
Efficient Continuous Top-k Keyword Search in
Relational Databases

Yanwei Xu1,3, Yoshiharu Ishikawa2,3, and Jihong Guan1

1 Department of Computer Science and Technology, Tongji University, Shanghai, China
2 Information Technology Center, Nagoya University, Japan

3 Graduate School of Information Science, Nagoya University, Japan

Abstract. Keyword search in relational databases has been widely studied in
recent years. Most of the previous studies focus on how to answer an instant key-
word query. In this paper, we focus on how to find the top-k answers in relational
databases for continuous keyword queries efficiently. As answering a keyword
query involves a large number of join operations between relations, reevaluating
the keyword query when the database is updated is rather expensive. We propose
a method to compute a range for the future relevance score of query answers.
For each keyword query, our method computes a state of the query evaluation
process, which only contains a small amount of data and can be used to main-
tain top-k answers when the database is continually growing. The experimental
results show that our method can be used to solve the problem of responding to
continuous keyword searches for a relational database that is updated frequently.

Key words: Relational databases, keyword search, continuous queries, incremental
maintenance

1 Introduction

As the amount of available text data in relational databases is growing rapidly, the need
for ordinary users to be able to search such information effectively is increasing dra-
matically. Keyword search is the most popular information retrieval method because
users need to know neither a query language nor the underlying structure of the data.
Keyword search in relational databases has recently emerged as an active research topic
[1–7].

Example 1 In this paper, we use the same running example of database Com-
plaints as in [3] (shown in Figure 1). In this example, the database schema is R =

{Complaints,Products,Customers}. There are two foreign key to primary key relation-
ships: Complaints→ Products and Complaints→ Customers.

If a user gives a keyword query “maxtor netvista”, the top-3 answers returned by
the keyword search system of [5] are c3, c3 → p2 and c1 → p1, which are obtained
by joining relevant tuples from multiple relations to form a meaningful answer to the
query. They are ranked by relevance scores that are computed by a ranking strategy.

2 Yanwei Xu, Yoshiharu Ishikawa, and Jihong Guan

Approaches that support keyword search in relational databases can be categorized
into two groups: tuple-based [1, 6, 8–10] and relation-based [2–5, 7]. After a user inputs
a keyword query, the relation-based approaches first enumerate all possible query plans
(relational algebra expressions) according to the database schema, then these plans are
evaluated by sending one or more corresponding SQL statements to the RDBMS to find
inter-connected tuples.

Complaints
tupleId prodId cusId date comments

c1 p121 c3232 6.30.02 “disk crashed after just one week of moderate use on an IBM
:::::
Netvista X41”

c2 p131 c3131 7.3.02 “lower-end IBM
::::::
Netvista caught fire, starting apparently with disk”

c3 p131 c3143 8.3.02 “IBM
:::::
Netvista unstable with

::::
Maxtor HD”

· · · · · · · · · · · · · · ·

Products
tupleId prodId manufacturer model

p1 p121 “
:::::
Maxtor” “D540X”

p2 p131 “IBM” “
:::::

Netvista”
p3 p141 “Tripplite” “Smart 700VA”
· · · · · · · · · · · ·

Customers
tupleId cusId name occupation

u1 c3232 “John Smith” “Software Engineer”
u2 c3131 “Jack Lucas” “Architect”
u3 c3143 “John Mayer” “Student”
· · · · · · · · · · · ·

Fig. 1. A Running Example taken from [3] (Query is “maxtor netvista”. Matches are underlined)

In this paper, we study the problem of continuous top-k keyword searches in re-
lational databases. Imagine that you are a member of the quality analysis staff at an
international computer seller, and you are responsible for analyzing complaints of cus-
tomers that are collected by customer service offices all over the world. Complaints of
customers are arriving continuously, and are stored in the complaints database shown in
Example 1. Suppose you want to find the information related to Panasonic Note laptops,
then you issue a keyword query “panasonic note” and use one of the existing methods
mentioned above to find related information. After observing some answers, you may
suspect that some arriving claims will also be related to Panasonic Notes, so you want
to search the database continuously using the keyword query. How should the system
support such a query?

