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Probabilistic Range Querying over Gaussian Objects

Tingting DONG†a), Chuan XIAO†b), Nonmembers, and Yoshiharu ISHIKAWA†c), Member

SUMMARY Probabilistic range query is an important type of query
in the area of uncertain data management. A probabilistic range query
returns all the data objects within a specific range from the query object
with a probability no less than a given threshold. In this paper, we as-
sume that each uncertain object stored in the database is associated with
a multi-dimensional Gaussian distribution, which describes the probability
distribution that the object appears in the multi-dimensional space. A query
object is either a certain object or an uncertain object modeled by a Gaus-
sian distribution. We propose several filtering techniques and an R-tree-
based index to efficiently support probabilistic range queries over Gaussian
objects. Extensive experiments on real data demonstrate the efficiency of
our proposed approach.
key words: uncertain data, probabilistic databases, Gaussian distribution,
range queries

1. Introduction

In the area of uncertain data management, probabilistic
range query is an important problem for processing uncer-
tain data in real-world applications such as mobile robotics
and sensor networks. A probabilistic range query returns all
the data objects that appear within the given search region
with probabilities no less than a given probability threshold.

For instance, consider a self-navigated mobile robot
moving in a wireless environment. The robot builds a map
of the environment by observing nearby landmarks via de-
vices such as sonars and laser range finders. Due to the in-
herent limitation brought about by sensor accuracy and sig-
nal noises, the location information acquired from measur-
ing devices is not always precise. At the same time, the
robot also conducts probabilistic localization [1] to estimate
its own location autonomously by integrating its movement
history and the landmark information. This may cause im-
preciseness in the location of the robot, too. In consequence,
probabilistic queries have evolved to tackle such imprecise-
ness as “find landmarks lying within 5 meters from my cur-
rent location with a probability at least 80%”.

Typically for such applications, uncertain objects are
stored in the database and associated with probability dis-
tributions. Multi-dimensional Gaussian distribution is one
of the commonly used distributions for such a purpose. It
is widely adopted in statistics, pattern recognition [2], and
localization in robotics [1].
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In this paper we study the case where the locations
of data objects are uncertain, whereas the location of the
query object is either exact or uncertain. Specifically, data
objects are described by Gaussian distributions with differ-
ent parameters to indicate their respective uncertainty. A
query object can be either at a certain point in the multi-
dimensional space or an uncertain location represented by
a multi-dimensional Gaussian distribution. We solve the
probabilistic range query problem according to the above
setup.

There have been solutions to probabilistic range
queries that can handle Gaussian-based uncertain data, yet
based on specific assumptions. For example, U-tree [3] as-
sumes that each uncertain object exists within a pre-defined
uncertainty region. It constructs an index for all the objects
based on this region to reduce the number of candidates that
require the expensive numerical integration. However, for
some application scenarios it is not easy to decide a suit-
able extent of the uncertainty region for a real world ob-
ject. Gauss-tree [4] assumes that the Gaussian distribution
must be independent in each dimension. When these as-
sumptions are violated, the solutions no longer work. In this
paper, we solve these problems with generic Gaussian dis-
tributions without any of these assumptions, i.e., an object
can locate in an infinite space as opposed to U-tree, and have
correlations between dimensions as opposed to Gauss-tree.

A straightforward approach to this problem is to com-
pute the appearance probability [5] for each data object
and output it if this probability is no less than the thresh-
old. However, the probability computation usually requires
costly numerical integration for the accurate result [3], ren-
dering it prohibitively expensive to compute for all the data
objects and check if the query constraint is satisfied. Thus,
such computations should be reduced as much as possible.

To this end, we propose filtering techniques to gener-
ate a set of candidate data objects and compute integrations
only for these candidates. Equipped with the filtering tech-
niques, an R-tree-based indexing method is proposed to ac-
celerate query processing. The index structure is inspired
by the idea of TPR-tree [6], in which the minimum bound-
ing boxes (MBBs) vary with time. The difference is that in
our index a parent MBB not only varies with the probability
threshold but also tightly encloses all the child MBBs.

In our preliminary work [7], we proposed query pro-
cessing algorithms for probabilistic range queries, assum-
ing that only the location of the query object is uncertain
and modeled by a Gaussian distribution, but data objects are
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certain multi-dimensional points. An R-tree can be used to
manage these certain data points to process queries, which
is different from the situation here. In this paper, we ex-
tend the uncertainty to data objects and propose novel so-
lutions. A precedent report of this work has appeared in
[8]. The approach proposed in [8] approximates the Gaus-
sian distribution with an upper-bounding function. An R-
tree-like hierarchical index structure was proposed and an
exponential summary function was defined to cover multi-
ple upper-bounding functions. Nevertheless, the summary
function is so sensitive to the child functions that it will be-
come drastically large if the bounded Gaussian distributions
are sparsely distributed in the space or one of them has large
variances, leading to loose bounding in the index and weak
filtering power. This paper is an extension of our previous
work [9]. We have extended the algorithms and conducted
additional experiments.

Our contributions are summarized as follows:

1. We formalize two types of probabilistic range queries
with respect to the query object: a certain point and
an uncertain location represented by a Gaussian distri-
bution, while data objects are represented by Gaussian
distributions with different parameters.

2. For the two types of queries, we propose several ef-
fective filtering techniques to identify promising data
objects and prune unpromising ones.

3. We design a novel R-tree-based index structure to sup-
port probabilistic range queries on Gaussian objects.

4. We demonstrate the efficiency of our approach through
comprehensive experimental performance study.

The rest of the paper is organized as follows. Section 2
defines our problem. We present our filtering strategies in
Sect. 3. Section 4 describes our index structure. Experimen-
tal results and analyses are covered by Sect. 5. Section 6
reviews related work. Section 7 concludes the paper.

