:::
P2P

Systems.→Ralf
::::::::
Steinmetz

CN6 30.62

Working Group Report on Managing and Integrating Data in
:::
P2P Databases.→

Rita
:::::::
Steinmetz

CN6 30.55

E.
::::::::
Steinmetz CN2 16.03

Uli
:::::::
Steinmetz CN2 15.89

Arnd
::::::::
Steinmetz CN2 15.75

5 Experiments

In this section, we experimentally discuss the impact of our proposed method on
the effectiveness of top-k keyword search. We incorporate the semantic score into
the ranking strategies of [3, 5], and then compare its impact to the effectiveness.

5.1 Experimental Settings

Database: For our evaluation,we use the DBLP data set, which we decomposed
into relations from a downloaded XML file according to the schema shown in
Figure 1. We use many relations in order to represent the original data in the
XML file as closely as possible. The size of the XML file is 478MB. Table 8 shows
the basic statistics after the decomposition.

Table 8. Statistics of DBLP database

Relation Schema # Tuples

article(articleID,key,title,journalID,· · ·) 1,092,239
aCite(id,articleID,cite) 109,625
author(authorID,author) 658,461
aWrite(id,articleID,authorID) 2,752,673
journal(journalID,journal) 730
proc(procID,key,title,· · ·) 11,108
pEditors(pEditorID,Name) 12,001
procEditor(id,procEditorID,procID) 23,540

Query Set: We manually picked a large number of queries for evaluation.
We attempted to include a wide variety of keywords and their combinations in
the query set, such as the selectivity of keywords, the size of the most relevant
answers, the number of potential relevant answers, etc. We focus on 20 queries
with query length ranging from 2 to 4.



10 Yanwei Xu, Yoshiharu Ishikawa, and Jihong Guan

5.2 Measures

To measure the effectiveness, we adopt two metrics used in previous studies [4,
5]: a) number of top-1 answers that are relevant (#Rel), and b) reciprocal rank
(R-Rank), for a given query. The reciprocal rank is 1 divided by the rank at
which the first correct answer is returned or 0 if no correct answers are returned.

In order to identify the relevant answers for each query, we used all the rank-
ing strategies ([3],[5] and ours) for each query and merged their top-50 results.
Then, we manually evaluated the results and selected the relevant answer(s) for
each query.

5.3 Results and Discussion on Effectiveness

We show the #Rel of [3, 5] and our proposed method on the DBLP dataset in
Table 9. Figure 3 and 4 show the reciprocal ranks of 13 and 10 queries, respec-
tively. We use [3](S), [5](S) to denote that the relevance score is computed by
considering the semantic score of CNs. M in [5](M) and [5](SM) denotes the
modification shown in Eq.(8). p = 1.5(2) denotes the parameter p in Eq.(3) is
set to 1.5(2). From Table 9, we can see the notable improvement brought by our
method to the ranking strategies of [3, 5] in terms of effectiveness. [5](SM) can
always return the relevant answer(s) for a query. We also find that the semantic
score works well with the method of [3]. Although the #Rel of [3](S) is not
large, we can find relevant answers in the Top-20 answers returned by [3](S) in
most cases, as shown in Figure 4.

The experimental results in Table 9 and Figure 3 show that Eq.(8) is char-
acterized by a notable improvement as compared to the method of [5] in terms
of #Rel and reciprocal ranks. There are two reasons for this: Eq.(8) produces a
stronger bias to answers that contain all of the keywords in a query; our man-
ually evaluated relevant answers are based on the AND semantics for queries.
Although they have similar #Rel and R-Rank, there is a great difference be-
tween [5](S) and [5](SM) in the structure of the top-k answers as compared to
[5](M): there is always a larger CN number. For example, [5](M) ranks all the
answers for CN6 at the top for the query “p2p Steinmetz”. However, we can also
find answers for CN1, CN2 and CN8 in the top-ten answers returned by [5](S)
and [5](SM). Therefore, although we believe users might target different results
with their queries, a larger CN number can meet the demands of more users.

Table 9. Impacts on #Rel

[5](p = 2) [5](M)(p = 1.5) [5](M)(p = 2) [5](S)(p = 1.5) [5](SM)(p = 1.5) [3] [3](S)

4 17 18 12 19 0 5

6 Related Work

Keyword search in relational databases has recently emerged as a new research
topic [9]. Existing approaches can be broadly classified into two categories: those
based on candidate networks [2, 3, 8] and others based on Steiner trees [1, 10, 11].