A naive solution is to issue the keyword query after one or several new related
tuples arrive. Existing methods, however, are rather expensive as there might be huge
numbers of tuples matched and they require costly join operations between relations.
If the database has a high update frequency (as in the situation of the aforementioned
example), recomputation will place a heavy workload on the database server.

In this paper we present a method to maintain answers incrementally for a top-k
keyword search. Instead of full, non-incremental recomputation, our method performs
incremental answer maintenance. Specifically, we retain the state for each query which
is obtained through the latest evaluation of the query. A state consists of the current
top-k answers, the query plans, and the related statistics. It is used to maintain top-k
answers incrementally after the database is updated.

In summary, the main contributions of this paper are as follows:

– We introduce the concept of a continuous keyword query in relational databases. To
the best of our knowledge, we are the first to consider the problem of incremental
maintenance of top-k answers for keyword queries in relational databases.

Efficient Continuous Top-k Keyword Search in Relational Databases 3

– We propose a method for efficiently answering continuous keyword queries. By
storing the state of a query evaluation process, our algorithm can handle the inser-
tion of new tuples in most cases without reevaluating the keyword query.

The rest of this paper is organized as follows. In Section 2 the problem is defined.
Section 3 briefly introduces the framework for answering continuous keyword search in
relational databases. Section 4 presents the details of our method and Section 5 shows
our experimental results. Section 6 discusses related work. Conclusions are given in
Section 7.

2 Problem Definition

We first briefly define some terms used throughout this paper (detailed definitions can be
found in [3, 5, 7]). A relational database is composed of a set of relations R1,R2, · · · ,Rn.
A Joint-Tuple-Tree (JTT) T is a joining tree of different tuples. Each node is a tuple in
the database, and each pair of adjacent tuples in T is connected via a foreign key to
primary key relationship. A JTT is an answer to a keyword query if it contains more
than one keyword of the query and each of its leaf tuples contains at least one keyword.
Each JTT corresponds to the results produced by a relational algebra expression, which
can be obtained by replacing each tuple with its relation name and imposing a full-text
selection condition on the relations. Such an algebraic expression is called a Candidate
Network (CN) [3]. For example, Candidate Networks corresponding to the two answers
c3 and c3 → p2 of Example 1 are ComplaintsQ and ComplaintsQ → ProductsQ, respec-
tively (the notation Q indicates the full-text selection condition). A CN can be easily
transformed into an equivalent SQL statement and executed by the RDBMS. Relations
in a CN are called tuple sets (TS). A tuple set RQ is defined as a set of tuples in relation
R that contain at least one keyword in Q.

A continuous keyword query consists of (1) a set of distinct keywords, that is, Q =

w1,w2, · · · ,w|Q|, and (2) a parameter k indicating that a user is only interested in the top-
k answers ranked by the relevance. The main difference of a continual keyword query
to keyword queries in previous work [3, 10] is that the user wants to keep the top-k
answers list up-to-date while the database is updated continuously. Table 1 summarizes
the notation we use in the following discussion.

Table 1. Summary of Notation

Notation Description Notation Description
t a tuple in a database T a joining tree of different tuples

R(t) the relation corresponding to t sizeof (T) the number of tuples in T
Q a keyword query CN a candidate network

RQ the set of tuples in R that contain
at least one keyword of Q

score(T,Q) the relevance score of T to Q
tscore(t,Q) the relevance score of a tuple t to Q

4 Yanwei Xu, Yoshiharu Ishikawa, and Jihong Guan

We adopt the IR-style ranking strategy of [3]. The relevance score of a JTT T is
computed using the following formulas based on the TF-IDF weighting.

score(T,Q) =

∑
t∈T (tscore(t,Q))

sizeof (T)

tscore(t,Q) =
∑

w∈t∩Q

1 + ln(1 + ln(t ft,w))

1 − s + s · dlt
avdl

· ln
(

N + 1
d fw

)
,

(1)

where t ft,w is the frequency of keyword w in tuple t, d fw is the number of R(t) tuples
that contains w (R(t) means the relation that includes t), dlt is the size (i.e., number of
characters) of t, avdl is the average tuple size, N is the total number of R(t) tuples, and
s is a constant.

3 Query Processing Framework

Figure 2 shows our framework for continuous keyword query processing in relational
databases.