2. Problem Definition

In this section, we first define Gaussian objects, and then
define probabilistic range queries on two types of query ob-
jects: certain point objects and uncertain Gaussian objects.

2.1 Gaussian Objects

The Gaussian distribution, also known as the normal dis-
tribution, is a continuous probability distribution defined
by a bell-shaped probability density function in the one-
dimensional case. In this paper, we assume that data objects
are modeled by Gaussian distributions in a d-dimensional
space. A point x is in a d-dimensional numerical space,
namely, x = (x1, . . , xd)t.

Definition 1 (Gaussian objects): A Gaussian object o is
represented by its possible locations (points) and the prob-
ability density it appears at each location. Formally, the

probability density that o is located at xo is captured by a
d-dimensional Gaussian probability density function

po(xo)

=
1

(2π)
d
2 |Σo| 12

exp

[
−1

2
(xo − µo)tΣ−1

o (xo − µo)

]
. (1)

µo is the mean location (center) of o. Σo is a d×d covariance
matrix. |Σo| and Σ−1

o are the determinant and the inverse of
Σo, respectively.

2.2 Probabilistic Range Queries on Gaussian Objects

Given a dataset of Gaussian objects D, a query object q, a
distance threshold δ, and a probability threshold θ, a proba-
bilistic range query (PRQ) on Gaussian objects retrieves all
the data objects o ∈ D such that the distance between o and
q is no more than δ with a probability no less than θ. In this
paper, we consider two types of query objects for q:

1. The query object is a point object, namely,

q = (x1
q, x

2
q, . . , x

d
q)t.

2. The query object is a Gaussian object, namely,

pq(xq) =
1

(2π)
d
2 |Σq| 12

exp

[
−1

2
(xq − µq)tΣ−1

q (xq − µq)

]
.

The probabilistic range query with a point query object
(PRQ-P) is formally defined as

PRQ-P(D, q, δ, θ) = {o | o ∈ D,Pr(‖xo − q‖ ≤ δ) ≥ θ},
where ‖xo − q‖ represents the Euclidean distance between
xo and q. We call the region consisting of the points with
distances no more than δ from the query object the query
region, QR for short. Pr(‖xo − q‖ ≤ δ), the probability that o
lies within QR, is computed by

Pr(‖xo − q‖ ≤ δ) =
∫
χδ(xo, q) · po(xo)dxo, (2)

where

χδ(xo, q) =

{
1, ‖xo − q‖ ≤ δ;
0, otherwise.

(3)

The integration in Eq. (2) is not in a closed-form and
hence cannot be computed directly. Numerical solutions
such as Monte Carlo methods can be employed to evaluate
the probability. We use the importance sampling [10] in the
interest of efficiency. Specifically, we generate xo as per the
probability function po(xo), and increment the count when
Eq. (3) is satisfied. Finally, the probability can be obtained
by dividing the count by the number of samples generated.
Generally speaking, however, Monte Carlo methods are ac-
curate only if the number of samples is sufficiently large (at
the order of 106) [3]. Therefore, the probability computation
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Fig. 1 PRQ-P query.

induces expensive runtime cost.
Figure 1 illustrates a PRQ-P query in a 2-dimensional

space. The Gaussian object o exists in the space with de-
creasing probability densities as it spreads from the center
µo. A PRQ-P query finds the Gaussian objects located in
the proximity of the query point with a required probabil-
ity. Computing the probability using Eq. (2) corresponds to
integrating the probability density function of o within the
shaded area around q.

Similar to PRQ-P, the probabilistic range query with a
Gaussian query object (PRQ-G) is defined as

PRQ-G(D, q, δ, θ) = {o | o ∈ D,Pr(‖xo − xq‖ ≤ δ) ≥ θ},
where Pr(‖xo − xq‖ ≤ δ) is computed by

Pr(‖xo − xq‖ ≤ δ)
=

∫∫
χδ(xo, xq) · po(xo) · pq(xq)dxodxq, (4)

where

χδ(xo, xq) =

{
1, ‖xo − xq‖ ≤ δ;
0, otherwise.

To compute the integration in Eq. (4), although we can
simply generate random numbers for the two Gaussian dis-
tributions po(xo) and pq(xq), respectively, a more efficient
method is shown in [8]. It constructs a 2d-dimensional
Gaussian distribution by combining the two d-dimensional
Gaussian distributions. Then the probability can be com-
puted by running the Monte Carlo method.

3. Filtering Based on Approximated Region

A naı̈ve algorithm to answer PRQ-P or PRQ-G queries is to
pair the query object with each data object and perform in-
tegration check with either Eq. (2) or Eq. (4). However, due
to the overhead of the integration, the algorithm becomes
prohibitively expensive for large datasets. So we develop
our approach based on the filter-and-refine paradigm, i.e.,
to obtain a set of candidate objects and then compute the
integration only for the candidates.

In this section, we first introduce the notion of ρ-region
that leverages the two thresholds δ and θ, and then propose
the ρ-region-based filtering techniques to handle PRQ-P and
PRQ-G queries.

3.1 ρ-Region

Definition 2 (ρ-region): Consider a Gaussian object o and

the integration of its probability density function po(xo) over
an ellipsoidal region (xo − µo)tΣ−1

o (xo − µo) ≤ r2. Let rρ be
the value of r within which the integration equals ρ:∫

(xo−µi)
tΣ
−1
o (xo−µo)≤r2

ρ

po(xo)dxo = ρ.

We call the ellipsoidal region

(xo − µo)tΣ−1
o (xo − µo) ≤ r2

ρ

the ρ-region of o.

In Fig. 1, the area encompassed by the dotted ellip-
soidal curve shows a ρ-region. Because the probability den-
sity of a Gaussian distribution decreases as we move away
from the center of the object, if the query object is distant
enough from the center, its probability within QR will not
reach θ. In other words, it is possible to determine whether a
data object can satisfy the query condition by deriving a suit-
able ρ-region with θ (the method is introduced in Sect. 3.3
and 3.4) and examining whether its ρ-region intersects QR.

To compute rρ with a given ρ, we borrow the approach
proposed in our previous work [7]. It transforms the inte-
gration over an ellipsoidal region to an integration over a
d-dimensional spherical region. By assigning µo = 0 and
Σo = I in Eq. (1), we have the normalized Gaussian distri-
bution

pnorm(x) = N(0, I) =
1

(2π)d/2
exp

[
−1

2
‖x‖2
]
.

Based on this probability density function, the following
property can be derived.

Property 1: [7] Consider integration of pnorm(x) over
‖x‖2 ≤ r2. For a given ρ (0 < ρ < 1), let r̃ρ be the radius
within which the integration becomes ρ:∫

‖x‖2≤r̃2
ρ

pnorm(x)dx = ρ.

Then rρ = r̃ρ holds.

The preceding property indicates that we can compute
r̃ρ and hence rρ for a given ρ value. Therefore, we can con-
struct a (ρ, rρ)-table offline (numerical integration is neces-
sary) and obtain the ρ-region by looking up the correspond-
ing rρ from this table. If there is no matched entry for a
given ρ, we conservatively return the corresponding rρ of
the smallest value greater than ρ, so the correctness of the
result can be guaranteed.

The ellipsoidal shape of a ρ-region renders it difficult to
quickly examine whether the ρ-region intersects QR as well
as develop an indexing scheme based on prevalent spatial
indexes such as R-tree. Hence we will study the minimum
bounding box (MBB) which tightly bounds the ρ-region.

3.2 Minimum Bounding Box of ρ-Region

Figure 2 shows the MBB of a ρ-region of a 2-dimensional



DONG et al.: PROBABILISTIC RANGE QUERYING OVER GAUSSIAN OBJECTS
697

Fig. 2 MBB of ρ-region.

Gaussian object o. Let w j denote the length of its edge along
the j-th dimension. The following property holds [7].

Property 2: The value of w j ( j = 1, . . . , d) is given as

w j = σ jrρ, (5)

where σ j corresponds to the standard deviation in the j-th
dimension

σ j =

√
(Σo) j j,

where (Σo) j j represents the ( j, j)-th element of Σo.

For a data object o, since σ j can be calculated from the
covariance matrix Σo, the scale of the MBB is determined
uniquely by rρ, and hence ρ. Consequently, in order to es-
tablish the filtering conditions utilizing the MBBs, it is es-
sential to explore the relation between ρ and the probability
threshold θ. Next we will present our filtering techniques for
PRQ-P and PRQ-G, respectively.

3.3 Filtering Policies for PRQ-P Queries

Our filtering policies to process PRQ-P queries are divided
into two cases: θ < 0.5 and θ ≥ 0.5.
Case 1 (θ < 0.5): Consider the four data objects o1, o2,
o3, o4 shown in Fig. 3 (a). bbi(ρ) denotes the MBB of oi’s
ρ-region. First, let’s consider o4. Since the probability that
o4 is located inside its ρ-region is ρ, the probability of be-
ing outside the ρ-region’s MBB, is definitely less than 1− ρ.
Furthermore, given the line symmetry of the Gaussian dis-
tribution, the probability that o4 exists inside QR is at most
(1 − ρ)/2. Hence, if ρ = 1 − 2θ, and bb4(ρ) and QR do
not overlap, the probability that o4 lies within QR must be
less than θ. Then, for objects o1, o2 and o3, we check and
find their MBBs intersect QR, so they become candidates.
In summary, when θ < 0.5, a data object is a candidate only
if its bbi(1 − 2θ) intersects QR.
Case 2 (θ ≥ 0.5): We show our idea in Fig. 3 (b). For the
probability that a data object exists inside QR to reach θ, its
mean location should lie within QR. Thus, o2 and o4 can be
pruned, whereas o1 and o3 are considered as candidates.

Moreover, for all candidates, let ρ′ = θ and compute
their bbi(ρ′)’s. If QR fully contains a bbi(ρ′) (e.g., o3),
the probability that this object lies within QR is definitely
greater than θ. We validate it as a result without computing
the numerical integration.

Summarizing the two cases, the filtering condition for
PRQ-P is: (1) θ < 0.5, bbi(ρ) (ρ = 1 − 2θ) intersects QR

(a) PRQ-P: θ < 0.5 (b) PRQ-P: θ ≥ 0.5

(c) PRQ-G: Pruning (d) PRQ-G: Validation

Fig. 3 Filtering policies for PRQ-P and PRQ-G.

for pruning, and bbi(ρ′) (ρ′ = θ) is contained by QR for
validation. (2) θ ≥ 0.5, ‖µo − q‖ < δ for pruning, and bbi(ρ′)
(ρ′ = θ) is contained by QR for validation.