Effective Top-k Keyword Search Using Query Semantics 11

Fig. 3. Impacts on R-Rank (1) Fig. 4. Impacts on R-Rank (2)

Mragyati [12], Discover [8], DBXplorer [2], IR-Style [3] and ObjectRank [13]
are several early keyword search systems for relational databases. Discover and
DBXplorer only rank tuple trees according to their sizes. IR-Style proposed rank-
ing of tuple trees according to their IR relevance scores to a query. Our work
adopt the same framework with [2–4, 8], and can be viewed as a further improve-
ment along the line of enhancing the retrieval effectiveness. ObjectRank and
ObjectRank2 [14] apply authority-based ranking to keyword search in databases
modeled as labeled graphs. Authority originates at the nodes (objects) contain-
ing the keywords and flows to objects according to their semantic connections.

Banks [1] also finds tuple trees from the data graph directly by using the
Steiner tree algorithm. For a data graph, it uses PageRank style methods to
assign weights to tuples and edges between them. Banks2 [10] is an improve-
ment of Banks which introduces a novel technique of bidirectional expansion to
improve search efficiency. Li et al. [7] proposed a new concept referred to as a
compact Steiner Tree, which can be used to approximate the Steiner tree prob-
lem for answering top-k keyword queries efficiently. They also proposed a novel
structure-aware index to support keyword search.

Most recently, keyword search has been studied in a few generalized contexts
as well [11, 15]. [15] describes a solution to the keyword-search problem over
heterogeneous relational databases. The scoring function of [15] is adapted from
[3] by adding two more equally weighted terms that capture the match confidence
of FK joins and the corresponding attribute value pairs in an answer, which may
be a JTT composed of tuples come from multiple databases.

7 Conclusions

Keyword search allows non-expert users to find text information in relational
databases with much higher flexibility. In this paper, we proposed a novel ranking
strategy for effective keyword search considering query semantics. Our method
can solve the problems with the ranking strategies proposed in previous works.



12 Yanwei Xu, Yoshiharu Ishikawa, and Jihong Guan

We also presented a modification of an existing ranking strategy. Our method
can be incorporate into existing ranking strategies and does not require excessive
additional computation. The results of experiments performed on a large-scale
real dataset show that our method results in a significant improvement in terms
of retrieval effectiveness.

Acknowledgement

This research was partly supported by the Grant-in-Aid for Scientific Research,
Japan (#19300027).

References

1. Aditya, B., Bhalotia, G., Chakrabarti, S., Hulgeri, A., Nakhe, C., Parag, Sudar-
shan, S.: BANKS: Browsing and keyword searching in relational databases. In:
VLDB. (2002) 1083–1086

2. Agrawal, S., Chaudhuri, S., Das, G.: DBXplorer: enabling keyword search over
relational databases. In: ACM SIGMOD. (2002) 627

3. Hristidis, V., Gravano, L., Papakonstantinou, Y.: Efficient ir-style keyword search
over relational databases. In: VLDB. (2003) 850–861

4. Liu, F., Yu, C., Meng, W., Chowdhury, A.: Effective keyword search in relational
databases. In: ACM SIGMOD. (2006) 563–574

5. Luo, Y., Lin, X., Wang, W., Zhou, X.: SPARK: top-k keyword query in relational
databases. In: ACM SIGMOD. (2007) 115–126

6. Luo, Y., Wang, W., Lin, X.: SPARK: A keyword search engine on relational
databases. In: ICDE. (2008) 1552–1555

7. Li, G., Feng, J., Lin, F., Zhou, L.: Progressive ranking for efficient keyword search
over relational databases. In: BNCOD. (2008) 193–197

8. Hristidis, V., Papakonstantinou, Y.: DISCOVER: Keyword search in relational
databases. In: VLDB. (2002) 670–681

9. Wang, S., Zhang, K.: Searching databases with keywords. J. Comput. Sci. Technol.
20(1) (2005) 55–62

10. Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R., Karambelkar,
H.: Bidirectional expansion for keyword search on graph databases. In: VLDB.
(2005) 505–516

11. Li, G., Ooi, B.C., Feng, J., Wang, J., Zhou, L.: EASE: an effective 3-in-1 keyword
search method for unstructured, semi-structured and structured data. In: ACM
SIGMOD. (2008) 903–914

12. Sarda, N.L., Jain, A.: Mragyati: A system for keyword-based searching in
databases. CoRR cs.DB/0110052 (2001)

13. Balmin, A., Hristidis, V., Papakonstantinou, Y.: ObjectRank: Authority-based
keyword search in databases. In: VLDB. (2004) 564–575

14. Hristidis, V., Hwang, H., Papakonstantinou, Y.: Authority-based keyword search
in databases. ACM Trans. Database Syst. 33(1) (2008) 1–40

15. Sayyadian, M., LeKhac, H., Doan, A., Gravano, L.: Efficient keyword search across
heterogeneous relational databases. In: ICDE. (2007) 346–355