Fig. 2. Continuous Query Processing Framework

Given a keyword query, we first identify the top-k query results. Specifically, we
first generate all the non-empty query tuple sets RQ for each relation R. Then these
non-empty query tuple sets and the schema graph are used to generate a set of valid
CNs. Finally, the generated CNs are evaluated to identify the top-k answers. For the
step of CN evaluation, several query evaluation strategies have been proposed [3, 5].
Our method of CN evaluation is based on the method of [3], but can also find the JTTs
that have the potential to become top-k answers after some new tuples are inserted.

At the end of the CN evaluation process, the state of the process is computed
and stored. After being notified of new data, the Incremental Maintenance Middleware
(IMM) starts the answer maintenance procedure for each continuous keyword query.

The IMM uses some filter conditions to categorize the new data into two types
for each keyword query based on their relevance: not related and related. Then the
related new data and the stored state are used by the IMM to start the incremental
query evaluation process and compute the new top-k answers. If the variations of the
new top-k answers fulfill the update conditions, the new top-k answers are sent to the
corresponding users.

Efficient Continuous Top-k Keyword Search in Relational Databases 5

4 Continuous Keyword Query Evaluation
In this section, we first present a two-phase CN evaluation method for creating the state
for a keyword query. Then we will show how to calculate the effects of new tuples.

4.1 State of a Continuous Keyword Query
Generally speaking, two tasks need to be done after tuples are inserted. New tuples can
change the values of d f , N and avdl in Eq. (1) and hence change the tuple scores of
existing tuples. Therefore, the first task is to check whether some of the current top-k
answers can be replaced by other JTTs whose relevance scores have been increased.
The new tuples may also lead to new JTTs and new CNs. Therefore, the second task is
to compute the new JTTs and check whether any of them can be top-k answers.

For the first task, a naive solution is to compute and store all the JTTs that can be
produced by evaluating the CNs generated when the query is evaluated for the first time.
After new tuples are inserted, we recompute the relevance score of the stored JTTs and
update the top-k answers. This solution is not efficient if the number of existing tuples
is large, since it needs to join all the existing tuples in each CN and store a large number
of JTTs.

Fortunately, our method only needs to compute and store a small subset of the JTTs.
For this purpose, we use the two-phase CN evaluation method shown in Algorithm 1 to
evaluate a set of candidate networks CNSet for keyword query Q efficiently, and create
the state of Q. The first phase (lines 1-11) is for computing the top-k answers, based on
the method of [3]. The second phase (lines 15-22) is for finding the JTTs that have the
potential to become top-k answers.

The key idea of lines 1-11 is as follows. All CNs of the keyword query are evaluated
concurrently following an adaptation of a priority preemptive, round robin protocol
[12], where the execution of each CN corresponds to a process. Tuples in each tuple set
are sorted in descending order of their tuple scores (line 2). There is a cursor for each
tuple set of all the CNs that indicates the index of the tuple to be checked next (line 3).
All the combinations of tuples before the cursor in each tuple set have been joined to
find the JTTs. At each loop iteration, the algorithm checks the next tuple of the “most
promising” tuple set from the “most promising” CN (lines 8-10). The first phase stops
immediately after finding the top-k answers, which can be identified when the score
of the current k-th answer is larger than all the priorities of the CNs (line 6). We call
the tuples before the cursor of each tuple set the “checked tuples”, and the tuples with
indexes not smaller than the cursor are called “unchecked tuples”.

Figure 3 shows the main data structure of our CN evaluation method. In order to
facilitate discussion, only the CN ComplaintsQ → ProductsQ is considered and we sup-
pose that we want to find the top-2 answers. In Figure 3(a), tuples in the two tuple sets
are sorted in descending order of tuple scores and are represented by their primary keys.
Arrows between tuples indicate the foreign key to primary key relationship. The top-2
answers discovered are c1 → p1 and c3 → p2. All the tuples in the deep background
have been joined in order to obtain the top-2 answers. For example, tuple p1 has been
joined with tuples c1, c2 and c3, and one valid JTT c1→ p1 has been found. After the
execution of phase 1, the two cursors of the two tuple sets are pointing at c4 and p6,
respectively.

