
Combination Skyline Queries

Xi Guo1, Chuan Xiao2, and Yoshiharu Ishikawa2,1,3

1 Graduate School of Information Science, Nagoya University, Japan
2 Information Technology Center, Nagoya University, Japan

3 National Institute of Informatics, Japan

Abstract. Given a collection of data objects, the skyline problem is to
select the objects which are not dominated by any others. In this paper,
we propose a new variation of the skyline problem, called the combina-
tion skyline problem. The goal is to find the fixed-size combinations of
objects which are skyline among all possible combinations. Our problem
is technically challenging as traditional skyline approaches are inappli-
cable to handle a huge number of possible combinations. By indexing
objects with an R-tree, our solution is based on object-selecting patterns
that indicate the number of objects to be selected for each MBR. We
develop two major pruning conditions to avoid unnecessary expansions
and enumerations, as well as a technique to reduce space consumption
on storing the skyline for each rule in the object-selecting pattern. The
efficiency of the proposed algorithm is demonstrated by extensive exper-
iments on both real and synthetic datasets.

Keywords: Skyline queries, combinations, dominance relationships, R-
trees.

1 Introduction

Given a set of objects O where each oi ∈ O has m-dimensional attributes A =
{A1, . . . , Am}, a skyline query [2] returns the objects that are not dominated
by any other objects. An object dominates another object if it is not worse
than the other in every attribute and strictly better than the other in at least
one attribute. Skyline problems exist in various practical applications where
trade-off decisions are made in order to optimize several important objectives.
Consider an example in the financial field: An investor tends to buy the stocks
that can minimize the commission costs and predicted risks. Therefore, the goal
can be modeled as finding the skyline with minimum costs and minimum risks.
Fig. 1(a) shows seven stock records with their costs (A1-axis) and risks (A2-axis).
A, B, and D are the stocks that are not dominated by any others and hence
constitute the skyline. Skyline computation has received considerable attention
from the database community [4, 7, 14] after the seminal paper [2], yet only a
few studies explored the scenario where users are interested in combinations of
objects instead of individuals. For the stock market example, assume that each
portfolio consists of five stocks and its cost (risk) is the sum of costs (risks) of its

21 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

A1

A2

A(1,6)

C(3,5)

D(4,3)

G(8,8)

B(2.4)

F(8,10)E(7,10)

0

(cost)

(risk)

(a) A Skyline Problem

5 30

5

10

15

20

25

30

A2

ABC(6,15)

10 15 20 25

ABD(7,13)

ACD(8,13)

BCD(9,12)

EFG(23,28)
AEF(16,26)

AEG(16,24)

A1

0

(cost)

(risk)

(b) A Combination Skyline Problem

Fig. 1: Skyline and Combination Skyline

components. Users may want to choose the portfolios which are not dominated
by any others in order to minimize the total costs and the total risks.

In this paper we investigate the combination skyline query problem. Its goal
is to find combinations that are not dominated by any other combinations. We
focus on the combinations consisting of a fixed number of individual objects,
and their attribute values are the aggregations of those from its members.

Example 1 Fig. 1(b) shows some three-item combinations consisting of stock
records. Assume that their attribute values are the sums of their components’ val-
ues, and the combination skyline problem is to find combinations that have mini-
mal values in attributes A1 (cost) and A2 (risk). Combinations {ABC, ABD, BCD}
cannot be dominated by any others and thus they are the answers for the combi-
nation skyline query.

There have been a few studies on the combination skyline problem. [18]
proposed a solution to find the top-k optimal combinations according to a user-
defined preference order of attributes. However, it is difficult to define a user
preference beforehand for some complicated decision making tasks. [17] tries
to find the skyline combinations that are on the convex hull enclosing all the
combinations, yet it will miss other many combinations on the skyline which
provide meaningful results. In this paper, we present an efficient solution that
constructs the whole combination skyline, within which the user may select a
smaller subset of his interest [12, 16, 19].

For the combination skyline query problem, the number of combinations is
(

|O|
k

)

for a database containing |O| objects when we select combinations of size k.
This poses serious algorithmic challenges compared with the traditional skyline
problem. As Example 1 shows,

(

7
3

)

= 35 possible combinations are generated

from only seven objects. Even for a small database with thousands of entries,
the number of combinations of objects is prohibitively large.

A näıve way to answer constrained combination skyline query is to employ the
existing skyline approaches [4, 7, 14] by regarding each enumerated combination
as a single object. However, the huge number of enumerations renders them
inapplicable for large datasets. In addition, some prevalent skyline approaches
such as the BBS algorithm [14] uses index structures [9]; it means that we have
to create a very large index for the combinations.

In this paper, we propose a pattern-based pruning (PBP) algorithm to solve
the combination skyline problem by indexing individual objects rather than com-
binations in an R-tree. The PBP algorithm searches for skyline combinations
with a set of object-selecting patterns organized in a tree that represent the
number of objects to be selected in each MBR. We exploit the attribute value
ranges in the MBRs as well as search order, and develop two pruning strategies
so as to avoid generating a large number of unpromising combinations. We also
elaborate how to avoid repeated computations on expanding the same object-
selecting patterns to combinations. The efficiency of the PBP algorithm is then
evaluated with experiments.

Our contributions can be summarized as follows.

– We propose the combination skyline problem, a new variation of the skyline
problem that prevalently exists in daily applications and poses technical
challenges.

– We devise a pattern-based pruning algorithm to tackle the major technical
issue. The algorithm indexes only individual objects and make combinations
with a set of object-selecting patterns. Several optimization strategies are
developed to improve the efficiency of the algorithm.

– We discuss two variations of the combination skyline problem – incremen-
tal combination skyline and constrained combination skyline, which can be
solved by extending the PBP algorithm.

– We conduct extensive experimental evaluations both on synthetic and real
datasets to demonstrate the efficiency of the proposed algorithm.

The rest of the paper is organized as follows. Section 2 reviews the studies
related to our problem. Section 3 defines the combination skyline problem. Sec-
tion 4 introduces object selecting patterns and the basic framework of the PBP
algorithm. Section 5 proposes two pruning strategies to reduce the search space
and an optimization approach to avoid duplicate searches. Section 6 extends
the combination skyline problem to two variations and discusses their solutions.
Section 7 reports the experimental results and Section 8 concludes the paper.

2 Related Work

In the database field, the skyline problems have received considerable attentions
since the seminal paper [2] appeared. A number of subsequent papers propose
various of algorithms to improve query performance, like BBS [14], SFS [4] and

LESS [7]. In contrast to these papers, which focus on objects themselves, our
problem focuses on combinations. Although we can treat a combination as a nor-
mal object, it is time-consuming to find answers using these existing algorithms
due to an explosive number of combinations. Among them, BBS is based on an
R-tree index on objects. In order to index all of the combinations, a large-sized
index is inevitable and results in poor performance.

To the best of our knowledge, there is no literature directly targeting the
combination skyline problem. Two closely related topics are “top-k combinato-
rial skyline queries” [18] and “convex skyline objectsets” [17]. [18] studied how
to find top-k optimal combinations according to a given preference order in the
attributes. Their solution is to retrieve non-dominated combinations incremen-
tally with respect to the preference until the best k results have been found.
This approach relies on the preference order of attributes and the limited num-
ber (top-k) of combinations queried. Both the preference order and the top-k
limitation may largely reduce the exponential search space for combinations.
However, in our problem there is no preference order nor the top-k limitation.
Consequently, their approach cannot solve our problem easily and efficiently. Ad-
ditionally, in practice it is difficult for the system or a user to decide a reasonable
preference order. This fact will narrow down the applications of [18].

[17] studied the “convex skyline objectset” problem. It is known that the
points on the lower (upper) convex hull, denoted as CH, is a subset of the points
on the skyline, denoted as SKY . Every point in CH can minimize (maximize)
a corresponding linear scoring function on attributes, while every point in SKY
can minimize (maximize) a corresponding monotonic scoring function [2]. [17]
aims at retrieving the combinations in CH, however, we focuses on retrieving the
combinations in CH ⊆ SKY . Since their approach relies on the properties of the
convex hull, it cannot extend easily to solve our problem.