3.4 Filtering Policies for PRQ-G Queries

For PRQ-G queries, since both the query object q and the
data object oi are Gaussian distributions, we obtain both of
their MBBs of ρ-regions. We also consider two cases for
filtering: θ < 0.75 and θ ≥ 0.75.
Case 1 (θ < 0.75): As shown in Fig. 3 (c), assume q and oi

are independent in the space. When the minimum distance
between the two MBBs is exactly δ, the maximal probability
of ‖xo − xq‖ ≤ δ is given by the following lemma (the proof
is in Appendix B):

Lemma 1: If MinDist(bbi(ρ), bbq(ρ)) ≥ δ, Pr(‖xo − xq‖ ≤
δ) < (3 − 2ρ − ρ2)/4.

Let (3 − 2ρ − ρ2)/4 = θ, i.e., ρ = 2
√

1 − θ − 1. oi can
be excluded from the candidate set if the minimum distance
between bbi(ρ) and bbq(ρ) is no less than δ.

Lemma 2: If ‖µo − µq‖ ≥ δ, Pr(‖xo − xq‖ ≤ δ) < 0.75.

Case 2 (θ ≥ 0.75): Based on Lemma 2 (the proof is in Ap-
pendix B), an object can be pruned if the distance between
its center and that of the query object is no less than δ.

Moreover, let ρ′ =
√
θ, if the maximum distance of

bbi(ρ′) and bbq(ρ′) is less than δ, as shown in Fig. 3 (d), the
probability of ‖xo− xq‖ ≤ δ is greater than ρ′2, i.e., θ. In this
case, we validate it as a result without computing the exact
probability by numerical integration.

The filtering condition for PRQ-G is summarized as:
(1) θ < 0.75, MinDist(bbi(ρ), bbq(ρ)) < δ (ρ = 2

√
1 − θ−1)

for pruning, and MaxDist(bbi(ρ′), bbq(ρ′)) < δ (ρ′ =
√
θ)

for validation. (2) θ ≥ 0.75, ‖µo − µq‖ < δ for pruning, and

MaxDist(bbi(ρ′), bbq(ρ′)) < δ (ρ′ =
√
θ) for validation.

4. Indexing Data Objects

4.1 The Index Structure

The filtering conditions introduced in the previous section
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need to know the value of θ and hence ρ to generate can-
didates. In order not to scan all the data objects and com-
pute the MBBs of the ρ-regions on the fly with the given
θ, an immediate solution is to index the MBBs for a suffi-
ciently large ρmax. Because the MBB with a larger ρ always
subsumes the one with a smaller ρ, it can support all the
queries if the ρ values computed from θ satisfy the condition
ρ ≤ ρmax. However, the efficiency of the index is compro-
mised for small ρ values. This method serves as a baseline
algorithm (we use an R-tree to index MBBs and name it
FR-tree), and will be compared in the experiment with the
indexing technique we are going to present.

Inspired by the TPR-tree [6], we propose an R-tree-
based index structure which stores the MBBs in a paramet-
ric fashion. It works for arbitrary probability thresholds and
range thresholds, and there is no need to assume the two
thresholds are given prior to index construction. The MBBs
can be dynamically computed as we traverse the index. Fur-
thermore, the MBB of a node (at both leaf and non-leaf lev-
els) tightly encloses all its children’s MBBs regardless of the
θ value, as opposed to the TPR-tree within which all child
MBBs are bounded in a loose manner.

Our index is a balanced, multi-way tree organized in
the structure of an R-tree. Each entry in a leaf node contains
a data object in the form of oi = (idi,µi,Σi), where idi is
the data object id, µi and Σi are the mean location and the
covariance matrix of the Gaussian object, respectively. In a
non-leaf node, each entry has a pointer to a child node and
an MBB enclosing all the MBBs within the child node.

Consider an object oi with mean location (x1
i , . . , x

d
i )t.

Its MBB is a bounding box parameterized with rρ (MBB is
denoted as the exactly computed bounding box at a specific
rρ hereafter). From Eq. (5), the extent of the bounding box
(BB) in the j-th dimension can be represented by

[x j
i − w j

i , x
j
i + w

j
i ] = [x j

i − σ j
i rρ, x

j
i + σ

j
i rρ]. (6)

Seeing the BBs grow with rρ, in order to tightly bound
the BBs of child nodes at every rρ, it is necessary to search
each dimension for the leftmost and the rightmost BBs un-
der varying ρ. We illustrate this problem in Fig. 4 (a). It
shows the changing BB that encloses the BBs of four 2-
dimensional objects’ ρ-regions as rρ increases. When rρ is
less than r1, the left edge is determined by o1, and it becomes
o3 when rρ exceeds r1. The right bound is determined by o4

when rρ < r2, and o2 otherwise.
Figure 4 (b) shows how the four BBs change horizon-

tally with rρ. For each object, a pair of symmetrical lines
describe the left and the right coordinates of its BB. The
lines have different slopes due to the difference in their
standard deviations. The bold polylines illustrate the left
and right coordinates of the outer enclosing BB. Hence, the
problem becomes how to find the bold polylines. To this
end, a BB can be represented by several segments with re-
spect to rρ.

We store in the index the j-th dimension of a BB
in the form of (〈x j

1, σ
j
1, r1〉, . . , 〈x j

k, σ
j
k,+∞〉). For exam-

ple, for the four objects in Fig. 4 (a), the left and the right

(a) Node BB of Four Child BBs

(b) Left and Right Edges of the BB

Fig. 4 BB with varying ρ.

coordinates of the BB are (〈x j
1, σ

j
1, r1〉, 〈x j

3, σ
j
3,+∞〉) and

(〈x j
4, σ

j
4, r2〉, 〈x j

2, σ
j
2,+∞〉), respectively †.