6 Yanwei Xu, Yoshiharu Ishikawa, and Jihong Guan

Algorithm 1 CNEvaluation(CNSet, k,Q)
Input: CNSet: a set of candidate networks; k: an integer; Q: a keyword query;
1: declare RTemp: a queue for not-yet-output results ordered by descending score(T,Q);

Results: a queue for output results ordered by descending score(T,Q)
2: Sort tuples of each tuple set in descending order of tscore
3: Set cursor of each tuple set of each CN in CNSet to 0
4: loop
5: Compute the priorities of each CN in CNSet
6: if(the score of the k-th answer in Results is larger than all the priorities) then break
7: Output to Results the JTTs in RTemp with scores larger than all the priorities
8: Select the next tuple from the tuple set that has the maximum upper bound score from

the CN with the maximum priority for checking
9: Add 1 to the cursor of the tuple set corresponding to the checked tuple

10: Add all the resulting JTTs to RTemp
11: end loop
12: FindPotentialAnswers(CNSet,Results)
13: Set cursor = cursor2 for each tuple set of each CN in CNSet
14: Create state for Q and return the top-k JTTs in Results

15: Procedure FindPotentialAnswers(CNSet,Results)
16: Compute the range of tscore for all the tuples in each tuple set of CNSet and sort the tuples

in each tuple set below the cursor in descending order of tscoremax

17: lowerBound ← the minimum lower bound of scores of the top-k answers in Results
18: for all tuple set ts j of each CN Ci in CNSet do
19: Increase the value of cursor2 from cursor until max(ts j[cursor2]) < lowerBound
20: for all tuple set ts j of each CN Ci in CNSet do
21: Join the tuples between cursor and cursor2 of ts j with the tuples before the cursor in the

other tuple sets of CNi

22: Add the resulting JTTs to Results whose upper bound of score is larger than lowerBound

The procedure FindPotentialAnswers is used to find the potential top-k answers.
The basic idea of our method is to compute a range of future tuple scores using the
scoring function for computing tuple scores given in Eq. (1):

tscore(t,Q) =
∑

w∈t∩Q

1 + ln(1 + ln(t ft,w))

1 − s + s · dlt
avdl

· ln
(

N + 1
d fw

)
. (2)

We consider the situation where (a) at most ∆N new tuples are inserted; and (b) doc-
ument frequency changes slightly due to the insertion. ∆d f denotes the maximum in-
creased count of the document frequency for every term. Note that the change for a
keyword w ∆d fw may be 0. We assume that the average document length (avdl) is a con-
stant to simplify the problem. Let us use the shorthand notation A(t,w) =

1+ln(1+ln(t ft,w))
1−s+s· dlt

avdl

and B(t,w) =
1+ln(1+ln(t ft,w))

1−s+s· dlt
avdl

· ln
(

N+1
d fw

)
. B(t,w) represents the contribution of keyword w

to tscore(t,Q).
We derive an upper bound and a lower bound of Eq.(2) which are valid while the

two constraints ∆N and ∆d f are satisfied. First, we compute the maximum score for
the existing tuples t. This situation occurs when all the terms in t ∩ Q do not appear in

Efficient Continuous Top-k Keyword Search in Relational Databases 7

(a) Compute the top-2 answers (b) Find potential top-2 answers

Fig. 3. Two-phase CN evaluation

the new documents; hence, we have tscore(t,Q)max =
∑

w∈t∩Q A(t,w) · ln
(

N+1+∆N
d fw

)
. For

each B(t,w), the minimum value is achieved when the first dtw new tuples all contain
w: B(t,w)min = A(t,w) · ln

(
N+1+∆d fw
d fw+∆d fw

)
. Therefore, the lower bound of tscore(t,Q) is

tscore(t,Q)min =
∑

w∈t∩Q A(t,w) · ln
(

N+1+∆dtw
d fw+∆d fw

)
. Note that this lower bound only can be

achieved when all the ∆dtw are equal. Using such ranges, the range of relevance scores
of a JTT T can be computed as [

∑
t∈T t.tscoremin,

∑
t∈T t.tscoremax] · 1

sizeof (T) .
We continually monitor the change of statistics to determine whether the thresholds

∆N and ∆d f are violated. This is not a difficult task: monitoring ∆N is straightforward;
for ∆d f , we accumulate ∆d fw for all the terms w in the process of handling new tuples.
In the following discussion, we consider only the case that the two thresholds ∆N and
∆d f are not violated.

For each tuple t in C, we use max(t) =
(
t.tscoremax +

∑
t<tsi

max(tsi)
)
· 1

sizeof (C) to
indicate the maximum upper bound of scores of the possible JTTs that contain t, where
max(tsi) indicates the maximum upper bounds of tscores of tuples in tsi. If max(t) is
larger than the minimum lower bound of score of answers in Results (lowerBound in
line 17), t can form some JTTs with the potential to become top-k answers in the future.
We find such tuples in lines 18-19, and join them with the tuples before cursor2 in the
other tuple set (line 21). Hence, all the JTTs that are formed by the tuples that have the
potential to form top-k answers are computed. However, not all the JTTs computed in
line 21 can become top-k answers in the future. In line 22, only the JTTs whose upper
bound of score is larger than lowerBound are added to Results. After the execution of
line 12, Results contains the top-k answers and the potential top-k answers.

In line 14, the state for Q is created based on the snapshot of CNEvaluation. The
state contains three kinds of data:

– The keyword statistics: the number of tuples, and document frequencies (i.e., the
number of tuples that contain at least one keyword).

– The set of candidate networks: all the checked tuples (checked tuples of multiple
instances of one tuple set are merged to reduce the storage space).

– The JTT queue Results: each entry contains the tuple ID and the tscore.

Note that the tuples before cursor2 in each tuple set can be considered as highly re-
lated to the keyword query and have a high possibility to form JTTs with newly inserted

8 Yanwei Xu, Yoshiharu Ishikawa, and Jihong Guan

tuples. Hence, they need to be stored in the state for the second task. We need to store
the statistic

∑
w∈t∩Q A(t,w) for each tuple t in the state in order to recompute the tuple

scores after new tuples are inserted. Fortunately, the value is static and does not change
once we compute it.

Figure 3(b) shows the data structure of the CN ComplaintsQ → ProductsQ after the
second phase of evaluation. The two tuple sets are further evaluated by checking tuples
c4 and p6, respectively.

4.2 Handling Insertions of Tuples
After receiving a new tuple, the IMM first checks whether the values of d f and N still
satisfy the assumptions, that is, the differences between the current values of d f and N
and their values when the state was first created are smaller than ∆d f and ∆N, respec-
tively. If the assumptions are satisfies, the algorithm Insertion shown in Algorithm 2
is used to incrementally maintain the top-k answers list for a keyword query; if the
assumptions are not satisfied, then the query must be reevaluated.

In Algorithm 2, lines 1-3 are for the first task, and lines 5-18 are used to compute the
new JTTs that contain the new tuples. In line 1, the values of N and d f for the relation
R(t) are updated. Then, if it is necessary (line 2), the relevance scores of the JTTs in the
JTT queue are updated using the new values of N and d f (line 3).

Algorithm 2 Insertion(t, Q, S)
Input: t: new tuple; Q: keyword query; S : stored state for Q
Output: New top-k answers of Q
1: update the keyword statistics of R(t)
2: if there are some tuples of R(t) are contained in the JTT queue of S then
3: recompute the scores of the JTTs in the JTT queue of S
4: if t does not contain the keywords of Q then return
5: if R(t)Q is a new tuple set then generate new CNs
6: compute the value and range for the tscore of t
7: CNSet ← CN in S that contains R(t)Q ⋃

all the new CNs
8: for all CN C in CNSet do
9: for all R(t)Q of C do

10: if t.tscoremax > minC(R(t)Q) then
11: add t to the checked tuples set of R(t)Q

12: join t with the checked tuples in the other tuple sets of C
13: if t.tscoremax > maxC(R(t)Q) then
14: for all the other tuple sets ts of C do
15: query the unchecked tuples of ts from the database
16: delete the newly inserted tuples from ts that have not been processed
17: call FindPotentialAnswers({C}, S.Queue) while replacing R(t)Q by {t}
18: end for
19: return S .Queue.Top(k)

If R(t)Q is a new tuple set, the new CNs that contain R(t)Q need to be generated
(line 5). In line 6, the value of tscore for the new tuple is computed using the actual

Efficient Continuous Top-k Keyword Search in Relational Databases 9

values of d f and N; but the values of d f and N used for computing the range of tscore
are the values when the state is created in order to be consistent with the ranges of
tscores for existing checked tuples of R(t)Q. New tuples can be categorized into two
groups by deciding whether each new tuple belongs to the new top-k answers (related
or not related). Generally speaking, new tuples that do not contain any keywords of
the query are not related tuples (line 4), and new tuples that contain the keywords may
be related. However, a new tuple t that contains the keywords cannot be related is its
upper bound of tscore is not larger than minC(R(t)Q), which is the minimum tscoremaxs
of checked tuples of R(t)Q (line 10). For the related new tuples, they are processed from
line 11 to line 17. In line 12, t is joined with the checked tuples in the other tuple sets
of C. Then the algorithm uses another filtering condition, t.tscoremax > maxC(R(t)Q)
in line 13, to determine whether the new tuple t should be joined with the unchecked
tuples of the other tuple sets of C. If t.tscoremax > maxC(R(t)Q), which is the maximum
tscoremaxs of checked tuples of R(t)Q, some max(tsi(cursor2)) may be larger than the
minimum lower bound of current top-k answers. Hence, after querying the unchecked
tuples from the database in line 15, the procedure FindPotentialAnswers of C is called
while replacing R(t)Q by {t} (line 17, set of the new tuple). Note that the relevance scores
of the new JTTs produced in lines 12 and 17 should be computed using the actual values
of d f s and Ns.

The execution of lines 14-17, needed to query unchecked tuples from the database
and perform the second phase of the evaluation of C, place a heavy workload on the
database. However, our experimental studies show a very low execution frequency for
lines 14-17 when maintaining the top-k answers for a keyword query.

5 Experimental Study

For the evaluation, we used the DBLP4 data set. The downloaded XML file is decom-
posed into 8 relations, article(articleID, key, title,

::::::::
journalID,

:::::::
crossRef, · · ·), aCite(id,

::::::::
articleID,

:::
cite), author(authorID, author), aWrite(id,

::::::::
articleID,

::::::::
authorID), journal(journalID,

journal), proc(procID, key, title, · · ·), pEditors(pEditorID, Name), procEditor(id,

::::::::::::
procEditorID,

::::::
procID), where underlines and underwaves indicate the keys and foreign

keys of the relations, respectively. The numbers of tuples for the 8 relations are, 1092K,
109K, 658K, 2752K, 730, 11K, 12K, 23K. The DBMS used is MySQL (v5.1.44) with
the default configurations. Indexes were built for all primary key and foreign key at-
tributes, and full-text indexes were built for all text attributes.

We manually picked a large number of queries for evaluation. We attempted to
include a wide variety of keywords and their combinations in the query set, taking into
account factors such as the selectivity of keywords, the size of the relevant answers,
and the number of potential relevant answers. We focus on the 20 queries with query
lengths ranging from 2 to 3, which are listed in Table 2.

Exp-1 (Parameter tuning) In this experiment, we want to study the effects of the
two parameters on computing the range of future tuple scores. The number of tuples
that need to be joined in the second phase of CN evaluation is determined by ∆N and
∆d f . Small values of ∆N and ∆d f result in small numbers of tuples be joined, but a

4 http://dblp.mpi-inf.mpg.de/dblp-mirror/index.php

10 Yanwei Xu, Yoshiharu Ishikawa, and Jihong Guan

Table 2. Queries
QID Keywords QID Keywords QID Keywords QID Keywords
Q1 bender, p2p Q6 sigmod, xiaofang Q11 Hardware, luk, wayne Q16 Staab, Ontology, Steffen
Q2 Owens, VLSI Q7 constraint, nikos Q12 intersection, nikos Q17 query, Arvind, parametric
Q3 p2p, Steinmetz Q8 fagin, middleware Q13 peter, robinson, video Q18 search, SIGMOD, similarity
Q4 patel, spatial Q9 fengrong, ishikawa Q14 ATM, demetres, kouvatsos Q19 optimal, fagin, middleware
Q5 vldb, xiaofang Q10 hong, kong, spatial Q15 Ishikawa, P2P, Yoshiharu Q20 hongjiang, Multimedia, zhang

large frequency of recomputing the state because the increases of N and d f will soon
exceed ∆N and ∆d f , respectively, due to the insertion of tuples. Therefore, the values
of ∆N and ∆d f represent a tradeoff between the storage space for the state and the
efficiency for top-k answer maintenance. In our experiments, the values of ∆N and ∆d f
are set to be a fraction of the values of N and d f , respectively. For each query, we run
the two-phase CN evaluation algorithm with different values of ∆N and ∆d f . The main
experimental results for five queries are shown in Figure 4.

We use two metrics to evaluate the effects of the two parameters. The first is cursor2/cursor
where cursor and cursor2 indicate the summation of numbers of checked tuples after
the first and second phases of CN evaluation, respectively. Small values of cursor2/cursor
imply a small number of tuples are joined in the second phase for computing the poten-
tial top-k answers. The second metric is the size of the state. Figures 4(a) and 4(b) show
the changes of cursor2/cursor for different ∆N and ∆d f while fixing the other parame-
ter to 10%. Figure 4(a) and 4(b) show that only a small number of tuples are joined in
the second phase of CN evaluation, which implies that the range of tuple scores com-
puted by our method is very tight. The curves in Figure 4(a) and 4(b) are not very steep.
Hence, we can use some relatively large value of ∆N and ∆d f when creating the state
for a continuous keyword query. Note that the values of N in a database are always very
large. Therefore, even a small value of ∆N (like 10%) can result in the state being valid
until a large number of new tuples (100,000 in our experiment) have been inserted, as
long as the ∆d f s condition is not violated. Figure 4(c) shows the change of the state
size for a query when varying ∆d f while keeping ∆N = 10%. The data size of the state
of a continuous keyword query is quite small (several MBs at most); hence, the IMM
can easily load the state of a query for answer maintenance.

(a) Varying ∆N when
∆d f = 10%

(b) Varying ∆d f when
∆N = 10%

(c) Change of state size

Fig. 4. Effect of ∆N and ∆d f

Exp-2 (Efficiency of answer maintenance) In this experiment, we first create states
for the 20 queries. Then we sequentially insert 14,223 new tuples into the database. The
CPU times for maintaining the top-k answers for the 20 queries after each new tuples
being inserted are recorded. All the experiments are done after the DBMS buffer has
been warmed up. The values of ∆N and ∆d f are both set to 1%. As the values of ∆N
and ∆d f are very small, the cost for creating the state of a query is essentially as the
cost for the first phase of CN evaluation.

Efficient Continuous Top-k Keyword Search in Relational Databases 11

Figure 5(a) shows the time cost to create states (Create) and the average time cost of
the 20 queries to handle the 14,223 new tuples (Insert). Note that the times are displayed
using a log scale. From Figure 5(a), we can see that the more time used to create the state
of a query, the more time is used to maintain answers for the query. In our experiment,
the states of the 20 queries are stored in the database. The states of the queries are read
from the database after the IMM receives a new tuple. The time for maintaining the new
tuples also contains the time cost of reading the states from database and writing them
back to database after handing new tuples. Hence, such time costs represent a large
proportion of the total time cost for handling new tuples when they are not related.
In order to reveal this relationship, we also plot the state sizes for the 20 queries in
Figure 5(a). The cost of reading and writing a state is clearly revealed by the data for
Q6. The data of Q6 appears to be an exception because the value of Insert is larger than
Create. The main reason for this is that Q6 is very easy to answer. Hence, the time used
to load and write back the state is the majority for handling new tuples for Q6.

Figure 5(b) shows the total time for handing each inserted tuple. In most cases, the
time used to handle a new tuple is quite small, which corresponds to the situation that
the new tuple does not contain any keyword from the 20 queries. Hence, the algorithm
only needs to update the scores of JTTs in the JTT queue of the states. The peaks of
the data in Figure 5(b) correspond to the situations in which some queries need to be
reevaluated because of violation of the ∆d f . Eventually, ∆N is violated, hence several
queries need to be reevaluated at the same, this results in the highest peak in Figure 5(b).

(a) Time for creating states and the av-
erage time for handling new tuples

(b) Total time for handling each new
tuple

Fig. 5. