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Abstract. Multi-objective optimization problem finds out optimal ob-
jects w.r.t. several objectives rather than a single objective. We propose a
new problem called a multi-objective optimal combination problem (MOC
problem) which finds out object combinations w.r.t. multiple objectives.
A combination dominates another combination if it is not worse than
anther one in all attributes and better than another one in one attribute
at least. The combinations, which cannot be dominated by any other
combinations, are optimal. We propose an efficient algorithm to find out
optimal combinations by reducing the search space with a lower bound
reduction method and an upper bound reduction method based on the
R-tree index. We implemented the proposed algorithm and conducted
experiments on synthetic data sets.
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1 Introduction

The multi-objective optimization problem [1, 2] finds out objects which are opti-
mal w.r.t. several objectives rather than a single objective. In this paper, we pro-
pose a new variation which finds out optimal object combinations w.r.t. multiple
objectives. We name it a multi-objective optimal combination (MOC ) problem.
Let us consider an example first.

Example 1 A user wants to buy a breakfast consisting of three foods. Her budget
is 1300JPY and her calorie demand is 1600kcal. Assume that six different foods
are available in Fig. 1 (a)1. All 3-item food combinations are shown in Fig. 1
(b) with (cost, calorie) and are also shown in Fig. 1 (c) as points. We need to
recommend better combinations for her.

The combinations {AED}, {ACB}, {AEB}, {ACE}, {CED}, {AEF} and
{CEB} are within the user’s requirements (13, 16) as Fig. 1 (c) shows. They are
possible answers for the user. The combination {CEB} = (13, 14) is better than
the combination {ACE} = (9, 12) because {CEB} is closer to the requirements
(13, 16). We say that {CEB} dominates {ACE}.
1 The cost unit is 100 JPY and the calorie unit is 100kcal.
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Fig. 1. MOC Problem Example

Suppose there combinations, which cannot be dominated by any other combi-
nations, are optimal ones to be recommended. In this example, {CED}, {AEF}
and {CEB} (solid points) cannot be dominated. We return them to the user
as the results. The challenge of the problem is that there will be a huge number
of combinations consisting of elements from a given object set and we need to
identify the optimal combinations. This example is going to act as a running
example in the rest of this paper.

There is an object set G where each object has m attributes (g1, g2, · · · , gm).
An h-item combination p = {g1, g2, · · · , gh}(gi ∈ G) has attributes (p1, p2, · · · , pm)
where pj = Σh

i=1g
j
i (j ∈ 1, 2, · · · ,m). Given an objective vector b = (b1, b2, · · · , bm),

the distance from a combination p to b is (d1, · · · , dm) where dj = bj −Σh
i=1g

j
i .

If dj ≥ 0 for all j, the combination p is eligible to be an optimal combination.

Definition 1 (Domination) Given an objective vector b, one eligible combi-
nation p dominates another eligible combination p′ if dk < d

′k (k ∈ 1..m) and
dj ≤ d

′j (j ∈ 1..m and j ̸= k). �

Definition 2 (Multi-Objective Optimal Combination) If an h-item com-
bination cannot be dominated by any other combinations pi ∈ P − {p}, it is a
multi-objective optimal combination (MOC). �

Problem 1 (MOC Query) Given an object set G, an objective vector b and a
combination cardinality h, an MOC query finds out the MOC set S = {s1, s2, · · · , sl}
where si (i ∈ 1, 2, · · · , l) is an optimal combination consisting of h objects. �

A näıve method to solve the MOC problem is to enumerate all possible
h-item combinations and decide whether they are dominated or not. The non-
dominated ones are returned as optimal combinations. However, this method is
very time-consuming. In this paper, we propose an efficient algorithm to find
out optimal ones using a lower bound and an upper bound reduction methods.
The two reduction methods are based on the R-tree which indexes objects using
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hierarchical minimum bounding rectangles (MBRs) [11]. We construct combi-
nations by searching an R-tree in a depth-first way. Considering lower bounds
and upper bounds of MBRs, we reduce the search space and obtain candidates
quickly. Finally, we find out the optimal ones from the candidates.

We first review some studies related to the proposed MOC problem in Sec-
tion 2. Next, we propose the algorithm to answer MOC queries in Section 3. In
Section 4, we report experimental results and conclude the paper in Section 5.

2 Related Work

In databases area, multi-objective optimization problems have received consid-
erable attentions since the first work [2] proposed a skyline query problem. The
skyline query problem aims at finding out optimal objects which cannot be dom-
inated by any other objects. One object dominates another object if it is not
worse than another one in all attributes and better than another one in one
attribute at least. Many subsequent algorithms are proposed to improve the
performances of skyline queries, like BBS [8], SFS [12] and LESS [13]. Our MOC
query problem, however, is different from the classical skyline query problem be-
cause it focuses on object combinations rather than objects themselves. Though
an object combination can be regarded as an object with aggregation attribute
values of its elements, it is time consuming to use an existing algorithm to solve
the MOC problem because there will be a huge number of object combinations
to be processed.

The research of skyline queries on object combinations is limited. To the
best of our knowledge, the first and only work on this topic is “top-k com-
binatorial skyline queries” [3]. This research was motivated by the investment
portfolio which finds out optimal stock combinations considering profit and risk
attributes. The authors studied how to find out top-k non-dominated combina-
tions which rank from 1 to k before other non-dominated ones according to a
given preference order in attributes. They constructed non-dominated combina-
tions incrementally considering the preference order and terminates as soon as
the top-k results have been found. However, our MOC query problem simply
focuses on finding out non-dominated combinations rather than a top-k query
with some preference orders.

One may think that our MOC query problem seems alike to the zero-one
knapsack problem [14] which is in the linear integer programming category [6].
Given each object has a value attribute and a weight attribute. A knapsack
problem finds out the best object combination with a maximum total value and
within a total weight limitation. The knapsack problem aims at optimizing the
value attribute within a weight constraint. However, our MOC problem is to find
out trade-offs between the value attribute and the weight attribute.

In order to solve our MOC query problem, we organize objects using the R-
tree index [11] and retrieve object combinations using a lower bound reduction
method and an upper bound reduction method. Our lower bound reduction
method employs the basic idea of the forward checking (FC) algorithm [7] which
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constructs combinations incrementally to answer structural queries in spatial
databases. A structural query asks for object combinations which have a spatial
structure similar to a required structure. Our upper bound reduction method
employs the basic idea of the BBS algorithm [8] which is an efficient solution for
classical skyline queries [2] on objects rather than on object combinations in our
MOC query problem.

3 Algorithms

Given objects indexed by an R-tree, we construct MBR combinations in a depth-
first way until reaching the leaf level where the MBRs are real objects. Each MBR
combination can be expanded using its child MBRs. Let us use Example 2 to
illustrate how to retrieve combinations using the R-tree index.

Fig. 2. Construct combinations using R-tree

Example 2 Fig. 2 (a) and Fig. 2 (b) show the R-tree index of objects in the
running example. Let us construct 3-item combinations using the R-tree. There
are two MBRs a and b at the root level. We can select one object from MBR a and
select two objects from MBR b to construct a 3-item combination. For simple,
we use MBR combination {abb} to denote this selection pattern. As Fig. 2 (c)
shows, we can expand pattern {abb} using objects involved in MBR a and objects
involved in MBR b. Nine combinations (i.e., {BAC} to {FCE}) are obtained
following pattern {abb}. In the same way, we can generate object combinations
following patterns {aab}, {aaa} and {bbb}.

Example 2 illustrates that we can construct h-item combinations easily by
retrieving the R-tree in a depth-first way. The depth-first retrieval provides us
an opportunity to reduce the search space by eliminating non-promising MBR
combinations (i.e., patterns). If we can eliminate non-promising MBR combi-
nations before they are expanded to real object combinations, we need fewer
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comparisons for object combinations at the leaf level. A lower bound reduction
method and an upper bound reduction method are proposed to eliminate the
non-promising MBR combinations.

3.1 Lower Bound Reduction

An MBR combination has a lower bound which is an aggregation on the lower
bounds of its elements. For example, in Figure 2 the combination {abb} has a
lower bound {abb}⊥ = (9, 12) which is an aggregation on the lower bounds of its
elements one a and two b, namely, {abb}⊥ = a⊥ + b⊥ × 2 = (5, 6) + (2, 3) × 2 .
We define it formally as follows.

Definition 3 (Lower Bound for MBR Combination) An MBR combina-
tion p = {e1, e2, · · · , eh} has a lower bound p⊥ which is an aggregation on the
lower bounds of its elements e1 to eh, namely, p⊥ = Σh

i=1e
⊥
i where e⊥i is the

lower bound of ei. �

Theorem 1 Given an objective vector b = (b1, b2, · · · , bm), an MBR combina-
tion p cannot be expanded to optimal object combinations, if its lower bound p⊥

is beyond of the objective vector b, namely, pi⊥ > bi (i ∈ 1, 2, · · · ,m). �

Proof 1 We expand an MBR combination p = {e1, e2, · · · , eh} using child MBRs
of e1 to eh until we reach the leaf level. In other words, we select objects en-
closed in ei (i ∈ 1, 2, · · · , h) to construct object combinations. Every object gi
selected from ei has attribute values gji ≥ ej⊥i (j ∈ 1, 2, · · · ,m). An object com-

bination consisting of these objects has attribute values Σh
i=1g

j
i ≥ pj⊥ where

pj⊥ = Σh
i=1e

j⊥
i . If pj⊥ > bj, the combination is not eligible to be an optimal one

because its attribute value Σh
i=1g

j
i > bj.

Fig. 3. Lower Bound Reduction

Example 3 Let us think about constructing 3-item combinations again. Fig. 3
(a) shows the lower bounds of MBR combinations. Given an objective vector
(13, 16), we prune the MBR combination {aaa} because it has a lower bound
[15, 18] which is beyond of (13, 16). Combination {aaa} will not be expanded.
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In order to generate MBR combinations with lower bounds within the objectives,
we incrementally obtain them using a method inspired by the forward checking
algorithm used in [7]. An h-item combination can be denoted as v1v2 · · · vh (v1 ∈
C1, v2 ∈ C2, · · · , vh ∈ Ch) where Ci is the domain of vi. We instantiate variable
vi by selecting an MBR or an object from domain Ci. Our instantiation order is
from v1 to vh. We obtain a combination c1c2 · · · ch after instantiating vh at last.

During the process, after instantiating an intermediate variable vl−1, we ob-
tain a partial combination c1c2 · · · cl−1vl · · · vh where ci ∈ Ci and i ∈ [1, l − 1].
The process is at the lth instantiation level where vl−1 has been instantiated
while vl needs to be instantiated. The domain Cl for vl is decided by the current
partial combination c1c2 · · · cl−1vl · · · vh. The MBRs in domain Cl should have
lower bounds within T = b−Σl−1

i=1c
⊥
i .

Example 4 Fig. 3 (b) shows the process of instantiating a combination v1v2v3.
Let us take the leftmost branch as an example. At the 1st level, we instantiate
v1. Given the objective vector (13, 16), domain C1 is {a, b}. After setting MBR
a to variable v1, we obtain a partial combination {av2v3}. Next, at the 2nd level,
we instantiate v2 and objects belongs to C2 should have lower bounds within
(8, 10) = (13, 16) − (5, 6) where a⊥ = (5, 6). Domain C2 is {a, b} and we set
MBR a to variable v2. Now the partial combination is {aav3}. Next, at the
3rd level, we instantiate v3 and objects belongs to C3 should have lower bounds
within (3, 4) = (8, 10)− (5, 6). Domain C3 is {b} and we set MBR b to variable
v3. Finally, we obtain a combination {aab}. In the same way, we can obtain
other combinations.

Notice that there are duplicate combinations generated during the lower bound
reduction process. Two combinations are duplicates if they have same elements
regardless of their element orders (e.g. {aab} and {baa}). It is easy to remove
such duplicates and we will not talk it too much for the space limitation.

Algorithm 1 shows the process of MOC queries using the lower bound reduc-
tion method. We start a query process by calling a function MOC query(p, b, h, S)
where p = {root, root, root} and S = ∅. We use dji to denote the domain
Ci for variable vi at the jth instantiation level. We first initialize the thresh-
old T as b, initialize d1i (i ∈ 1, 2, · · · , h) as child MBRs of ei using a function
get children(ei), and initialize the current instantiation level identifier l as 1
(from line 3 to 6). Next, we expand the combination p (line 7 to line 30).

From line 9 to 18, we instantiate the variable vl. We select an MBR from
dll to instantiate vl using a function get MBR(dll) (line 10). At the same time,
the function get MBR(dll) removes the selected MBR from dll. If dll is empty,
we backtrack to the level (l − 1) (line 12 to 18). Note that we will not do the
backtrack operation if the current level is 1 (line 12 to 13).

From line 19 to 24, we prepare domains for the next instantiation level (l+1)
using the function forward check(). After updating the threshold T considering
the instantiated variables (line 21), we call a function forward check(T, l, i) (line
31 to 38). In the function, we initialize domains dl+1,j (j ∈ i+1, i+2, · · · , h) as
domains dl,j at the previous level l. We check each MBR in dl+1,j and remove
the ones which have lower bounds beyond T (line 35 to 37).
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Algorithm 1 MOC Query Using Lower Bound Reduction

1: procedure MOC query(p, b, h, S) {p = e1e2 · · · eh is a combination to be
expanded; S contains optimal object combinations.}

2: p′ := v1v2 · · · vh; {Expand p to p′ which have h variables to instantiate.}
3: T := b; {Initialize threshold T as b.}
4: for i := 1 to h do
5: d1i := get children(ei); {Initialize domains d1i.}
6: l := 1; {Start from the 1st instantiation level.}
7: while true do
8: begin
9: if dll ̸= ∅ then {MBRs in dll are not used up.}
10: vl := get MBR(dll); {Select an MBR from dll to instantiate vl.}
11: else {MBRs in dll are used up.}
12: if l = 1 then
13: return; {Terminate the expansion of p.}
14: else
15: begin
16: l := l − 1;
17: continue; {Backtrack to level (l − 1).}
18: end
19: if l < h then {At a level before the last level h.}
20: begin
21: T := T − v⊥l ; {Update T .}
22: forward check(T, l, i); {Prepare domains for level (l + 1).}
23: l := l + 1; {Start the instantiation for level (l + 1)}
24: end
25: else {At the last level h.}
26: if at leaf level(p) then
27: update optimal set(p′, S); {Update S considering p′.}
28: else
29: MOC query(p′, b, h, S); {Expand p′.}
30: end
31: procedure forward check(T, l, i)
32: for j := i+ 1 to h do
33: begin
34: dl+1,j = dl,j ; {Initialize domains at level l + 1.}
35: for k := 1 to n do {dl+1,j = {ck|k ∈ 1, 2, · · · , n}.}
36: if is beyond(c⊥k , T ) then {c⊥k is beyond T .}
37: dl+1,j := dl+1,j − {ck}; {Eliminate ck from dl+1,j .}
38: end
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Let us go back to the function MOC query(). If we are not expanding a
combination at the leaf level, we recursively call the function MOC query() to
expand a newly generated combination p′ (line 29). If not, we update the optimal
object combination set S (line 27). A function update optimal set(p′, S) decides
whether a new object combination p′ can be dominated by an existing combi-
nation in S. We add it into S, if it cannot be dominated by any combinations
in S. The combinations in S, which is dominated by p′, are removed.

3.2 Upper Bound Reduction

We obtain optimal object combinations and inserting them into the set S while
retrieving the R-tree in a depth first way as Algorithm 1 shows. An MBR com-
bination is promising if it has an upper bound which cannot be dominated by
any combinations in S. This upper bound reduction method avoids expanding
MBR combinations which will generate combinations dominated by others.

Definition 4 (Upper Bound for MBR Combination) An MBR combina-
tion p = {e1, e2, · · · , eh} has an upper bound p⊤ which is an aggregation on the
upper bounds of its elements e1 to eh, namely, p⊤ = Σh

i=1e
⊤
i where e⊤i is the

upper bound of ei. �

Definition 5 Given an objective vector b, an MBR combination p is dominated
by an object combination s if its upper bound p⊤ is dominated by s, namely,
dkp⊤ < dks (k ∈ 1, 2, · · · ,m) and djp⊤ ≤ djs (j ∈ 1, 2, · · · ,m and j ̸= k). �

Theorem 2 An MBR combination p cannot be expanded to optimal object com-
binations if it is dominated by a combination s.

Proof 2 An MBR combination p with an upper bound p⊤ can be expanded to an
object combination p′ which have upper bounds within p⊤, namely, p

′i ≤ pi⊤ (i ∈
1, 2, · · · ,m). If p is dominated by an object combination s, p′ is also dominated
by s because dkp′ < dks (k ∈ 1, 2, · · · ,m) and djp′ ≤ djs (j ∈ 1, 2, · · · ,m and j ̸= k).

Example 5 Let us consider the upper bound reduction process in Fig. 4 (a).
The upper bounds of {abb}, {aab}, {aaa} and {bbb} are shown the figure. At the
leaf level, we have obtained object combinations (i.e., {BAC}, . . . , {FCE}) by
expanding the MBR combination {abb}. Their attributes are shown in the figure.
Considering the Theorem 2, the MBR combination {bbb} is non-promising to
generate optimal combinations because its upper bound (12, 15) is dominated by
{DCE} = (12, 16) already found.

We use a min-heap to organize the MBR combinations which are waiting to
be expanded like the well-known BBS algorithm in [8]. Each time we pop and
expand the top one and then push its expansions into the min-heap. The top
one should have a minimum Manhattan distance to an objective vector b.



Multi-Objective Optimal Combination Queries 9

Fig. 4. Upper Bound Reduction

Definition 6 (Manhattan Distance of An MBR Combination) Given an
MBR combination p with lower bounds pi⊥ ≤ bi (i ∈ 1, 2, · · · ,m), the Manhat-
tan distance of the combination p is md(p) = Σr

j=1d
j⊤ where dj⊤ = bj − pj⊤

(pj⊤ ≤ bj and r ≤ m). �

For example, an MBR combination {bbb} has a lower bound (6, 9) and an upper
bound (12, 15). Its lower bound and upper bound are within the objective vector
b = (13, 16). Its Manhattan distance is md({bbb}) = (13 − 12) + (16− 15) = 2.
Notice that MBR combinations like {aab} are special. The MBR combination
{aab} has a lower bound (12, 15) within (13, 16) but an upper bound (16, 23)
beyond of (13, 16). We set its Manhattan distance to md({aab}) = 0.

Theorem 3 An object combination s, which is extended from an MBR combi-
nation p, cannot dominate another MBR combination p′, if p′ has a smaller or
equal Manhattan distance with p, namely, md(p′) ≤ md(p).

Proof 3 The object combination s has a Manhattan distance md(s) = Σm
i=1d

i
s

where dis is its distance to b at the ith attribute. The MBR combination p, where
s comes from, has a Manhattan distance md(p) ≤ md(s). Assume that the object
combination s can dominate another MBR combination p′, say, dks < dkp′⊤ (k ∈
1, 2, · · · ,m) and djs ≤ djp′⊤ (j ∈ 1, 2, · · · ,m and j ̸= k). Then p′ has a Manhat-
tan distance md(p′) > md(p) because md(p′) > md(s) and md(p) ≤ md(s). It
contradicts with the condition md(p′) ≤ md(p) in Theorem 3.
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According to Theorem 3, we maintain a min-heap with respect to Manhat-
tan distances of combinations. The top one has a minimum Manhattan distance.
Other combinations in the heap cannot generate a combination which will domi-
nate the top one. Each time we pop and expend the top one to new combinations.
If a new combination is an object combination, we update the current optimal
combination set S. If a new combination is still an MBR combination, we decide
whether it is dominated by current optimal combinations in S. We only push
the non-dominated ones into the min-heap and throw away the dominated ones.
After rebuilding the min-heap, we pop a new top one and expand it by repeating
the process stated above until the min-heap is empty. Notice that if a top one is
dominated by any current optimal combination in S, we throw it away directly.

Example 6 Fig. 4 (b) shows the scene when an combination {BCE} is on
the top of the min-heap. The number shown behind of each combination is its
Manhattan distance. The combination {BCE} is an object combination and we
compare it with two optimal combinations {DCE} and {FAE} which have been
found already. It cannot be dominated neither by {DCE} nor {FAE}. We pop
out combination {BCE} and inserted it into the MOC set S.

After popping out combination {BCE}, an MBR combination {bbb} is on
the top of the min-heap as Fig. 4 (c) shows. We pop out {bbb} but do not expand
{bbb} because it is dominated by {DCE} ∈ S.

Algorithm 2 shows an MOC query using the lower bound reduction as well as
the upper bound reduction. Algorithm 2 is similar to Algorithm 1 except for sev-
eral differences annotated by comments. In the beginning, we decide whether a
combination p is dominated by combinations in S using a function is domed(p, S)
(line 2). If it cannot be dominated, the process continues. We update S if p is an
object combination (line 4 to 5). We expand p if it is an MBR combination (line
7 to line 38). If a complete instantiated combination p′ cannot be dominated by
combinations in S, we calculate its Manhattan distance md(p′) using a function
calculate md(p′) and push it into the min-heap Q (line 32 to 36). Note that the
min-heap rebuild itself after push or pop operations. When the min-heap Q is
not empty, we pop and use a new top one to execute the function MOC query().

4 Experiments

We implemented Algorithm 2 in GNU C++ and conducted experiments on an
Intel Core2 Duo 2.40 GHz PC (2.0 GB RAM) with a Fedora 12 Linux 2.6.32.
The algorithm was implemented based on the R-tree provided by a spatial index
library SaIL ([9, 10]). The R-tree has a block size 512 bytes and a fill factor 70%.

We evaluated performances of Algorithm 2 with four experimental sets. The
first set evaluated the algorithm with respect to different data distributions, say,
independent distribution, correlated distribution, and anti-correlated distribu-
tion. The second set evaluated the algorithm with different sizes of data sets.
The third set evaluated the algorithm with respect to different m’s where m is
the number of attributes. The fourth set evaluated the algorithm with respect to
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Algorithm 2 MOC Query Using Lower Bound Reduction and Upper Bound
Reduction
1: procedure MOC query(p, b, h, S,Q) {Q is the min-heap}
2: if is domed(p, S) then {p is dominated by combinations in S.}
3: return;
4: if is leaf combination(p) then {p is an object combination.}
5: update optimal set(p, S);
6: else {Expand an MBR combination p.}
7: begin
8: p′ := v1v2 · · · vh;
9: T := b;
10: for i := 1 to h do
11: d1i := get children(ei);
12: l := 1;
13: while true do
14: begin
15: if dll ̸= ∅ then
16: vl := get MBR(dll);
17: else
18: if l = 1 then
19: break;
20: else
21: begin
22: l := l − 1;
23: continue;
24: end
25: if l < h then
26: begin
27: T := T − v⊥l ;
28: forward check(T, l, i);
29: l := l + 1;
30: end
31: else
32: if ¬is domed(p′, S) then
33: begin
34: calculate md(p′); {Calculate Manhattan distance of p′.}
35: push(Q, p′); {Push the new combination p′ into Q.}
36: end
37: end
38: end
39: if Q ̸= ∅ then
40: begin
41: p = pop(Q); {Pop the top combination.}
42: MOC(p, b, h, S,Q); {Use p to do a new MOC query.}
43: end
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different cardinalities h’s where h is the number of objects in a combination. We
will show the experimental results of the three sets in Section 4.1, Section 4.2,
Section 4.3, and Section 4.4 respectively.

4.1 Performances on Different Data Distributions

When we evaluate algorithm performances with different data distributions, we
use five synthetic data sets D−0.6, D−0.4, D0, D0.4 and D0.6 with different cor-
relation coefficients −0.6, −0.4, 0.0, 0.4 and 0.6. We generated these data sets
using the method in [2]. Objects in data sets D0.4 and D0.6 follow the correlated
distribution while object in data sets D−0.4 and D−0.6 follow the anti-correlated
distribution. Objects in the data set D0 follows the uniform distribution. Each
data set has 10K objects with two attributes ranging from 0 to 10000. We ran-
domly select 50 different objective vectors ranging in [1000, 9000]× [1000, 9000]
to evaluate the algorithm. After executing queries to find out 3-MOCs on these
five data sets, we summarized average results of the random 50 different queries
as OC which is the number of optimal combinations; CMC which is the number
of checked MBR combinations; CAD which is the number of candidate object
combinations for optimal ones; CPU which is the cost of running time with one
second as a unit.

101

102

103

104

105

106

D-0.6 D-0.4 D0 D0.4 D0.6

Different Distribution

OC CMC CAD CPU

Fig. 5. Performances on Different Data Distribution

Fig. 5 shows the experimental results of data sets with different object dis-
tributions. Note that OC, CMC, CAD and CPU are all in their log scales. The
correlated data sets (i.e. D0.6 and D0.4) have more OCs than the anti-correlated
data sets (i.e. D−0.6 and D−0.4). The uniform distribution data set (i.e. D0) has
a middle size OCs. The number of candidate object combinations CAN is not
influenced by the distributions of data sets. The CPU cost depends on how many
MBR combinations (CMC) we have checked during the MOC queries. We have
to check more CMCs for the correlated data sets while check fewer CMCs for
the anti-correlated data sets.

4.2 Performances on Different Data Sizes

When we evaluate algorithm performances with different data sizes, we use five
synthetic data sets D1K , D2K , D5K , D10K and D15K containing 1K objects, 2K
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objects, 5K objects, 10K objects and 15K objects respectively. Objects in each
data set have two attributes and follow a uniform distribution. We also randomly
select 50 different objective vectors to evaluate the algorithm. After executing
queries to find out 3-MOCs on these five different data sets, we summarized
average results of the random 50 different queries as OC, CMC, CAD and
CPU in Fig. 6. Note that OC, CMC, CAD and CPU are all in their log scales.
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106

D1K D2K D5K D10K D15K

Different Data Set Size

OC CMC CAD CPU

Fig. 6. Performances on Different Data Sizes

The data set (e.g. D15K) containing more objects has more OCs than the
data set (e.g. D1K) containing fewer objects. The number of candidates (CAN)
of optimal combinations is not influenced by the sizes of data sets. We have to
check more MBR combinations (CMC) for a large data set (e.g. D15K) than
for a small data set (e.g. D1K). The CPU cost depends on the CMC and it
increases with the growth of the data set size.

4.3 Performances on Different Numbers of Attributes

When we evaluate algorithm performances with different attribute number m,
we use three data sets D2, D3 and D4 where m = 2, m = 3 and m = 4
respectively. The objects in the three data sets follow uniform distributions.
Each data set contains 100 objects with attribute values ranging from 0 to 1000.
We use 15 objective vectors bi (i ∈ 1, 2, · · · , 15) where b1i = b2i = · · · = bmi =
400 + 200 × i (m = 2, 3, 4). Given the objective vector bi, we execute MOC
queries on D2, D3 and D4 in order to find out optimal combinations consisting
of 3 objects.

Fig. 7 (a) shows the number of optimal combinations on data sets D2, D3 and
D4. The vertical axis represents the number and the horizontal axis represents
objective vectors b1 to b15. The data set with a larger m (e.g. D4) has more
optimal combinations than the data set with a smaller m (e.g. D2) because it is
difficult for one combination dominates another combination if there are more
attributes to compare.

The Fig. 7 (b) shows the algorithm performances on data sets D2, D3 and
D4. The left vertical axis represents CPU cost with a second unit in a log scale
while the right vertical axis represents the number of CMCs also in a log scale.
The CPU cost depends on the number of CMCs. The data set with a larger m
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Fig. 7. Performances on Data Sets D2, D3 and D4

(e.g. D4) checks more MBR combinations than the data set with a smaller m
(e.g. D2) because the R-tree has more MBRs in a high-dimensional space.

4.4 Performances on Different Cardinality

When we evaluate algorithm performances on different cardinalities of a combi-
nation, say, different h’s, we use the uniform distribution data set D1K . Given
the objective vector b = (500, 500), we execute MOC queries to find out optimal
combinations with cardinalities h = 1, 2, · · · , 9.

10-1

100

101

102

103

104

 1  2  3  4  5  6  7  8  9

(a) Optimal Combinations

10-1

100

101

102

103

 1  2  3  4  5  6  7  8  9
101

102

103

104

105
(b) Performances

CPU CMC

Fig. 8. Performances on Data Set D1k with h = 1, 2, · · · , 9

Fig. 8 (a) shows the number of optimal combinations with different h’s. The
horizontal axis represents the h from 1 to 9 and the vertical axis represents the
number in a log scale. The number increases while h increases because a same
object set can generate more object combinations with a larger cardinality (e.g.
h = 9).

Fig. 8 (b) shows the algorithm performances with different h’s. The left
vertical axis represents the CPU cost while the right vertical axis represents
the number of CMCs. The CPU cost depends on the number of CMCs as well as
the number of candidates. The number of CMC grows with h because a same R-
tree can generate more MBR combinations which have a larger cardinality (e.g.
h = 9). At the leaf level of the R-tree, we decide whether a popped candidate
object combination is an optimal one. It takes much more time to do dominance
tests for a larger number of candidates due to a larger cardinality h.
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5 Conclusions

In this paper, we propose a new multi-objective optimization problem called
MOC problem. The MOC problem is to find out optimal combinations consisting
of h objects with respect to a given objective vector b. The optimal combinations
cannot be dominated by any possible combinations. We organize objects using
the R-tree index and do MOC queries efficiently with two reduction methods,
say, the lower bound reduction and the upper bound reduction. We evaluated the
proposed MOC query algorithm on different data sets with different objective
vectors and parameter settings.
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2. S. Börzsönyi, D. Kossmann, and K. Stocker, “The Skyline Operator,” ICDE, pp.
421-430, 2001,

3. I.-F. Su, Y.-C. Chung, and C. Lee, “Top-k Combinatorial Skyline Queries,” DAS-
FAA, pp. 79-93, 2010.

4. S.B. Roy, S.A. Yahia, A. Chawla, G. Das, and C. Yu, “Constructing and Exploring
Composite Items,” SIGMOD, pp. 843-854, 2010.

5. D. Papadias, N. Mamoulis, and V. Delis, “Algorithms for Querying by Spatial
Structure,” VLDB, pp. 546-557, 1998.

6. D. Bertsimas, J. N. Tsitsiklis, “Introduction to Linear Optimization,” pp. 451-531,
1997.

7. D. Papadias, N. Mamoulis and V. Delis, “Algorithms for Querying by Spatial
Structure,” VLDB, pp. 546-557, 1998.

8. D. Papadias, Y. Tao, G. Fu and B. Seeger, “Progressive skyline computation in
database systems,” ACM Trans. Database Syst, 30(1), pp. 41-82, 2005.

9. M. Hadjieleftheriou, E. Hoel and V. J. Tsotras, “SaIL: A Spatial Index Library for
Efficient Application Integration,” Geoinformatica, 9(4), pp.367-389, 2005.

10. M. Hadjieleftheriou, “Spatial Index Library (SaIL)”, http://www2.research.att.
com/~marioh/spatialindex/.

11. A. Guttman, “R-trees: A Dynamic Index Structure for Spatial Searching,” SIG-
MOD, pp. 47-57, 1984.

12. J. Chomicki, P. Godfrey, J. Gryz and D. Liang, “Skyline with Presorting,” ICDE,
pp. 717-719, 2003.

13. P. G. Ryan, R. Shipley, and J. Gryz, “Maximal Vector Computation in Large Data
Sets,” VLDB, pp. 229-240, 2005.

14. Wikipedia, “Knapsack Problem” http://en.wikipedia.org/wiki/Knapsack_

problem.