We can find all the segments in the j-th dimension
through a sort on the coordinates first and then a linear scan
from the object whose standard deviation has a larger value
in the j-th dimension. The time complexity is O(n log n),
where n is the number of its child nodes. The number of
segments in a BB is at most n.

We note the difference between our index and TPR-
tree: (1) The bounding boxes of TPR-tree change towards
one direction in a rate (velocity), while our bounding boxes
change towards two opposite directions symmetrically with
rρ. (2) The bounding boxes of TPR-tree are tight only if an
update occurs, while our bounding boxes are always tight.

4.2 Query Processing with the Index

Algorithm 1 and Algorithm 2 show the procedures of query
processing of PRQ-P (the algorithms for PRQ-G are similar
and thus omitted due to the space limitation). To process a
query, θ is converted to ρ and ρ′, and then rρ and rρ′ with
the pre-computed (ρ, rρ) table (line 1–2). A first-in-first-out
queue Q is employed to maintain the nodes we are going to
expand. Starting with the root node, we compare QR (MBB
of q for PRQ-G) with the node MBB, and check the filtering
condition. To compute a node MBB, given rρ, we scan the
stored jth-dimension of its BB and find α such that rα−1 ≤
rρ < rα. Then the extent of its MBB in the j-th dimension
can be computed through Eq. (6) using xα, σα, and rρ.

At the non-leaf level (line 7–18), if a node MBB at rρ′
satisfies the validation condition, i.e., it is contained by QR
(for PRQ-G, the maximum distance of two MBBs is less

†Our experiments show the average number of segments in a
BB is 2–3. In case of many segments, we allow users to specify a
query probability threshold range [θmin, θmax] to reduce the number
of segments and hence the index size.
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Fig. 5 An illustration of PRQ-P query processing.

than δ), we retrieve all the objects within this node and push
them into the result set directly; otherwise, we probe each
child entry. If θ < 0.5 (0.75 for PRQ-G), we check whether
each child MBB at rρ intersects QR (for PRQ-G, whether the
minimum distance between each child MBB and the MBB
of q is less than δ). On the other hand, when θ ≥ 0.5 (0.75
for PRQ-G), we obtain the MBB which bounds leftmost and
rightmost means in each dimension, and use this more com-
pact MBB as the new child MBB for filtering checking for
both PRQ-P and PRQ-G.

At the leaf level (line 19–30), we also examine whether
a node MBB at rρ′ satisfies the validation condition first,
so as to push its child entries into the result set as early as
possible and reduce the processing cost. If not, each child
entry of this node is processed as discussed in Sect. 3.3 (for
PRQ-G, Sect. 3.4). When θ < 0.5 (0.75 for PRQ-G), for
each child entry, if its MBB at rρ intersects QR (for PRQ-
G, the minimum distance between each child MBB and the
MBB of q is less than δ), we identify this data object using
Algorithm 2. We check whether the validation condition is
satisfied. The qualified data objects are inserted directly into
the result set. Other data objects are regarded as candidates
for further verification through integration. When θ ≥ 0.5
(0.75 for PRQ-G), for each child entry, if its mean location
is inside QR, it is checked by Algorithm 2 in the same way.

Figure 5 shows a query processing example for PRQ-P
with θ = 0.3. r0.4 and r0.3 are obtained from the (ρ, rρ) table.
MBBs of all nodes in Fig. 5 are at r0.4. At first, the root R
is popped from Q. Since the MBB of R cannot satisfy the
validation condition, we have to check its child nodes n1, n2

and n3. Only n1 and n2 are pushed into Q because the MBB
of n3 does not intersect QR. Then we continue with the next
level. For n1, its MBB at r0.4 is not contained by QR, so
its child entries cannot be all validated as results. Since its
MBB at r0.3 intersects QR, we probe into its child entries
and find that o1 can be pruned. Then o2 is validated as a
result object and o3 becomes a candidate further processed
through integration. For n2, since its MBB at r0.3 is com-
pletely within QR, its entries o4 and o5 are inserted into the
result set directly without referring to their MBBs.

5. Experiments

5.1 Experimental Setup

We design two baseline approaches for experimental eval-
uation. One baseline approach is to sequentially scan the
dataset and compute integrations required for obtaining re-

Algorithm 1 PRQ-P(q, δ, θ)
1: ρ← 1 − 2θ, ρ′ ← θ
2: rρ ← TableLookup(ρ), rρ′ ← TableLookup(ρ′)
3: QR← QueryRegion(q, δ), ResultSet = ∅, CandidateSet = ∅
4: Q← Root, N ← 0
5: while Q � ∅ do
6: N ← Q.pop()
7: if N is an internal node then 	 at the non-leaf level
8: if bbN (rρ′ ) IsContainedBy QR then
9: Insert all the objects within N into ResultSet

10: else
11: if θ < 0.5 then
12: for each child Ni in N do
13: if bbNi (rρ) Intersects QR then
14: Push Ni into Q

15: else 	 θ ≥ 0.5
16: for each child Ni in N do
17: if meanbbNi Intersects QR then
18: Push Ni into Q

19: else 	 at the leaf level
20: if bbN (rρ′ ) IsContainedBy QR then
21: Insert all the objects within Ni into ResultSet
22: else
23: if θ < 0.5 then
24: for each child Ni in N do
25: if bbi(rρ) Intersects QR then
26: IdentifyObjects(Ni)

27: else 	 θ ≥ 0.5
28: for each child Ni in N do
29: if mean(Ni) IsInside QR then
30: IdentifyObjects(Ni)

Algorithm 2 IdentifyObjects(Ni)
1: if bbNi (rρ′ ) IsContainedBy QR then
2: Insert Ni into ResultSet
3: else
4: Integral← computeIntegral(Ni)
5: if Integral ≥ θ then
6: Insert Ni into ResultSet

sult probabilities. We name it Scan and evaluate our fil-
tering techniques by comparing query processing time and
candidate number with it. The other baseline approach in-
dexes the MBBs of the ρ-region with ρmax = 0.99. Because
the MBB with a larger ρ always subsumes the one with a
smaller ρ, it can support all the queries if the ρ values com-
puted from θ satisfy ρ ≤ ρmax. We equip this index with our
basic filtering techniques and name it FR-tree, and evalu-
ate our index structure by comparing filtering time and I/O
access with it. Our index is referred to as G-tree.

Three real datasets are used in our experiments. MG
and LB are two 2-dimensional datasets of Montgomery and
Long Beach road networks (39 K and 52 K, respectively) †.
Airport is a 3-dimensional dataset containing latitudes, lon-
gitudes and elevations of 41 K airports in the world ††. All
datasets are normalized to [0, 1000]d. LB is used by default.

We generate PRQ-P and PRQ-G queries randomly.
The probability threshold θ lies within [0.01, 0.99], and the

†http://www.census.gov/geo/www/tiger
††http://www.ourairports.com/data
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Table 1 Query response time on LB (seconds).

Query / Algorithm Overall Integration
PRQ-P / G-tree 0.157 0.154
PRQ-P / Scan 120.764 120.692
PRQ-G / G-tree 0.809 0.806
PRQ-G / Scan 236.725 236.577

query range δ is chosen from [10, 100] for MG and LB,
and [100, 200] for Airport randomly. We also generate co-
variance matrices for both data Gaussian objects and query
Gaussian objects randomly.

We implement the index structure by extending the
spatial index library SaiL † [11]. It is a generic framework
that integrates spatial and spatio-temporal index structures
and supports user-defined datatypes and customizable spa-
tial queries. We conduct experiments using a PC with Intel
Core 2 Duo CPU E8500 (3.16 GHz), RAM 4 GB, running
Fedora 12. We construct an index of all data objects for both
PRQ-P and PRQ-G, and store it in the secondary memory.

5.2 Query Performance Evaluation

The average query response time of 200 queries on LB is
shown in Table 1. It can be seen that the query response
time of Scan is 769 times that of G-tree for PRQ-P (293 for
PRQ-G). Another observation is that the time spent on prob-
ability integration is almost equal to the overall response
time. This indicates that the integration dominates the over-
all query processing and is computationally expensive. Con-
sequently, it is important to reduce candidates which need to
perform the integration as much as possible.

Among 50,747 objects in LB, the average candidate
number of G-tree is 97 for PRQ-P (269 for PRQ-G). The
number of validated objects by integration is 65 for PRQ-
P (156 for PRQ-G). So for PRQ-P 67% (58% for PRQ-G)
of the candidates identified by our approach are real results.
This demonstrates the effectiveness of our proposed filtering
techniques. In the sequel, we exclude the integration part
from query processing and focus on evaluating the filtering
and indexing performance of FR-tree and G-tree.

We run the two algorithms to process 10 K queries on
the three datasets and show the average filtering time and
I/O access of PRQ-P (resp. PRQ-G) in Fig. 6 (a)–6 (c) (resp.
Fig. 6 (b)–6 (d)). For PRQ-P, the average filtering time of
G-tree is 61.6% of that of FR-tree on the three datasets,
because the average I/O access of G-tree is 92.2% less than
that of FR-tree, though the segmented bounding boxes in G-
tree are more complex to process than those in FR-tree. The
reduction on PRQ-G is more substantial. The average filter-
ing time of G-tree on MG, LB and Airport is 45% less than
that of FR-tree. The I/O access of G-tree of three datasets
is 6.5% that of FR-tree.

As a ρmax is adopted to process queries with any θ, the
bounding boxes in FR-tree are very loose. This causes more
I/O accesses and increases filtering time. In contrast, since

†http://libspatialindex.github.com/

(a) PRQ-P: Filtering time (b) PRQ-G: Filtering time

(c) PRQ-P: I/O access (d) PRQ-G: I/O access

(e) PRQ-P: Cand. ratio (f) PRQ-G: Cand. ratio

Fig. 6 Filtering and indexing performance.

the bounding boxes in G-tree are constructed in a paramet-
ric fashion, they can be calculated dynamically for arbitrary
θ and hence are very compact. Another interesting obser-
vation is that the I/O access almost resembles the candidate
number, indicating most I/Os are spent on retrieving objects.

Figure 6 (e)–6 (f) show the candidate ratio of PRQ-P
and PRQ-G, which is calculated by dividing the candidate
number by the total number of objects. The candidate num-
ber of FR-tree and G-tree is the same since we equip FR-
tree with our filtering techniques. The candidate ratio is
around 2‰ for PRQ-P and 5‰ for PRQ-G on the three
datasets. This reveals that only a very small percentage of
data objects will become candidates owing to our filtering
techniques.
Varying Dataset Size. To evaluate the scalability of our
approach, we extract 20%, 40%, 60%, 80% and 100% of
LB dataset randomly and show the filtering time and I/O
access of two methods in Fig. 7 (a)–7 (b) on PRQ-P queries.
The performance on PRQ-G queries reveals a similar trend
and hence is omitted due to the space limitation. As the
dataset size becomes larger, the filtering time and I/O access
of the two methods almost increase linearly. G-tree displays
a steady increasing trend and always outperforms FR-tree.

As shown in Fig. 7 (c)–7 (d), in spite of the varying
dataset size |D|, the candidate ratio of PRQ-P retains 2‰
and 5.2‰ for PRQ-G, demonstrating the steadiness and
scalability of our approach with respect to the dataset size.
Varying Query Range. We vary the query range δ from
10 to 100 and show the performance on PRQ-P queries in
Fig. 8 (a)–8 (b). The performance on PRQ-G queries is sim-
ilar and hence omitted. As δ increases, FR-tree consumes
much more time and I/O accesses on filtering. In contrast,



DONG et al.: PROBABILISTIC RANGE QUERYING OVER GAUSSIAN OBJECTS
701

(a) PRQ-P: Filtering time (b) PRQ-P: I/O access

(c) PRQ-P: Candidate ratio (d) PRQ-G: Candidate ratio

Fig. 7 Varying |D|.

(a) PRQ-P: Filtering time (b) PRQ-P: I/O access

(c) PRQ-P: Candidate ratio (d) PRQ-G: Candidate ratio

Fig. 8 Varying δ.

G-tree exhibits much slower increasing trends. Figure 8 (c)–
8 (d) show that the candidate ratio of both PRQ-P and PRQ-
G also increases with δ, but for PRQ-P it is only 3.7‰
(9.4‰ for PRQ-G) even if δ achieves 100.
Varying Probability Threshold. We vary θ from 0.1 to 0.9
and show the performance in Fig. 9 (a)–9 (f) for both PRQ-
P and PRQ-G queries. For PRQ-P, the filtering time and
I/O access of both FR-tree and G-tree decrease gradually
with θ when θ < 0.5 (0.75 for PRQ-G). When θ exceeds
0.5 (0.75 for PRQ-G), the filtering time slightly rebounds.
This is consistent with our filtering conditions as discussed
in Sect. 3.3–3.4. When θ < 0.5 (0.75 for PRQ-G), ρ = 1−2θ
for PRQ-P (for PRQ-G, ρ = 2

√
1 − θ − 1 if θ < 0.75), so ρ

decreases when θ moves towards larger values, and bound-
ing boxes shrink. As a result, most of non-candidates can be
filtered quickly and less I/O accesses are needed, and hence
it accelerates filtering.

On the contrary, when θ ≥ 0.5 (0.75 for PRQ-G), the
pruning condition becomes ‖µo − q‖ < δ for PRQ-P (for
PRQ-G, ‖µo−µq‖ < δ). So all the figures have turn points at
0.5 for PRQ-P (0.75 for PRQ-G). At the same time, bound-
ing boxes computed for validation which assigns ρ′ = θ for
PRQ-P (for PRQ-G, ρ′ =

√
θ) enlarge as θ increases. So

more and more nodes and objects will become candidates,
leading to the slightly rising of the filtering time and I/O ac-
cess. The reason also accounts for the trend of G-tree on
candidate ratio in Fig. 9 (e)–9 (f).

Despite the variation of θ, G-tree constantly outper-
forms FR-tree. In the case of PRQ-P, the filtering time of

(a) PRQ-P: Filtering time (b) PRQ-G: Filtering time

(c) PRQ-P: I/O access (d) PRQ-G: I/O access

(e) PRQ-P: Candidate ratio (f) PRQ-G: Candidate ratio

Fig. 9 Varying θ.

(a) PRQ-P: Filtering time (b) PRQ-P: I/O access

(c) PRQ-P: Candidate ratio (d) PRQ-G: Candidate ratio

Fig. 10 Varying d.

FR-tree amounts to 1.8 times that of G-tree on average and
15.8 times on average for I/O access. This contrast is more
evident on PRQ-G, where the filtering time of FR-tree is 2
times that of G-tree on average and 20.1 times on average
for I/O access.
Varying Dimensionality. We also study the impact of di-
mensionality d using randomly generated synthetic datasets
with the size 20 K and the query range within [100, 200].
Figure 10 (a)–10 (d) show the scalability of FR-tree and G-
tree against d for PRQ-P. The figures of filtering time and
I/O access for PRQ-G have similar trends and are omitted.
As shown in Fig. 10 (a), the filtering time of FR-tree reduces
constantly with increasing d because the object density de-
creases with d. This can be confirmed by the decreasing
trend of I/O access of PRQ-P in Fig. 10 (b) and the candi-
date ratio of both PRQ-P and PRQ-G in Fig. 10 (c)–10 (d).

It is also observed that the filtering performance of FR-
tree begins to exceed that of G-tree at d = 5. The explana-
tion is that, candidates become fewer as object density de-
creases, and hence the operation of comparing the query re-
gion with node bounding boxes dominates the filtering pro-
cedure. While FR-tree’s MBBs can be obtained directly
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from the R-tree, G-tree needs to compute the MBBs with
the segments in the index. As d increases, the decreasing
object density can lower the processing cost. However, the
increasing d can also induce more effort in query process-
ing since the bounding box computation needs to be done
for more dimensions. The above two factors result in the
fluctuating trend of G-tree’s filtering time in Fig. 10 (a).
Index construction. We evaluate the index construction on
the Airport dataset. The node capacities of the indexes are
selected to optimize query performance for both FR-tree
and G-tree. The index size of FR-tree is 6.94 MB, and the
construction time is 4.3 seconds on average. G-tree has a
size of 6.14 MB, slightly smaller than FR-tree due to the
different entry style of an object from FR-tree. At the leaf
level of FR-tree, for each object, besides the bounding box
at ρmax, the covariance matrix has to be stored additionally
in order to carry out our filtering techniques. In contrast, in
G-tree the bounding box of an object is formed by its mean
and standard deviation in each dimension. In addition to
the bounding box, only the covariances between dimensions
rather than the whole covariance matrix need to be stored.
G-tree takes 59.7 seconds on average to build. Although G-
tree needs more construction time, considering the superior
query performance and the index construction can be done
offline, the index construction is in an affordable manner.

6. Related Work

Uncertain Data Management. We focus on research work
in the area of uncertain data management that is closely re-
lated to our work. A number of approaches for managing
uncertain data have been proposed. Early research primarily
focused on queries in a moving object database model [12]–
[15]. The solutions to several types of probabilistic queries
were proposed in [16], including probabilistic range queries,
where their target is merely the one-dimensional case.

A range query processing method for the case where
both data objects and query object are imprecise was pro-
posed in [17]. But they assume that each object exists within
a rectangular area. Zheng et al. [18] modeled a fuzzy object
by a fuzzy set where each element is characterized by its
probability of membership (the sum of all probabilities is
not necessarily one). For efficient query processing, they
proposed the notion of α-cut, the subset of elements whose
probabilities are no less than a user-specified probability
threshold α, to filter elements of the fuzzy object. Although
we also exploit the idea of filtering region (ρ-region), their
rationale of computing the α-cut is different from ours.

Gauss-tree [4] was proposed as an index structure for
Gaussian distributions. It assumes all Gaussian distributions
are probabilistically independent in each dimension. This
imposes heavy restriction on the generality of the approach
and the overall accuracy of the query result is limited. in
[19], Lian et al. proposed a generic framework to tackle the
local correlations among uncertain data.
Indexing Uncertain Data for Range Queries. Agarwal
et al. [20] presented various indexing structures on uncer-

tain data that support range queries in the one-dimensional
case. Tao et al. proposed U-tree [3] to process probabilis-
tic range queries in a multi-dimensional space, where un-
certain objects are assumed to follow arbitrary probability
distributions within uncertainty regions. Zhang et al. pro-
posed a quadtree-based index called U-Quadtree [21] for
range searching on multi-dimensional uncertain data. They
mainly focused on representing uncertainty by discrete in-
stances inside a minimum bounding box. The difference
from our work is that we take advantage of specific prop-
erties of Gaussian distribution and index uncertain objects
distributed in an infinite space.
Spatial Data Indexing. The traditional spatial database has
been well studied and many indexing methods have been
proposed [22]–[24] to support spatial query processing. R-
tree [23] and its extension R*-tree [22], indexing objects
by deriving their minimum bounding rectangles (MBRs),
are two of the well-known ones. TPR-tree [6] and TPR*-
tree [25] were proposed to index moving objects. However,
none of these indexes can be applied directly on the Gaus-
sian objects to support the queries studied in this paper.

7. Conclusion

In this paper, we study probabilistic range queries over un-
certain data. We assume that the location of the query object
is either fixed or follows a multi-dimensional Gaussian dis-
tribution. The locations of data objects are represented by
Gaussian distributions. Given these assumptions, we define
two types of probabilistic range queries with respect to the
query object. We propose filtering techniques and a novel
R-tree-based index structure to expedite query processing.

In the current implementation, the node split policy of
G-tree follows that of R*-tree and the computation of the
four penalty metrics (area, margin, overlap and centroid dis-
tance) used for splitting is based on that of TPR-tree. As
the future work, the structure of G-tree can be optimized
for efficient query processing by taking advantage of its fea-
tures. Furthermore, we consider extending our approach to
support other uncertainty models such as Gaussian Mixture
Model and other types of queries such as probabilistic near-
est neighbor queries.
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Appendix A: Proof of Lemma 1

As shown in Fig. A· 1 (a), consider the case where the min-
imum distance between bbi(ρ) and bbq(ρ) is δ. The space

(a) θ < 0.75 (b) θ ≥ 0.75

Fig. A· 1 Proof of maximal probability for PRQ-G.

outside the ρ-region of oi (resp. q) is divided into two parts
by the line la (resp. ld) equally, both with an existence proba-
bility of (1−ρ)/2. Assuming the probability that oi (resp. q)
is located in the dashed area between la and lb (resp. lc and
ld) excluding the half part of ρ-region is α (resp. β), the prob-
ability that oi lies within the left part of lb and q lies within
the left part of lc is ((1− ρ)/2+ ρ+ α)((1− ρ)/2− β). When
oi lies within the right part of lb (q can be located both in the
right and left part of lc), the probability is ((1 − ρ)/2 − α).
Thus, the maximal probability of ‖xo − xq‖ ≤ δ can be cal-
culated by summing up the two probabilities, resulting in

Pr(‖xo − xq‖ ≤ δ)
< ((1 − ρ)/2 + ρ + α)((1 − ρ)/2 − β)
+ ((1 − ρ)/2 − α)

= (3 − 2ρ − ρ2)/4 − (α + β)(1 + ρ)/2 − αβ
< (3 − 2ρ − ρ2)/4.

Appendix B: Proof of Lemma 2

Assume that the distance between the two mean locations
is exactly δ as illustrated in Fig. A· 1 (b). oi (resp. q) has a
probability of 0.5 to be located in both left and right part
of the line lo (resp. lq). ‖xo − xq‖ ≤ δ happens in three
cases: (1) Both oi and q distribute in the left part of lo and lq.
(2) Both oi and q distribute in the right part of lo and lq. (3) oi

distribute in the right part of lo and q distribute in the left part
of lq. Each case has a probability of 0.5 ∗ 0.5. Hence, the
maximal probability of ‖xo − xq‖ ≤ δ is 0.5 ∗0.5 ∗3 = 0.75.
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