There are some other works [15, 20] focusing on the combination selection
problem but related to our work weakly. [15] studied how to select “maximal
combinations”. A combination is “maximal” if it exceeds the specified constraint
by adding any new object. Finally, the k most representative maximal combina-
tions, which contain objects with high diversities, are presented to the user. In
their problem, the objects only have one attribute, in contrast to our multiple
attribute problem. The approach for single attribute optimization problem is
different from the approach for multiple attributes optimization problem. Thus,
our problem cannot be solved by simple extensions of their approach.

[20] studies the problem to construct k profitable products from a set of
new products that are not dominated by the products in the existing market.
They construct non-dominated products by assigning prices to the new products
that are not given beforehand like the existing products. Our problem is very
different from theirs in two aspects. First, they concern whether a single product
is dominated or not, while we concern whether a combination of product is
dominated or not. Second, there exist unfixed attribute values (prices) in their
problem, while all the attribute values are fixed.

Outside of the database field, the skyline problem is related to the multi-
objective optimization (MOO), which has been studied over five decades [5].
Among the variations of the MOO problem, the most relevant to our problem is
the multi-objective combinatorial optimization (MOCO) problem [6]. The goal
is to find subsets of objects aiming at optimizing multiple objective functions
subject to a set of constraints. Like the solutions for the MOO problem, most
approaches for the MOCO problem essentially convert the multiple objectives
to one single objective and find one best answer numerically. Such numerical
approaches are not good at handling large scale datasets in databases. Further-
more, our problem aims at retrieving optimal combinations without making a
trade-off of multiple objectives by some score functions. For these reasons above,
we cannot use the existing MOCO approaches to solve our problem in databases.

This paper is an extended version of [8]. Compared with [8], this paper has
the following substantial differences:

– We made modifications to the two pruning techniques, and developed a
technique to avoid repeated pattern expansions (Section 5).

– The incremental combination skyline problem, which searches for (k + ∆k)-
item skyline combination based on the original k-item skyline combination,
is discussed (Section 6.1).

– Attribute constraints, which are contained in the definition of a combination
skyline query in [8], are made optional and discussed (Section 6.2).

– The experiments with the optimized PBP algorithm on both real and syn-
thetic datasets were performed (Section 7).

3 Preliminaries

3.1 Problem Definition

Given a set of objects O with m attributes in the attribute set A, a k-item
combination c is made up of k objects selected from O, denoted c = {o1, . . . , ok}.
Each attribute value of c is given by the formula below

c.Aj = fj(o1.Aj , . . . , ok.Aj), (1)

where fj is a monotonic aggregate function that takes k parameters and returns
a single value. For the sake of simplicity, in this paper we consider that the
monotonic scoring function returns the sum of these values; i.e.,

c.Aj =
k

∑

i=1

oi.Aj , (2)

though our algorithms can be applied on any monotonic aggregate function.

Definition 1 (Dominance Relationship) A combination c dominates another
combination c′, denoted c ≺ c′, if c is not larger than c′ in all the attributes and
is smaller than c′ in at least one attribute; formally, c.Aj ≤ c′.Aj (∀Aj ∈ A)
and c.At < c′.At (∃At ∈ A).

Problem 1 (Combination Skyline Problem) Given a dataset O and an item
number k, the combination skyline problem CSKY (O, k) is to find the k-item
combinations that are not dominated by any other combinations.

Non-dominated combinations are also called skyline combinations. The combi-
nation skyline query in Example 1 can be formalized as CSKY ({A, . . . , G }, 3)
and the result set is {ABC, ABD, BCD }. We use the term “cardinality” to de-
note the item number k if there is no ambiguity. In this paper, we consider the
case where k ≥ 2 because the case where k = 1 reduces to the original skyline
query [2].

3.2 Baseline Algorithm

In order to solve the combination skyline problem, a näıve approach is to regard
the combinations as “objects” and select the optimal ones using existing skyline
algorithms. However, these algorithms retrieve optimal objects based on either
presorting or indexing objects beforehand. It means that before using such an
algorithm we have to enumerate all possible combinations. Due to the explo-
sive number of combinations generated, the näıve approach is inapplicable for
large data sets. We choose the BBS algorithm [14] as the baseline algorithm for
comparison, and our experiment shows that even for a set of 200 objects and a
cardinality of 3, it requires an index nearly one gigabyte and spends thousands
of seconds on computing the skyline.

4 Object-Selecting Pattern and Basic PBP Algorithm

Unlike the baseline approach, we propose a pattern-based pruning (PBP) algo-
rithm based on an index on single objects rather than an index on combinations.
We choose to index objects with an R-tree [9] as it is proven efficient for orga-
nizing multi-dimensional data. In order to make combinations, we use a set of
object-selecting patterns to indicate the number of objects to be selected within
each MBR in the R-tree. The object selecting patterns are organized in a pattern
tree. We search for skyline combinations in the order arranged by a pattern tree
that corresponds to the R-tree.

4.1 Object-Selecting Pattern

An R-tree is a data structure that hierarchically groups nearby multi-dimensional
objects and encloses them by minimum bounding rectangles (MBRs). Our idea is
to create combinations by selecting objects from the MBRs. The way is to select
ki objects from each MBR ri ∈ R and to make the total number of selected
objects equal k. Each ki is limited in the range of [0, min(k, |obj(ri)|)], where
obj(ri) denotes the set of objects enclosed by ri. An object-selecting pattern is
defined formally below.

Definition 2 (Object-Selecting Pattern) Given a cardinality k and a set of
MBRs R, an object-selecting pattern p is { (ri, ki)|ri ∈ R, ki ∈ [0, min(k, |obj(ri)|)] }

subject to
∑|R|

i=1 ki = k. In addition, each MBR in R appears exactly once in the
pattern p; i.e., ∀ri and rj , ri 6= rj .

We call the pairs (ri, ki) constituting a pattern rules. By Definition 2, a rule
(ri, ki) is to select ki objects from the MBR ri.

The attribute values of the combinations obtained from a pattern are within

[
∑|R|

i=1 ri.A
⊥
j · ki,

∑|R|
i=1 ri.A

⊤
j · ki] (Aj ∈ A), because we can infer attribute value

ranges for the combinations formed using the rule (ri, ki) as [ri.A
⊥
j · k, ri.A

⊤
j ·

k] (Aj ∈ A), where ri.A
⊥
j and ri.A

⊤
j are the values of the bottom left and top

right corners of ri.

21 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

A1

A2

A

C

D

G

B

FE

0

r1

r2

r0

r1 r2

r0

A B C D

r1 r3

R-Tree

{[1,8], [3,10]}

{[1,2], [4,6]} {[7,8], [8,10]}

r3

r3

E F G

r2{[3,4], [3,5]}

Fig. 2: Object Layout and R-Tree

Example 2 Fig. 2 shows the R-tree that indexes the objects in Example 1. In or-
der to make 3-item combinations, one of the patterns is { (r1, 2), (r2, 1), (r3, 0) },
consisting of three rules. Rule (r1, 2) means to select two objects from MBR r1,
and rule (r2, 1) means to select one object from MBR r2. Thus, the pattern can
generate the set of combinations {ABC, ABD } that contains two combinations
in total. With the boundaries of the three MBRs, we can limit the attribute values
of the generated combinations within [5, 8] for A1 and [11, 17] for A2.

Consider a rule (r, k). If r is a leaf node of the R-tree, we can scan the objects
contained and form combinations of size k. If r is an internal node, we need to
expand it to child MBRs, and this will yield a group of patterns that select
objects from r’s child MBRs with the total number of objects summing up to k.
We call such patterns the child patterns of the rule (r, k).

Definition 3 (Child Patterns of a Rule) A child pattern of a rule (r, k) is
a pattern that selects k objects from all of r’s child MBRs, formally cp =

{ (ri, ki)|ri ∈ R, ki ∈ [0, min(k, |obj(ri)|)] } subject to
∑|R|

i=1 ki = k where R
is the set of the child MBRs of r.

Note that all the child patterns of rule (r, k) share the same set of MBRs, but
differ in the quantities of selected objects ki. In the R-tree shown in Fig. 2, the
node r0 has three child MBRs {r1, r2, r3}. Thus, patterns {(r1, 2), (r2, 1), (r3, 0)},
{(r1, 2), (r2, 0), (r3, 1)}, and so on are the child patterns of the rule (r0, 3), which
share the same set of ri’s but differ in ki’s.

Similarly, a pattern can be expanded to a set of child patterns. For each
rule in the pattern, we expand the rule to its child patterns, and perform an
n-ary Cartesian product on all these child patterns. Algorithm 1 presents the
pseudo-code of the procedure.

Algorithm 1: ExpandPattern (p)

Input : A pattern p represented in a set of (ri, ki)’s.
Output : The set of child patterns of p.

1 P ← e;
/* assume e is the identity element of Cartesian product */

2 for each (ri, ki) ∈ p do

3 P ′ ← the child patterns of (ri, ki);
4 P ← P × P ′;

5 end for

6 return P

Starting with the root node r0 in the R-tree and its corresponding root pat-
tern p0 = { (r0, k) }, if we traverse the R-tree with a breadth-first search, and
expand each corresponding pattern using its child patterns, we can obtain all
possible combinations at the leaf level. Accordingly, the patterns expanded con-
stitute a pattern tree. Example 3 shows the procedure of constructing a pattern
tree with respect to the R-tree in Fig. 2.

Example 3 A pattern tree corresponding to the R-tree in Fig. 2 is shown in
Fig. 3. The root pattern is p0 = { (r0, 3) } where 3 is the required cardinality.
Since pattern p0 only has a single rule (r0, 3), the eight child patterns of (r0, 3), ,
{p1, . . . , p8}, are also the child patterns of p0. Next, we expand the patterns at the
second level of the pattern tree. Consider pattern p1 = { (r1, 2), (r2, 1), (r3, 0) }
that contains three rules (r1, 2), (r2, 1) and (r3, 0). Rule (r1, 2) has one child
pattern {AB} and rule (r2, 1) has two child patterns {C, D} and hence the child
patterns of p1 is {AB} × {C, D} = {ABC, ABD}. Since these child patterns
contain objects rather than MBRs, we also call them child combinations.

p0={(r0,3)}

p1={(r1,2), (r2,1), (r3,0)}

Pattern Tree

{[3,24], [9,30]}

{[5,8], [11,17]}

p2={(r1,2), (r2,0), (r3,1)}

{[9,12], [16,22]}

p3={(r1,1), (r2,2), (r3,0)}

{[7,10], [10,16]}

p4={(r1,1), (r2,0), (r3,2)}

{[15,18], [20,26]}

p5={(r1,1), (r2,1), (r3,1)}

{[11,14], [15,21]}

p6={(r1,0), (r2,2), (r3,1)}

{[13,16], [14,20]}

p7={(r1,0), (r2,1), (r3,2)}

{[17,20], [19,25]}

p8={(r1,0), (r2,0), (r3,3)}

{[21,24], [24,30]}

ABC

ABD

ABE

ABG

ABF

ACD

BCD

AEF

BFG

...

ACE

...

BDG
CDE

CDF

CDG
CEF

DFG

...

EFG

Fig. 3: Pattern Tree

4.2 Basic PBP Algorithm

Following the pattern tree, we design a basic PBP algorithm (Algorithm 2). It
takes as an input the set of objects, and first builds an R-tree on the objects.
Starting with the root node r0 and the pattern { (r0, k) }, we traverse the R-
tree in a top-down fashion. Note that the pattern tree is not materialized in
the algorithm. Instead, we use a queue Q to capture the patterns generated
while traversing the pattern tree. Each pattern is expanded to its child patterns
(Line 7) if the nodes in the pattern are internal nodes; otherwise leaf nodes
are reached and hence we can make combinations in the MBRs according to the
pattern (Line 11). The combinations are then checked for dominance relationship
with the candidate skyline combination found so far and vice versa (Line 12).
The candidates not dominated by any combinations are returned as the answer
after processing all the expanded patterns.

Compared with the baseline algorithm, the basic PBP algorithm reduces the
space consumption by building an R-tree on single objects. However, it suffers
from the huge number of patterns. Even for a rule (r, k), the number of child
patterns is

(

h+k−1
h−1

)

if r has h child MBRs. We will discuss how to reduce this
number and consider only promising child patterns in the following section.

5 Optimizations of PBP Algorithm

In a pattern tree, we can decide which patterns should be expanded and which
patterns should not be expanded. For example, in the pattern tree shown in

Algorithm 2: BasicPBP (T , k)

Input : T is the R-tree built on O; k is the cardinality.
Output : The skyline combination set S = CSKY (O, k).

1 S ← ∅;
2 r0 ← the root node of T ;
3 Q← { (r0, k) };
4 while Q 6= ∅ do

5 p← Q.pop();
6 if the MBRs in p are internal nodes then

7 P ← ExpandPattern(p);
8 for each p′ ∈ P do

9 Q.push(p′);

10 else

11 C ← generate combinations with p;
12 S ← Skyline(S ∪ C);

13 return S

Fig. 3, the combinations following pattern p4 must be dominated by the com-
binations following pattern p1. Thus, we can prune pattern p4 without further
expanding. Another intuition is that if the combinations from a pattern are guar-
anteed to be dominated by the current skyline combinations, the pattern can be
pruned as well. We call these two scenarios pattern-pattern pruning and pattern-
combination pruning. We also observe the existence of multiple expansions for
same patterns in the pattern tree. In the rest of this section, we will study the
two pruning techniques and how to avoid multiple expansions as well.

5.1 Pattern-Pattern Pruning

Patterns can be pruned safely without expanding if they will generate com-
binations that are guaranteed to be dominated by others. We first define the
dominance relationship between patterns and capture the idea in Theorem 1.

Definition 4 (Pattern Dominance) A pattern p dominates another pattern
p′ if p.A⊤

j ≤ p′.A⊥
j (∀Aj ∈ A) and p.A⊤

t < p′.A⊥
t (∃At ∈ A), and is denoted as

p ≺ p′.

Theorem 1 A pattern p′ cannot generate skyline combinations if it is dominated
by another pattern p.

Proof. Any combination c′ following the pattern p′ has values c′.Aj ≥ p′.A⊥
j (∀Aj ∈

A). Any combination c following the pattern p has values c.Aj ≤ p.A⊤
j (∀Aj ∈

A). If p ≺ p′, c.Aj ≤ c′.Aj (∀Aj ∈ A) and c.At < c′.At (∃At ∈ A). Consequently,
c′ is not a skyline combination because c ≺ c′.

p0={(r0,3)}

p1={(r1,2), (r2,1), (r3,0)}

Pattern Tree

{[3,24], [9,30]}

{[5,8], [11,17]}

p2={(r1,2), (r2,0), (r3,1)}

{[9,12], [16,22]}

p3={(r1,1), (r2,2), (r3,0)}

{[7,10], [10,16]}

p4={(r1,1), (r2,0), (r3,2)}

{[15,18], [20,26]}

p5={(r1,1), (r2,1), (r3,1)}

{[11,14], [15,21]}

p6={(r1,0), (r2,2), (r3,1)}

{[13,16], [14,20]}
p7={(r1,0), (r2,1), (r3,2)}

{[17,20], [19,25]}
p8={(r1,0), (r2,0), (r3,3)}

{[21,24], [24,30]}

ABC

ABD
ABE

ABG

ABF

ACD

BCD

ACE
...

BDG

X

X

X

CDE

CDF

CDG

Fig. 4: Pattern-Pattern Pruning (Grey patterns are pruned using Theorem 1)

Example 4 Consider the eight patterns {p1, . . . , p8} at the second level of the
pattern tree shown in Fig. 4. Pattern p1 with upper bounds (8, 17) can dominate
pattern p4 with lower bounds (15, 20), p7 with lower bounds (17, 19), and pattern
p8 with lower bounds (21, 24). Thus, the three patterns p4, p7 and p8 can be safely
pruned according to Theorem 1.

5.2 Pattern-Combination Pruning

Starting with the root pattern, we expand patterns to child patterns until obtain-
ing combinations at the leaf level. Unlike BasicPBP in Algorithm 2 that traverses
patterns in a breadth-first way, we can use a priority queue to implement the
expansion process in a key-order way. Inspired by the BBS algorithm [14], the
keys for the priority queue are the mindists of the patterns, and we process the
patterns in the priority queue following the increasing order of their keys.

Definition 5 (Mindist of a Pattern) The mindist p, denoted as p.mindist,
is the sum of its lower bounds in all the attributes A, namely, p.mindist =
∑|A|

j=1 p.A⊥
j (Aj ∈ A).

Like BBS, we also insert the generated combinations to a priority queue. In the
same way, the mindist of a combination can be defined as the sum of values in

A, namely, b.mindist =
∑|A|

j=1 b.Aj (Aj ∈ A).

Theorem 2 A combination c cannot be dominated by any combinations gener-
ated from a pattern p′ if c.mindist < p′.mindist.

Proof. Assume that the combination c can be dominated by c′ which is gener-
ated from p′. According to Definition 1, c′.Aj ≤ c.Aj (∀Aj ∈ A) and c′.At <
c.At (∃At ∈ A). It means that c′.mindist < c.mindist because c′.mindist =

∑|A|
j=1 c′.Aj and c.mindist =

∑|A|
i=1 c.Aj . On the other hand, p′.mindist ≤ c′.mindist

because
∑|A|

j=1 p′.A⊥
j ≤

∑|A|
i=1 c′.Aj . Consequently, the inequality p′.mindist <

c.mindist contradicts the condition c.mindist < p′.mindist, and thus Theorem 2
is proved.

The advantage of expanding patterns using a mindist -order priority queue is
that when the top element is a combination, according to Theorem 2, it cannot be
dominated by the combinations following the patterns behind it in the queue. It
just needs comparisons with the skyline combinations already found in the result
set S = CSKY (O, k). If it cannot be dominated by any combinations in S, it
is a skyline combination and should be added into S. For the other case where
the top element is a pattern, it should be discarded if it is dominated by any
combinations in S; otherwise, it should be expanded and its child patterns are
pushed into the queue. The above process begins with the root pattern pushed
into the queue and ends when the queue is empty. The final S is returned as the
answers. Example 5 illustrates the process.

<p0,12> <p1,16><p3,17><p2,25><p5,26><p6,27>

<ABD,20><ABC,21>

...

Result S

∅

∅

{ABD}

...

Priority Queue (Q)

<p1,16><p3,17><p2,25><p5,26><p6,27>

<BCD, 21><ACD,21> ∅

<p6,27>
{ABD,

ABC,

BCD}

∅

<p3,17><ABD,20><ABC,21><p2,25><p5,26><p6,27>

<ABD,20><ABC,21><BCD, 21><ACD,21><p2,25><p5,26><p6,27>

{ABD,

ABC,

BCD}

Fig. 5: Priority Queue and Query Result

Example 5 Fig. 5 shows the process of the combination skyline queries. We
initialize the priority queue Q as {〈p0, 12〉} where p0 is the root pattern and 12
(p0.mindist) is the key. Next, p0 is popped and its child patterns {p1, p3, p2, p5, p6}
are pushed into Q. Note that other three patterns are pruned according to Theo-
rem 1. We pop the top one p1 and push its expansions {ABD, ABC} into Q. For

p0={(r0,3)}

p1={(r1,2), (r2,1), (r3,0)}

Pattern Tree

{[3,24], [9,30]}

{[5,8], [11,17]}

p2={(r1,2), (r2,0), (r3,1)}

{[9,12], [16,22]}

p3={(r1,1), (r2,2), (r3,0)}

{[7,10], [10,16]}

p4={(r1,1), (r2,0), (r3,2)}

{[15,18], [20,26]}

p5={(r1,1), (r2,1), (r3,1)}

{[11,14], [15,21]}
p6={(r1,0), (r2,2), (r3,1)}

{[13,16], [14,20]}p7={(r1,0), (r2,1), (r3,2)}

{[17,20], [19,25]}
p8={(r1,0), (r2,0), (r3,3)}

{[21,24], [24,30]}

ABC

ABD (7,13)

ACD

BCD

X

X

X

X

X

X

Fig. 6: Pattern-Combination Pruning (Grey patterns are pruned using Theorem 2 and
the patterns beginning with × are pruned using both Theorem 1 and Theorem 2)

the next top element pattern p3, we pop it and push its expansions {BCD, ACD}
into Q. Next, the top element is the combination ABD, which is popped and be-
comes the first result in S = CSKY (O, k). In the same way, we pop the top
element and check whether it is dominated by the skyline combinations in S.
If it is dominated, top element is discarded. Otherwise, its child patterns are
pushed into Q. For example, when p6 becomes the top element, it is dominated
by ABD ∈ S. Thus, it is discarded. The process continues until the queue Q is
empty and we obtain the final result set {ABD, ABC, BCD}. Fig. 6 shows the
pattern tree after the pattern-combination pruning.

5.3 Pattern Expansion Reduction

Another problem with BasicPBP algorithm is that the same rules may appear in
multiple patterns and thus may be expanded multiple times. In Fig. 3, among
the child patterns expanded from the root pattern p0, patterns p1 and p2 share
the same rule (r1, 2), and it will be expanded twice into the same set of child
patterns.

Duplicate expansion is even worse as the algorithm goes deeper in the R-tree.
An immediate solution to address this problem is to perform a lazy expansion if
a rule is encountered multiple times. The intuition is that once the descendant
patterns of the first occurrence reach the object combination level, the gener-
ated combinations are kept, and all the multiple occurrences of the rule can be
replaced by the combinations when a dominance check is invoked. In order to
keep the combinations for each rule encountered, we use a matrix M with MBRs
as rows and cardinalities columns.

As the search order shown in Fig. 5, pattern p1 comes before pattern p2 in
the priority queue. p2’s child patterns will inherit the rule (r1, 2) from p2, but not

expand the rule immediately. After all the descendant patterns of p1 have been
processed to create object combinations, the cells representing (r1, 2) and its
descendants are filled with the combinations. When p2 is expanded and reaches
the object level, its component rule (r1, 2) is replaced by what we stored in the
cell for dominance checking.4

The above solution ensures no duplicate expansion of a rule in the algorithm.
However, it is not space-efficient to record the all the combinations for the rules
encountered. Thanks to the following theorem, we are able to store only the
skyline combinations instead for each cell in the matrix.

Theorem 3 If a skyline combination c ∈ CSKY (O, k) contains k′ objects in
an MBR r′, the combination consisting of the k′ objects is a skyline combination
of obj(r′) with cardinality k′.

Proof. Consider a skyline combination c ∈ CSKY (O, k) that contains k′ objects
in an MBR r′. Assume the k′ objects are o1, . . . , ok′ , and their combination is
dominated by another combination { o′1, . . . , o

′
k′ } whose objects are also enclosed

by r′. According to the monotonicity of the aggregate function,

c\{ o1, . . . , ok′ } ∪ { o′1, . . . , o
′
k′ } ≺ c.

It contradicts the assumption that c is a skyline combination of O with cardi-
nality k, and hence the theorem is proved.

Therefore, we only need to keep CSKY (obj(ri), ki) for each M [ri][ki]. For a
rule with a leaf MBR, we compute it with the objects inside. For a rule with
an internal MBR, we compute M [ri][ki] once all of its child patterns have been
expanded to the object level, and store the skyline over the results obtained
from the child patterns. Note that this skyline computation is a byproduct of
generating combinations of size k and checking dominance, and thus we do not
need to compute them separately. Example 6 shows the process of filling in the
matrix M .

Example 6 According to the search order shown in Fig. 5, when expanding p0

we fill M [r0][3] using the child patterns of (r0, 3). Next, we expand p1 contain-
ing rules (r1, 2), (r2, 1), and (r3, 0). The corresponding cells M [r1][2] is filled
with the combination {AB} and M [r2][1] is filled with combinations {C, D} that
are not dominated each other. The Cartesian join products {AB} × {C, D} =
{ABC, ABD} are the child patterns of p1. The next pattern expanded is p3

containing rules (r1, 1), (r2, 2), and (r3, 0). The corresponding cells M [r1][1] =
{A, B} and M [r2][2] = {CD}. The join products {A, B}×{CD} = {ACD, BCD}
are the child patterns of p3.

4 We assume the descendants of p1 come before those of p2 in the priority queue in
this example. For the general case, once a descendant of (r1, 2) has produced object
combinations, other patterns that contain the rule can avoid redundant computa-
tions.

1 2 3

is filled when expanding p0.

r0

r1

r2

r3

①

②

②

③

③

①

② is filled when expanding p1.

is filled when expanding p3.③

Fig. 7: Pattern Expansion Reduction Matrix

Since pattern-pattern pruning keeps unpromising patterns from the priority
queue, not all the cells in the matrix need to be filled. Considering the sparsity
of the matrix, we implement it with a hash table with an (MBR, cardinality)
pair as the key for each entry, and store the value as

– a set of skyline combinations, if all its child patterns have been expanded to
the object level; and

– a list of its child patterns, otherwise.

We design a new pattern expansion algorithm in Algorithm 3. It expands a
rule under three different cases. If the rule is encountered for the first time, i.e.,
the cell in the matrix has not been initialized, we expand it to its child patterns,
and fill the cell in the matrix with a list of the child patterns (Line 5 and 6).
If the rule is encountered multiple times, but none of the patterns contains it
have reached the object level so far, we expand the rule with the stored list of
child patterns (Line 9). For the third case, as the object combinations for this
rule have been seen before, we keep the rule intact until the patterns containing
it reach the object level, and then it is replaced with the skyline combinations
stored in the cell (Line 12).

5.4 PBP Algorithm

Applying the three optimization techniques, we summarize the complete pattern-
based pruning (CompletePBP) algorithm in Algorithm 4. The algorithm itera-
tively pops the top element p in the priority queue Q (Line 5). The top element
can be either a combination or a pattern. For a combination, we insert them
into the final result set S after checking dominance with the current skyline
combinations (Line 8). For a pattern, if p is dominated by any skyline com-
binations found so far, we discard it using with pattern-combination pruning
(Line 10). Otherwise we expand it using the optimized pattern expansion algo-
rithm (Line 13). If the MBRs involved in P are internal nodes of the R-tree,
we push the non-dominated child patterns to the queue Q (Line 16), utilizing
pattern-pattern pruning. Otherwise we generate combinations with the patterns
in P , and update the matrix M to reduce pattern expansion (Line 19– 26). The
algorithm terminates when the priority queue is empty.

Algorithm 3: ExpandPatternOpt (p)

Input : A pattern p represented in a set of (ri, ki)’s.
Output : The set of child patterns of p.

1 P ← e;
/* assume e is the identity element of Cartesian product */

2 for each (ri, ki) ∈ p do

3 switch M [ri][ki] do

4 case has not been initialized do

5 P ′ ← the child patterns of (ri, ki);
6 M [ri][ki]← P ′;

7 end case

8 case is a list of child patterns do

9 P ′ ←M [ri][ki];
10 end case

11 case is a set of skyline combinations do

12 P ′ ← { (ri, ki) };
/* (ri, ki) has been explored and replace with M [ri][ki] when

reaching the object level */

13 end case

14 endsw

15 P ← P × P ′;

16 end for

17 return P

6 Variations of Combination Skyline

In this section, we discuss two variations of the combination skyline problem and
extend our PBP algorithm to solve the two variations.

6.1 Incremental Combination Skyline

We first discuss the incremental combination skyline problem, as a user may
want to increase the cardinality of combinations as he has seen the result of
CSKY (O, k). The problem is defined as follows:

Problem 2 (Incremental Combination Skyline Query) An incremental com-
bination skyline query CSKY +(O, k + ∆k) is to find (k + ∆k)-item skyline
combinations based on an original query CSKY (O, k) that has been answered
already.

The incremental query CSKY + searches for skyline combinations from the
same dataset O as the original query CSKY , so we can use the same R-tree for
the original skyline query. Starting with the root (r0, k + ∆k), the patterns are
processed using the PBP algorithm. As the matrix M for duplicate expansion
reduction has been filled when processing the original query, if not all of its
cells, the contents can be utilized. When the child patterns of rule (ri, ki) are

Algorithm 4: CompletePBP (T , k)

Input : T is the R-tree built on O; k is the cardinality.
Output : The skyline combination set S = CSKY (O, k).

1 S ← ∅;
2 r0 ← the root node of T ;
3 Q← { (r0, k) }; M ← ∅;
4 while Q 6= ∅ do

5 p← Q.pop();
6 if p is a combination then

7 if ∄c ∈ S, c ≺ p then

8 S ← S ∪ { p };

9 else

10 if ∃c ∈ S, c ≺ p then

11 continue;

12 if the MBRs in p are internal nodes then

13 P ← ExpandPatternOpt (p);
14 for each p′ ∈ P do

15 if ∄p′′ ∈ P, p′′ ≺ p′ then

16 Q.push(〈p′, p′.mindist〉);

17 else

18 C ← e;
/* assume e is the identity element of Cartesian product

*/

19 for each (ri, ki) ∈ p do

20 if (ri, ki) is a set of skyline combinations then

21 C′ ←M [ri][ki];
22 else

23 C′ ← CSKY (obj(ri), ki);
/* use only CSKY for the rule to generate

combinations */

24 C ← C ×C′;
25 M [ri][ki]← C′;
26 update (ri, ki)’s ancestor rules in M ;

27 for each c ∈ C do

28 Q.push(c, c.mindist);

29 return S

needed during expansion, we reuse the existing results in M [ri][ki] if the cell was
calculated already. In this way, the repeated calculations for the same cell can
be avoided. Though ∆k empty columns are appended to M at first, this is for
free as M is implemented in a hash table.

p0={(r0,4)}

p1={(r1,2), (r2,2), (r3,0)}

Pattern Tree

{[4,32], [12,40]}

{[8,12], [14,22]}

p2={(r1,2), (r2,1), (r3,1)}

{[12,16], [19,27]}

p3={(r1,2), (r2,0), (r3,2)}

{[16,20], [24,32]}
p4={(r1,1), (r2,2), (r3,1)}

{[14,18], [18,26]}

p5={(r1,1), (r2,1), (r3,2)}

{[18,22], [23,31]} p6={(r1,1), (r2,0), (r3,3)}

{[22,26], [28,36]}

p7={(r1,0), (r2,2), (r3,2)}

{[20,24], [22,30]} p8={(r1,0), (r2,1), (r3,3)}

{[24,28], [27,35]}

ABCD (10,18)

1 2 3

r0

r1

r2

r3

①

②

②

③

③

X

X

X

X

X

X

4 (Δk=1)

② is reused when expanding p1

1

1 is filled when expanding p0

X

.

.

Fig. 8: Incremental Combination Skyline Query

Example 7 Fig. 8 shows the pattern tree and the matrix M for the incremental
query CSKY +(O, 4) based on the original query CSKY (O, 3) with ∆k = 1. The
circled numbers in the matrix indicate what we have processed when processing
CSKY (O, 3), and the quads indicate what we are going to fill for processing the
incremental query. We start with expanding the root pattern p0 = { (r0, 4) }, and
an empty column is appended to M . Pattern p0 has three child patterns that
survive pattern-pattern pruning: p1, p2, and p4, sorted by the increasing mindist
order. Next we expand pattern p1 consisting of three rules (r1, 2), (r2, 2), and
(r3, 0). Both cells M [r1][2] and M [r2][2] were calculated already when answering
the original query. By computing the Cartesian product, a combination ABCD
is obtained for p1. Since ABCD is the first combination found, it is a skyline
combination and we put it into the result set. As the next top elements p2 and
p4 are dominated by the combination ABCD, the process terminates when the
queue is empty and the final result CSKY + = {ABCD } is returned.

6.2 Constrained Combination Skyline

For a combination skyline query, we search for optimal combinations that have
values as small as possible with respect to all the attributes ∀Aj ∈ A. In practice,
however, not all the attributes are being concerned and there are even some range
constraints on the concerned attributes. We define a constrained combination
skyline query that searches for optimal combinations with respect to a set of
concerned attributes A∗ ⊆ A subject to range constraints Vj on attribute Aj ∈
A∗.

Problem 3 (Constrained Combination Skyline Query) A constrained com-
bination skyline query CSKY ∗ is defined as

CSKY ∗ = {O, k, 〈A1, V1〉, . . . , 〈Am∗ , Vm∗〉}, (3)

where 1 ≤ m∗ ≤ m and {A1, . . . , Am∗} ⊆ A. We call A∗ = {A1, . . . , Am∗}
constraint attributes. Vj = [v⊥j , v⊤j] is a range constraint for attribute Aj (Aj ∈
A∗). If we do not specify a range constraint on attribute Aj, we set an infinite
range Vj = [−∞,∞].

The combination skyline query defined in Problem 1 is subsumed in the con-
strained combination skyline query CSKY ∗ because CSKY is a special case of
CSKY ∗ when A∗ = A, and subject to Vj = [−∞,∞] (∀Aj ∈ A∗).

5 30

5

10

15

20

25

30

A2

ABC(6,15)

10 15 20 25

ABD(7,13)

ACD(8,13)

BCD(9,12)

EFG(23,28)AEF(16,26)

AEG(16,24)

A1

0

Fig. 9: Constrained Combination Skyline

Example 8 Let us consider an example of a constrained combination skyline
query, CSKY ∗({A, . . . , G}, 3, 〈A1, [−∞,∞]〉, 〈A2, [5, 13]〉). As Fig. 9 shows, since
the combinations {ABD, ACD, BCD} are within the range [5, 13] on A2, they
are candidates for skyline combinations. Among the three candidates, combina-
tion ACD is dominated by combination ABD. Thus, the non-dominated combi-
nations {ABD, BCD} are the skyline combinations for query CSKY ∗.

Definition 6 (Feasible Combination) A combination c is feasible if it has
valid values in all the attributes ∀Aj ∈ A∗, namely, c.Aj ∈ [v⊥j , v⊤j], ∀Aj ∈ A∗.

The patterns can be discarded if they cannot generate feasible combinations.

Theorem 4 A pattern p cannot generate feasible combinations if [p.A⊥
t , p.A⊤

t]∩
[v.A⊥

t , v.A⊤
t] = ∅ (∃At ∈ A∗), where [v.A⊥

t , v.A⊤
t] is the valid range of values in

attribute At.

Proof. Any combination c following the pattern p has the value c.At ∈ [p.A⊥
t , p.A⊤

t]
for attribute At ∈ A∗. If [p.A⊥

t , p.A⊤
t] ∩ [v.A⊥

t , v.A⊤
t] = ∅, c.At /∈ [v.A⊥

t , v.A⊤
t].

Consequently, combination c is not a feasible combination.

p0={(r0,3)}

p1={(r1,2), (r2,1), (r3,0)}

Pattern Tree

{[3,24], [9,30]}

{[5,8], [11,17]}

p2={(r1,2), (r2,0), (r3,1)}

{[9,12], [16,22]}

p3={(r1,1), (r2,2), (r3,0)}

{[7,10], [10,16]}

p4={(r1,1), (r2,0), (r3,2)}

{[15,18], [20,26]}
p5={(r1,1), (r2,1), (r3,1)}

{[11,14], [15,21]}
p6={(r1,0), (r2,2), (r3,1)}

{[13,16], [14,20]}

p7={(r1,0), (r2,1), (r3,2)}

{[17,20], [19,25]}p8={(r1,0), (r2,0), (r3,3)}

{[21,24], [24,30]}

ABC

ABD

ACD

BCD

X

X

X

X

X

X

Fig. 10: Constraint-Based Pruning

Example 9 Fig. 10 shows the pattern tree for the constrained combination sky-
line query CSKY ∗. According to Theorem 4, patterns {p2, p4, p5, p6, p7, p8} can
be pruned with respect to the constraint [5, 13] on attribute A2 because their
ranges on attribute A2 are out of the range constraint [5, 13]. Thus, we only
need to expand {p1, p3} for query CSKY ∗ and obtain the final result S =
{ABD, BCD}.

Given a pattern p, the sets of MBRs appearing in its child patterns are
the same, and thus only the values of ki’s need to be assigned. We can avoid
enumerating useless ones by employing the forward checking approach, which is a
common solution for constraint satisfaction problems [1] and used for answering
spatial database queries [13]. At first, the possible value of each variable ki is in
the range of [0, min(|obj(ri)|, k)], and then we assign values from k1. Once a ki

has been assigned, the ranges of the remaining variables may shrink due to the
attribute constraints, and the new ranges can be determined using Theorem 4.

Example 9 (continued) If k1 is set as 1, we use forward checking to update the
value ranges of k2 and k3. The range of k2 will be [0, 2], and the range of k3 will
be [0, 1]. For example, if k3 = 2, then the value of the combination on A2 is at
least 4 + 8 + 8 = 20, which violates the constraint [5, 13].

7 Experiments

In this section, we report experimental results and our analyses.

7.1 Experimental Setup

We used both synthetic and real datasets in our experiment. We generated syn-
thetic dataset using the approach introduced in [2] with various correlation coef-
ficients, and we used the uniform distribution as default unless otherwise stated.
For real dataset, we used the NBA dataset5 which contains the statistics about
16,739 players from 1991 to 2005. The NBA dataset roughly follows an anti-
correlated distribution. The default cardinality and the number of dimensions
are both two.

We compare our complete PBP algorithm with the baseline BBS algorithm.
Since BBS cannot handle the explosive number of combinations when the dataset
is large, we only compare PBP and BBS on small synthetic dataset. Both PBP
and BBS were implemented in C++. The R-tree structure was provided by the
spatial index library SaIL [10]. All the experiments were conducted on a Quad-
Core AMD Opteron 8378 with 96 GB RAM. The operating system is Ubuntu
4.4.3. All the data structures and the algorithms were loaded into/run in main
memory.

7.2 Experiments on Synthetic Datasets

Fig. 11(a) and 11(b) show the distributions of 2-item combinations and 3-item
combinations, which are generated from a dataset containing 100 objects with
two-dimensional attributes uniformly distributed in the range [0, 1000]×[0, 1000].
In total, there are

(

100
2

)

= 4950 combinations and
(

100
3

)

= 161700 combinations
shown as points in the two figures. The numbers of skyline combinations are
much smaller; e.g., 13 from the 4950 2-item combinations and 28 from the 161700
combinations, as shown in the areas close to the horizontal axis and the vertical
axis in Fig. 11(c) and 11(d).

Next, we compare our PBP algorithm with the BBS algorithm, and then
study the efficiency of the PBP algorithm with respect to data distribution,
cardinality, the number of attributes (dimensionality), and the fanout of R-tree.

5 http://www.nba.com/

(a) 2-Item Combinations (4950) (b) 3-Item Combination (161700)

 0

 1000

 2000

 3000

 0 1000 2000 3000

(c) 2-Item Skyline Combinations (13)

 0

 1000

 2000

 3000

 0 1000 2000 3000

(d) 3-Item Skyline Combinations (28)

Fig. 11: Distribution of Combinations and Skyline Combinations

Comparison with the BBS algorithm Since BBS cannot find skyline com-
binations from large datasets in acceptable response time, we compare the per-
formances of BBS and PBP on small datasets that contain 50, 100, 150, 200
objects. For every data size, we vary the number of attributes in the range of [2,
6]. The experimental query is to search for three-item skyline combinations.

Fig. 12(a) shows the size of R-trees used by BBS and PBP. For BBS, the
R-tree sizes grows dramatically with the data size because R-trees have to index
all the combinations that increases in an explosive way. As the figure shows,
when the dataset contains 200 objects, the tree size is almost one gigabyte.
Even worse, constructing such a huge R-tree consumes a lot of time, which
means that BBS cannot work well in practice. In contrast, PBP uses the R-tree
for indexing single objects rather than combinations, which makes the tree size
grow relatively slow. This is also why PBP can handle large datasets as what
will be shown in Section 7.2 to Section 7.3.

Fig. 12(b) shows the running time of BBS and PBP on the 100-object
datasets, with the number of attributes varying from 2 to 6. For BBS, the time
is the sum of the time for enumerating combinations and the time consumed by
searching for skyline combinations. For PBP, the time is the time for searching
for skyline combinations. The time for constructing R-trees is not included. As
the figure shows, PBP outperforms BBS by at least one order of magnitude. One

104

105

106

107

108

109

 50 100 150 200
R

-T
re

e
S

iz
e

(b
yt

es
)

Dataset Size

BBS PBP

(a) k = 3, |A| = 2

100

101

102

103

104

105

 2 3 4 5 6

E
la

ps
ed

 T
im

e
(m

s)

Number of Attributes

BBS PBP

(b) k = 3

Fig. 12: PBP versus BBS on Small Datasets

reason is that PBP executes queries on the R-tree that is far smaller than the R-
tree used by BBS. Another reason is that the time for enumerating combinations
is saved when running PBP.

The Effect of Data Distribution We evaluate PBP on 4K, 8K, 16K, 32K,
64K datasets with different correlation coefficients −0.9, −0.6, −0.3, 0.0, 0.3, 0.6
and 0.9. The datasets with correlation coefficients −0.9, −0.6 and −0.3 follow
anti-correlated distributions. The datasets with correlation coefficients 0.9, 0.6
and 0.3 follow correlated distributions. The dataset with correlation coefficient
0.0 follows uniform distributions. Each dataset has objects with two attributes.
The queries are to select five-item skyline combinations from these datasets.

Fig. 13(a) shows the number of skyline combinations and Fig. 13(b) shows
the running time. As Fig. 13(a) shows, there are more skyline combinations for
the anti-correlated datasets and fewer skyline combinations for the correlated
datasets. In the anti-correlated datasets, some objects are good in one attribute
but are bad in the other attribute. In the correlated datasets, a part of the ob-
jects are good in both attributes. It can be seen that the there are more skyline
combinations generated from the anti-correlated datasets than from the corre-
lated datasets. This is because the combinations exhibit distribution features
as single objects since their attribute values are the sums of their component
objects’ attribute values.

Fig. 13(b) shows the running time of PBP. It spends much time when running
PBP on the anti-correlated datasets than on the correlated datasets. The time
depends on the size of the priority queue and the number of dominance checks.
Fig. 13(c) and 13(d) show the maximum size of the priority queue and the
number of dominance checks, respectively. Since the patterns also follow the
same distributes, there are more patterns which cannot be pruned and have to
be pushed into the priority queue for the anti-correlated datasets. Consequently,
more dominance checks occur.

Another observation is that running time does not vary significantly with
the sizes of datasets. The reason is that the performance of PBP is not sensitive

101

102

103

-0.9 -0.6 -0.3 0 0.3 0.6 0.9N
um

be
r

of
 S

ky
lin

e
C

om
bi

na
tio

ns
Correlation Coefficient

4K 16K 64K

(a)

102

103

104

105

-0.9 -0.6 -0.3 0 0.3 0.6 0.9

E
la

ps
ed

 T
im

e
(m

s)

Correlation Coefficient

4K 16K 64K

(b)

103

104

105

106

107

-0.9 -0.6 -0.3 0 0.3 0.6 0.9

M
ax

 Q
ue

ue
 S

iz
e

(#
 o

f E
nt

rie
s)

Correlation Coefficient

4K 16K 64K

(c)

106

107

108

109

1010

-0.9 -0.6 -0.3 0 0.3 0.6 0.9

N
um

be
r

of
 D

om
in

an
ce

 C
he

ck
s

Correlation Coefficient

4K 16K 64K

(d)

Fig. 13: PBP Performance for Different Distributions

to the data sizes for low dimension cases, as can be seen from the size of the
priority queue and the number of dominance checks.

The Effect of Cardinality We run PBP on 8K, 16K, 32K, 64K, and 128K
datasets to search for skyline combinations of cardinalities k ∈ [3, 6]. The objects
in the datasets have two attributes.

Fig. 14(a) shows the number of skyline combinations. The number increases
with the cardinality but not in an explosive way as does the explosive number
of combinations. The reason is much more combinations can be dominated for
larger cardinalities. As Fig. 11 shows, more combinations are dominated by the
skyline combinations when the cardinality increase from two to three.

Fig. 14(b) shows the running time of PBP. The time increases with the
cardinality. It depends on the maximum size of the queue and the number of
dominance checks, which are shown in Fig. 14(c) and 14(d), respectively. When
the cardinality enlarges, the number of patterns increases. Thus, more patterns
are pushed into the queue and more dominance checks are needed. Another
general trend is that the running time increases with dataset sizes, but the
influence is not as significant as that of cardinality. Considering the number of
combination

(

|O|
k

)

, it grows faster with the increase of k than with that of |O|.

101

102

 3 4 5 6N
um

be
r

of
 S

ky
lin

e
C

om
bi

na
tio

ns
Cardinality k

16K 32K 64K 128K

(a)

101

102

103

104

105

 3 4 5 6

E
la

ps
ed

 T
im

e
(m

s)

Cardinality k

16K 32K 64K 128K

(b)

102

103

104

105

106

 3 4 5 6

M
ax

 Q
ue

ue
 S

iz
e

(#
 o

f E
nt

rie
s)

Cardinality k

16K 32K 64K 128K

(c)

104

105

106

107

108

109

1010

 3 4 5 6

N
um

be
r

of
 D

om
in

an
ce

 C
he

ck
s

Cardinality k

16K 32K 64K 128K

(d)

Fig. 14: PBP Performance for Different Cardinalities

The Effect of Dimensionality We evaluate the effect of dimensionality by
varying the number of attributes in the range of [2, 6]. For each dimensionality,
we run PBP on 1K, 2K, 4K, 8K, 16K datasets, respectively. The query is to
search for 2-item combinations from these datasets.

Fig. 15(a) shows the number of skyline combinations. The number exhibits
a rapid growth with the dimension. The reason is that when the dimension in-
creases, it is more likely that two combinations are better than each other in
different subsets of the dimensions. Thus, one cannot dominate another and the
number of skyline combinations increases. It is also called the curse of dimen-
sionality [3].

Fig. 15(b) shows the running time. The time increases with the number of
attributes. It depends on the the maximum size of the priority queue and the
total number of dominance checks, which are shown in Fig. 15(c) and 15(d),
respectively. In Fig. 15(c) and 15(d), both the size of the queue and the number
of dominance checks increase with the dimension. One reason is that when the
dimension increases, the number of nodes in the R-tree grows and more overlap
amongs MBRs is incurred. More patterns are hence generated, and the pruning
power of PBP is reduced as well.

Observing Fig. 15(b), the time increases with the size of datasets, and the
gap between two datasets with different sizes is more substantial for higher

101

102

103

104

105

 2 3 4 5 6N
um

be
r

of
 S

ky
lin

e
C

om
bi

na
tio

ns
Number of Attributes

2K 4K 8K 16K

(a)

101

102

103

104

105

106

107

 2 3 4 5 6

E
la

ps
ed

 T
im

e
(m

s)

Number of Attributes

2K 4K 8K 16K

(b)

102

103

104

105

106

107

 2 3 4 5 6

M
ax

 Q
ue

ue
 S

iz
e

(#
 o

f E
nt

rie
s)

Number of Attributes

2K 4K 8K 16K

(c)

103
104
105
106
107
108
109

1010
1011
1012

 2 3 4 5 6

N
um

be
r

of
 D

om
in

an
ce

 C
he

ck
s

Number of Attributes

2K 4K 8K 16K

(d)

Fig. 15: PBP Performance for Different Number of Attributes

dimensionality. This is also due to the increase of nodes and more overlap in the
R-tree.

The Effect of R-Tree Fanout The structure of R-tree may also impact the
performance of PBP. Under the in-memory setting, the dominant factor of the
algorithm’s runtime performance is not I/O but the number of patterns pro-
cessed. In addition, a large fanout, which is preferred in a disk-resident R-tree,
is not necessary a good choice.6 As shown below, a small fanout shows better
performance in our problem setting. Consider an R-tree of order (m, M) where
each node must have at most M child nodes and at least m child nodes. Note
that m decides the fanout of the R-tree. There are at most ⌈N/mi⌉ nodes at the

level i in the R-tree7, and thus there are at most
(

⌈N/mi⌉+k−1
k

)

≤ (⌈N/mi⌉+k−1)k

k!
patterns at the corresponding level i in the pattern tree. In the worst case, the

6 For example, T-tree, an in-memory index for ordered keys has a binary index struc-
ture [11].

7 Note that level-1 denotes the leaf level and level-(i + 1) denotes the parent level of
level-i.

total number of patterns is

⌈log
m

N⌉
∑

i=1

(⌈ N
mi ⌉ + k − 1)k

k!
(4)

where ⌈logm N⌉ − 1 is the maximum height of the R-tree. When m increases,
the number of patterns decreases according to Equation 4, however, the pruning
capabilities of Theorem 1 and 2 becomes weaker since the lower and upper
bounds of a pattern become looser and less accurate.

102

103

104

105

 4 5 6 7 8

E
la

ps
ed

 T
im

e
(m

s)

R-Tree Fanout

d=3 d=4 d=5

(a)

102

103

104

105

106

 4 5 6 7 8
E

la
ps

ed
 T

im
e

(m
s)

R-Tree Fanout

k=2 k=3 k=4

(b)

Fig. 16: PBP Performance for Different Fanouts of R-Tree

We run PBP on the datasets indexed by the different R-tree structures with
the fanouts m ∈ [4, 8]. Fig. 16(a) shows the running time on three datasets
with dimensions d = 3, d = 4, and d = 5. Each dataset has 1K objects and
the algorithm searches for skyline combinations of cardinality k = 3. For the
datasets with dimensions d = 3 and 4, PBP performs best when m = 4. In our
experiments, when m = 4 we enumerate 341.3K patterns while when m = 8
we enumerate 690.5K patterns, which showcases the better pruning power of
the proposed algorithm under small fanouts. For the dataset with dimension
d = 5, PBP performs best when m = 7. The reason is that the increase of
dimensionality causes more overlaps between MBRs and thus weaken the pruning
power. We also found that a large fanout, which is preferred in a disk-resident
R-tree, usually results in bad performance. When k = 3 and d = 3, the running
time is 41.9s under a fanout m = 32, 121.5 times slower than using m = 4.
Fig. 16(b) shows the running time on a four-dimensional dataset containing 1K
objects. The algorithm searches for skyline combinations of cardinalities k = 2,
k = 3, and k = 4 and performs best when m = 4. In general, we suggest users
choose a small fanout, e.g., m = 4, for tasks with low dimensionality, and a
moderately larger fanout, e.g., m = 7, for high-dimensional tasks.

100

101

102

 2 3 4 5N
um

be
r

of
 S

ky
lin

e
C

om
bi

na
tio

ns
Cardinality k

2K 4K 8K 16K

(a)

100

101

102

103

104

105

106

 2 3 4 5

E
la

ps
ed

 T
im

e
(m

s)

Cardinality k

2K 4K 8K 16K

(b)

101
102
103
104
105
106
107
108

 2 3 4 5

M
ax

 Q
ue

ue
 S

iz
e

(#
 o

f E
nt

rie
s)

Cardinality k

2K 4K 8K 16K

(c)

102
103
104
105
106
107
108
109

1010
1011

 2 3 4 5

N
um

be
r

of
 D

om
in

an
ce

 C
he

ck
s

Cardinality k

2K 4K 8K 16K

(d)

Fig. 17: PBP Performance for Different Cardinalities on Real Datasets

7.3 Experiments on Real Datasets

We run PBP on the real datasets. The sizes of our datasets are 2K, 4K, 8K,
16K, and the number of attributes varies from 2 to 5. We conduct two groups of
experiments: one is to verify the effect of cardinality k, and another is to verify
the effect of dimensionality |A|.

Fig. 17 shows the effect of cardinality on real datasets. Fig. 17(a) shows the
number of skyline combinations grows with the cardinality. Fig. 17(b) shows
the running time increases with the cardinality, which is consistent with the in-
crease of the queue size and the increase of the dominance check number shown
in Fig. 17(c) and 17(d), respectively. A similar trend is observed as we have
seen for synthetic datasets, but has a more rapid growth of running time with
the cardinality. This is because the real dataset follows anti-correlated distribu-
tion while the synthetic dataset follows uniform distribution, and hence fewer
combinations are dominated for the former.

Fig. 18 shows the effect of dimensionality on real datasets. Fig. 18(a) shows
the number of skyline combinations is larger for higher dimensional datasets.
Fig. 18(b) shows the running time of PBP on the real datasets with different
number of attributes. Since the time depends on the size of the queue and the to-
tal number of dominance checks, the shapes and trends of the curves in Fig. 18(c)
and 18(d) are consistent with the appearances of curves in Fig. 18(b). When the

100

101

102

103

104

 2 3 4 5N
um

be
r

of
 S

ky
lin

e
C

om
bi

na
tio

ns
Number of Attributes

2K 4K 8K 16K

(a)

101

102

103

104

105

106

 2 3 4 5

E
la

ps
ed

 T
im

e
(m

s)

Number of Attributes

2K 4K 8K 16K

(b)

101

102

103

104

105

106

107

 2 3 4 5

M
ax

 Q
ue

ue
 S

iz
e

(#
 o

f E
nt

rie
s)

Number of Attributes

2K 4K 8K 16K

(c)

102
103
104
105
106
107
108
109

1010

 2 3 4 5

N
um

be
r

of
 D

om
in

an
ce

 C
he

ck
s

Number of Attributes

2K 4K 8K 16K

(d)

Fig. 18: PBP Performance for Different Number of Attributes on Real Datasets

number of attributes grows, the time increases and the gap between two datasets
with different sizes is enlarged, and is more substantial than on synthetic data.

8 Conclusion and Future Work

In this paper, we have studied the combination skyline problem, a new variation
of the skyline problem. The combination skyline problem is to find combinations
consisting of k objects which are not dominated by others. We have proposed
the PBP algorithm to answer combination skyline queries efficiently. With an R-
tree index, the algorithm generates combinations with object-selecting patterns
organized in a tree. In order to prune the search space and improve the efficiency,
we have presented two pruning strategies and a technique to avoid duplicate
pattern expansion. The efficiency of the proposed algorithm was evaluated by
extensive experiments on synthetic and real datasets.

In the future, we would like to extend our work in the following interesting
directions. We plan to extend the k-item combination skyline problem to a gen-
eral version where the cardinality k varies. We also plan to solve the problem
when the aggregation function is not monotonic. Additionally, we will imple-
ment a prototype system to support the combination skyline queries based on
the proposed ideas.

Acknowledgments. This research was partly supported by the Funding Pro-
gram for World-Leading Innovative R&D on Science and Technology (First Pro-
gram).

References

1. K. Apt. Principles of Constraint Programming. Cambridge University Press, 2003.
2. S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In ICDE, pages

421–430, 2001.
3. C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang. On high

dimensional skylines. In EDBT, pages 478–495, 2006.
4. J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting. In ICDE,

pages 717–719, 2003.
5. K. Deb and D. Kalyanmoy. Multi-Objective Optimization Using Evolutionary Al-

gorithms. Wiley, 2001.
6. M. Ehrgott and X. Gandibleux. A survey and annotated bibliography of multiob-

jective combinatorial optimization. OR Spectrum, 22(4):425–460, 2000.
7. P. Godfrey, R. Shipley, and J. Gryz. Maximal vector computation in large data

sets. In VLDB, pages 229–240, 2005.
8. X. Guo and Y. Ishikawa. Multi-objective optimal combination queries. In DEXA,

pages 47–61, 2011.
9. A. Guttman. R-trees: A dynamic index structure for spatial searching. In B. Yor-

mark, editor, SIGMOD, pages 47–57. ACM Press, 1984.
10. M. Hadjieleftheriou, E. G. Hoel, and V. J. Tsotras. SaIL: A spatial index library

for efficient application integration. GeoInformatica, 9(4):367–389, 2005.
11. T. J. Lehman and M. J. Carey. A study of index structures for main memory

database management systems. In VLDB, pages 294–303, 1986.
12. X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting stars: The k most represen-

tative skyline operator. In ICDE, pages 86–95, 2007.
13. D. Papadias, N. Mamoulis, and V. Delis. Algorithms for querying by spatial struc-

ture. In VLDB, pages 546–557, 1998.
14. D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline computation in

database systems. ACM Trans. Database Syst., 30(1):41–82, 2005.
15. S. B. Roy, S. Amer-Yahia, A. Chawla, G. Das, and C. Yu. Constructing and

exploring composite items. In SIGMOD, pages 843–854, 2010.
16. A. D. Sarma, A. Lall, D. Nanongkai, R. J. Lipton, and J. J. Xu. Representative

skylines using threshold-based preference distributions. In ICDE, pages 387–398,
2011.

17. M. A. Siddique and Y. Morimoto. Algorithm for computing convex skyline object-
sets on numerical databases. IEICE, 93-D(10):2709–2716, 2010.

18. I.-F. Su, Y.-C. Chung, and C. Lee. Top-k combinatorial skyline queries. In DAS-

FAA, pages 79–93, 2010.
19. Y. Tao, L. Ding, X. Lin, and J. Pei. Distance-based representative skyline. In

ICDE, pages 892–903, 2009.
20. Q. Wan, R. C.-W. Wong, and Y. Peng. Finding top-k profitable products. In

ICDE, pages 1055–1066, 2011.

