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Abstract. A k-nearest neighbor (kNN) query, which retrieves nearest k
points from a database is one of the fundamental query types in spatial
databases. An all k-nearest neighbor query (AkNN query), a variation
of a kNN query, determines the k-nearest neighbors for each point in
the dataset in a query process. In this paper, we propose a method
for processing AkNN queries in Hadoop. We decompose the given space
into cells and execute a query using the MapReduce framework in a
distributed and parallel manner. Using the distribution statistics of the
target data points, our method can process given queries efficiently.

1 Introduction

An all k-nearest neighbor query (an AkNN query for short) is a variation of a
k-nearest neighbor query and determines the k-nearest neighbors for each point
in the given dataset in one query process. It is a useful operation for batch-
based processing of a large distributed point dataset. Consider, for example, a
location-based service which recommends each user his or her nearby users, who
may the candidates of new friends. Given that users’ locations are maintained
by the underlying database, we can generate such recommendation lists by is-
suing an AkNN query (e.g., k = 5) on the database. In a centralized database
environment, we can use the existing AkNN algorithms [3, 5, 11].

Although efficient algorithms for AkNN queries are available for centralized
databases, we need to consider to support distributed environments where the
target data is managed in multiple servers in a distributed way. User location
information of a location-based service in the above example may be distributed
in many servers. In such a case, we need to consider to use cloud computing
technologies for efficiently executing queries. Especially, MapReduce, which is a
fundamental framework for processing large-scaled data in distributed and par-
allel environments, is a promising method for enabling scalable data processing.
In our work, we focus on the use of Apache Hadoop [6] since it is quite popular
software for MapReduce-based data processing.

In this paper, we propose a method for efficiently processing AkNN queries
in Hadoop. The basic idea is to decompose the target space into smaller cells.
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At the first phase, we scan the entire dataset and get the summary of the point
distribution. According to the information, we determine an appropriate cell
decomposition. In the following phases, we determine k-NN objects for each
data points by considering the maximal range in which possible k-NN objects
are located.

2 Related Work

2.1 MapReduce and Hadoop

In this work, we assume the use of the distributed and parallel computing frame-
work Hadoop [6, 10]. Here we briefly describe MapReduce [4], which it the foun-
dation of Hadoop data processing. The data processing in Hadoop is based on
input data partitioning; the partitioned data is executed by a number of tasks
executed in many distributed nodes. There exist two major task categories called
Map and Reduce. Given input data, a Map function processes the data and out-
puts key-value pairs. Based on the Shuffle process, key-value pairs are grouped
and then each group is sent to the corresponding Reduce task. A user can define
own Map and Reduce functions depending on the purpose and they are applied
to the input data. The input and output formats of these functions are simpli-
fied as key-value pairs. Using this generic interface, the user can focus on his
own problem and does not have to care how the program is executed over the
distributed nodes.

An AkNN query is regarded as a kind of a self-join query. Join processing in
the MapReduce framework has been studied intensively recent years [1, 7], but
generally speaking, MapReduce only supports equi-joins; development of query
processing methods for non-equi joins is one of the interesting topics on the
MapReduce technology [9].

2.2 All k Nearest Neighbor Queries

An all k-nearest neighbor query (an AkNN query for short) is a query to de-
termine the k-nearest neighbors for each data point in the given dataset. An
example of a location-based service is described in Section 1, but it is also useful
in other applications. For example, [2] uses an AkNN query for the preprocessing
of the succeeding data mining process.

For AkNN queries, there are proposals that use R-trees and space-filling
curves [3, 5, 11], but they are limited for the use in a centralized environment. For
processing AkNN queries in Hadoop in an efficient manner, we need to develop
a query processing method that effectively uses the MapReduce framework.
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3 Distributed and Parallel Processing Based on Cell
Decomposition

3.1 Basic Idea

We now describe the basics of our AkNN query processing method. We consider
two dimensional points with x and y axes. Basically, we decompose the target
space into 2n × 2n small cells. The constant n determines the granularity of the
decomposition. Since the k-nearest neighbor points for a data point is usually
located in the nearby area of the point, we can expect that most of the k-NN
objects are found in the nearby cells. Therefore, a simple idea is to classify data
points into the corresponding cells and we compute candidate k-NN points for
each point. The process can be parallelized easily and is suited to the MapReduce
framework.

However, we may not be able to determine k-NN points at one step; we
need to perform an additional step for such a case. Data points in other nearby
cells may belong to the k-nearest neighbors. To illustrate this problem, consider
Fig. 1, where we are processing an AkNN query for k = 2. We can find 2-NN
points for A by only investigating the inside of cell 1 since the circle centered at
A and tightly covers 2-NN objects (we call such a circle a boundary circle) does
not overlap the boundary of cell 0. In contrast, the boundary circle for B overlaps
with cells 1, 2, and 3. In this case, there is a possibility that we can find 2-NN
objects in the three cells. Therefore, an additional investigation is necessary.
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Fig. 1. Cell-based k-NN processing (k = 2)

The idea is simple but there is a problem; we may not be able to draw the
boundary circle for a point. Consider point C in Fig. 1. For this point, there is
only one (less than k) point in cell 1. Thus, we cannot draw the boundary circle.
We solve the problem in the following subsection.

3.2 Merging Cells Using Data Distribution Information

We solve the problem described above by prohibiting the situation that there
are not enough points in each cell. The idea is very simple. We first check the
number of points within each cell. If we find a cell with less number of points,
we merge the cell with the neighboring cells to assure that the number of points
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in the merged cell is greater than or equal to k. After that, we can draw the
boundary circle.

The outline of the idea is illustrated in Fig. 2, where 4× 4 decomposition is
performed. At the first step, we count the number of points in each cell. Then,
we merge the cells with less number of objects with the neighboring cells. In our
method, we employ the hierarchical space decomposition used in quadtrees [8].
When we perform merging, we merge four neighboring cells which correspond
to the same node at the parent level.
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Fig. 2. Cell merging using distribution information

The problem of this approach is that we need to perform an additional count-
ing phase before the nearest neighbor computation. However, it can simplify the
following steps. The distribution information is useful in other ways. If we can
know there is no points in a cell beforehand, we do not need to consider the cell
in the following processes. As shown in the experiments, the cost of the counting
is relatively small compared to the total cost.

4 Details of Query Processing

We describe the detail of the query processing method based on the idea shown in
the previous section. It consists of four steps. We assume that the input dataset
is a set of records, which has the format <id, x, y>. The parameters n and k
are specified initially by the user.

4.1 MapReduce1: Getting Distribution Information and Cell
Merging

In this step, we decompose the entire space into 2n × 2n cells and count the
number of points that fall in each cell. The counting process can be directly
implemented as a MapReduce process:

– Map: It receives the input with the format shown above and computes the
cell number for each data point based on its coordinates. The format of the
output record is a key-value pair <cell_id, 1>.

– Reduce: It receives a set of records which has the same cell ids and sum the
value parts of the records. The output is with the format <cell_id, sum>.
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Note that the Shuffle process classifies the output records of the Map function
and records with the same ids are sent to a corresponding node.

Although this is the basic processing method, we can further improve the
performance. In Hadoop, we can use an optional Combiner in the MapReduce
process. A Combiner is used when we aggregate the intermediate data within a
Map task before sending the output of the Map function to the following Shuffle
process. It can reduce the size of the intermediate dataset. If we use this option,
MapReduce1 is modified as follows:

– Map: Same as above.
– Combiner: It receives a set of records with the same cell ids and sums the

value parts of the records. The output is with the format <cell_id, sum>.
– Reduce: Same as above.

After MapReduce1, we perform cell merging. For this process, the scalabil-
ity is not required since we just consider statistics values so that we perform
the computation in a node. This procedure receives an input with the format
shown in the middle of Fig. 2 and merges low-number cells with the neighbor-
ing cells based on the hierarchical quadtree structure in a bottom-up manner.
The cell merging procedure outputs the mapping information how each cell id
corresponds to a new cell id in the merged cell decomposition. This information
is read in the following MapReduce processes as additional data.

4.2 MapReduce2: First Stage of AllkNN Computation

In this step, we collect input records for each cell and then compute candidate
kNN points for each point in the cell region. The Map and Reduce functions are
summarized as follows:

– Map: It receives the original data points and computes the corresponding
cell id, and then output records with the format <cell_id, id, coord>,
where id is the point id and coord is the coordinates of the point.

– Reduce: It receives records corresponding to a cell; the records has the
format <id, coord>. The Reduce function calculates the distance for each
combination of two points in the cell and computes the k-NN points for each
point in the cell. The output records have the format <id, cood, cell_id,

kNN_list>, where id is used as the key and kNN_list is the list of the kNN
points for point id and has the format [〈o1, d1〉, . . . , 〈ok, dk〉], where oi is the
i-th NN point and di is its distance.

Note that the Shuffle operation collects records with the same cell ids into one
node.

4.3 MapReduce3: Updating k-NN Points

In this step, we use the idea described in Section 3 that uses the notion of a
boundary circle. If it is necessary, we perform an additional process and updates
k-NN points for the points. The MapReduce process is outlined as follows:
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– Map: It receives the result of MapReduce2. For each point, we first compute
the bounding circle. There are two cases for the following process:

1. The bounding circle does not overlap with other cells: In this case, we
do not need to perform a further process and the k-NN points are fixed.
Thus, we output key-value pairs with the format <cell_id, id, coord,

kNN_list, true>, where cell_id is the key and the last item true is a
flag to denote the process is finished. In the following Reduce operation,
we do not perform any further processing for the records in which the
flags are set; it only converts the record format.

2. The bounding circle overlaps with other cells: Since there is a possibility
that neighboring cells may contain k-NN points, we need an additional
process for checking. For preparing the additional phase, we output key-
value pairs with the form <cell_id’, id, coord, kNN_list, false>,
where the key cell_id’ is the cell id of one of the overlapped cells and
the last item false represents that the process is not finished. If multiple
cells overlap with the bounding circle, we output multiple correspond-
ing key-value pairs. In the example of Fig. 1, we generate three pairs
<1, B, ...>, <2, B, ...>, and <3, B, ...> for B.

In this Map process, the procedure also outputs the second type of records
with the format <cell_id, id, coord>, which are used for the following
k-NN points computation and the key is cell_id.

– Reduce: The Shuffle operation sends records with the same cell ids to the
corresponding node, and the records are treated as the input of this Reduce
function. Since different types of records exist in the input, it first classifies
the records and then update k-NN points for the points that require addi-
tional checks. We need to perform additional distance computation between
some limited number of record pairs. The output is a set of records with the
format <id, coord, cell_id, kNN_list>, where id is the key.

4.4 MapReduce4: Integrating k-NN Lists

We need this step because we may have multiple updates of k-NN points for a
point. We should merge these k-NN lists and finally construct the result k-NN
list. The MapReduce process is summarized as follows:

– Map: It receives the result of the former step and then outputs the k-NN
list. The format of output records is <id, kNN_list>, where id is the key.

– Reduce: It receives the records with the same keys (the format is described
above) and then it creates the integrated list with the format <id, kNN_list>.

If we needed to investigate multiple cells for a point, the Shuffle process groups
the multiple outputs and then sends them to the Reduce function.

Based on the above four steps, we can finally determine the k-NN points for
each point and we can quit the process.
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4.5 Illustrative Example

We show an example of MapReduce1 to 3 steps that finds AkNN points. Figure 3
shows the distribution of points and we focus on points A, B, and C. The three
points are the representative example patterns:

– A (the bounding circle does not overlap with other cells): k-NN points are
determined at MapReduce2 step.

– B (the bounding circle overlaps with one cell): We can determine k-NN points
at MapReduce3 step by investigating additional cell 2.

– C (the bounding circle overlaps with multiple cells): We investigate additional
cells 1, 2, and 3 at MapReduce3 step. Then we integrate their results at
MapReduce4 step and determine the k-NN points.

A

B C

d
e

fg h i
id coord

A (60, 40)
B (40, 80)
C (90, 90)
d (75, 30)
e (75, 65)
f (65, 85)
g (40, 105)
h (80, 105)
i (105, 105)

Fig. 3. k-NN example (k = 2)

Figure 4 illustrates the execution steps of the entire MapReduce steps. We
can see that the k-NN lists for points A, B, and C are incrementally updated and
finally fixed.

5 Experiments

We have implemented the method described in Section 4. In this section, we
evaluate the performance of the MapReduce program running in a Hadoop en-
vironment.

5.1 Datasets and Experimental Environment

The experiments are performed using two synthetic datasets: the datasets 1M and
10M consist of 1,000,000 and 10,000,000 points in the target space, respectively.
Their file sizes are 34MB and 350MB4.
4 We have evaluated the performance using a real map dataset. However, since the
number of entries is small (no. of points = 53,145), we found that the overhead
dominates the total cost and there is no merit to use Hadoop. Therefore, we used
the synthetic dataset here to illustrate the scalability of the method.
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<A, 6 0, 4 0> <0, A, 6 0, 4 0>
<B, 4 0, 8 0>      <0, B, 4 0, 8 0>
<C, 90, 90> <0, C, 90, 90>

<A, 6 0, 4 0, 0, [ d :18 .0, e:29.2]>
<B, 4 0, 8 0, 0, [ f:25.5, e:38 .1]>
<C, 90, 90, 0, [ f:25.5, e:29.2]>

<0, A, 6 0, 4 0, [ d :18 .0, e:29.2], t r u e>
<0, A, 6 0, 4 0>
<2, B, 4 0, 8 0, 0, [ f:25.5, e:38 .1]>
<0, B, 4 0, 8 0>
<1, C, 90, 90, 0, [ f:25.5, e:29.2], fa l s e>
<2, C, 90, 90, 0, [ f:25.5, e:29.2], fa l s e>
<3, C, 90, 90, 0, [ f:25.5, e:29.2], fa l s e>
<0, C, 90, 90>

<A, 6 0, 4 0, 0, [ d :18 .0, e:29.2]>
<B, 4 0, 8 0, 2, [ g :25.0, f:25.5]>
<C, 90, 90, 1, [ f:25.5, e:29.2]>
<C, 90, 90, 2, [ h :18 .0, f:25.5]>
<C, 90, 90, 3, [ i :21.2, f:25.5]>

<A, [ d :18 .0, e:29.2]>
<B, [ g :25.0, f:25.5]>
<C, [ f:25.5, e:29.2]>
<C, [ h :18 .0, f:25.5]>
<C, [ i :21.2, f:25.5]>

<A, [ d :18 .0, e:29.2]>
<B, [ g :25.0, f:25.5]>
<C, [ h :18 .0, i :21.2]>

M a p 2

R ed u c e2

M a p 3

R ed u c e3

M a p 4

R ed u c e4

R ed u c e3

Fig. 4. Processing AkNN query on example dataset

We use three nodes of Linux 3.0.0-14-server (Ubuntu 11.10) with Intel Xeon
CPU (E5620 @ 2.40GHz). Since each CPU has 4 × 2 cores, we have 24 cores
in total. The system has 500GB storage and the servers are connected by 1G
bit Ethernet. We run Hadoop version 0.20.203.0 in the system. The number of
replicas is set to 1 since we do not care failures in this experiment. The number
of max number of Map tasks and Reduce tasks are set to 8.

5.2 Experiment 1: Changing Number of Reduce Tasks

To evaluate parallel processing behavior, we run queries by changing the number
of Reduce tasks as 1, 2, 4, 8, 12, 16, and 24. The granularity parameter is set
to n = 8 and the parameter k is set to 5. The results are shown in Figs. 5
and 6. Total execution time consists of “Cell Merging” and MapReduce2 to 4,
where “Cell Merging” means that the time required until the cell merging step;
it includes the cell merging process and its preceding MapReduce1 step.

Figure 5 shows the result for dataset 1M. In this case, the execution time
takes the minimum when the number of Reduce tasks is 8 and the cost increases
for the large number of Reduce tasks. The reason is that the size of the input
is small for this setting and the overhead of parallelization has more impacts
on the performance. In this case, we can determine the final k-NN points for
16% of the data points at MapReduce2 step. It means that we need to perform
additional steps for 84% of the data points in MapReduce3 and 4 phase.

Figure 6 shows the case for dataset 10M. In this case, the execution time
decreases as the number of Reduce tasks increases. Since the density of points
in the target space increases 10 times larger than that of dataset 1M, we need to
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Fig. 5. Execution time for different no. of Reduce tasks (1M, n = 8 and k = 5)

perform additional steps only for 35.6% of the data points in the MapReduce3
phase. This is because we can determine k-NN points by checking only one cell
in MapReduce2 step.
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Fig. 6. Execution time for different no. of Reduce tasks (10M, n = 8 and k = 5)

As we can observe the figures, the execution time for “Cell Merging” step for
dataset 10M slightly increases as the increase of the number of Reduce tasks. The
reason is that the use of Combiner in MapReduce1 step can reduce the amount
of data size to be given to the Shuffle operation and the amount of inputs for
Reduce tasks. Since the data processing cost is low, the increase of the number
of Reduce tasks becomes the overhead.

5.3 Experiment 2: Changing k Values

In this experiment, we investigate how the performance changes for different k
values. The granularity parameter is set to n = 8 and the number of Reduce
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tasks is 24. The results shown in Fig. 7 for dataset 10M. We omit the case for
dataset 1M since the overall trend is same as the case of 10M.
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Fig. 7. Execution time for different k values (10M, n = 8)

As the figure illustrates, the processing time increases as the k value increases.
Especially, the increases of the cost for MapReduce3 and MapReduce4 are large.
The reason is that a large k value results in a large size of each intermediate
record, and it results in the increase of data processing time. In addition to that,
since the radius of a boundary circle becomes large, we need to investigate more
data points in MapReduce3 and MapReduce4 steps.

Table 1 shows the detail of the processes. As shown in the table, the increase
of k results in the increase of the average size of intermediate records, which
contain k-NN lists. Since the k value directly influences the list length, the
overhead becomes larger. The table also shows the ratio of points which require
additional steps (MapReduce3 and 4). As shown in the table, we need more steps
for large k values and it influences the total cost.

Table 1. Statistics of experiments for different k values

k = 5 k = 10 k = 20 k = 40

Average size of a record (byte) 128 243 473 933

Ratio of points which need additional steps 35.6% 48.7% 64.5& 81.9%

5.4 Summary of Experiments

Based on the experiments, we have observed that the proposed AkNN query pro-
cessing method can reduce the processing time by parallel processing, especially
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for a large dataset (Experiment 1). In addition, it is observed that the increase
of the k value results in the total processing cost (Experiment 2).

In our method, we incorporated a preparation step to obtain the overall
distribution of the points in the target space. As shown in the experimental
results, this process, including the cell merging cost, is quite efficient compared
to other processes of the algorithm. The observation is more clear especially when
the dataset size is large. The preprocessing can simplify the algorithm because
the strategy based on a boundary circle becomes simpler. Thus, the benefit of
the first phase is larger than the cost of the process.

6 Discussion: AkNN Queries on Two Different Inputs

Since our proposed method is simple, we would be able to extend the algorithm
for different and generalized cases. Especially, we can consider to calculate AkNN
points for two different datasets. For example, given two datasets A and B, assume
that we would like to calculate the k-NN points for each A point from B points.
To cope with this change, our algorithm requires modifications; MapReduce2
and 3 should read two datasets A and B and compute the distances between both
datasets. The cell merging method should be revised to consider the distribution
information of two datasets.

To improve distance computation time of the approach, we can employ the
idea used in the Reduce function of MapReduce3 in the proposed method. The
Reduce function receives two types of datasets (update data of k-NN points
and coordinate data for distance computation) and classifies them, and then
performs distance computation. By applying similar classification for datasets A
and B, we can perform k-NN computation for two different datasets.

Cell merging using distribution information of two datasets are slightly dif-
ferent from the original case. We judge whether we actually need to merge two
cells based on two factors: 1) whether A points exist in the cell and 2) whether
the number of B points in the cell is larger than or equal to k. Table 2 shows the
decision table.

Table 2. Decision table when cell merging is necessary

Dataset A Dataset B Need Cell Merging?

Contains points No. of points ≥ k No
Contains points No. of points < k Yes

No points No. of points ≥ k No
No points No. of points < k No

In conclusion, we need to integrate the cell with neighboring cells only when
there are A points in the cell and the number of B points fall in the cell is smaller
than k. Note that we do not consider the cell with no A points because k-NN
computation is not necessary for this case.
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7 Conclusions

In this paper, we have proposed an AkNN query processing method in the
MapReduce framework. By using cell decomposition, the method adapts the dis-
tributed and parallel query framework of MapReduce. Since k-NN points may
be located outside of the target cell, we may need additional steps. We solved
the problem by considering a boundary circle for the target point. In addition, to
simplify the algorithm, we proposed to collect distribution statistics beforehand
and the statistics is used for cell merging. In the experiments, we have investi-
gated the behaviors of the algorithm for different parallelization parameters and
different k values.

The future work includes how to estimate the appropriate number of cell
decomposition granularity (n) by using statistics of the underlying data. In ad-
dition, the number of parallel processes is also an important tuning factor. As
shown in the experiments, too many parallel processes may result in the increase
of the total processing cost due to the overhead. If we can estimate these pa-
rameters accurately and adaptively, we would be able to achieve nearly optimal
processing for any environments.
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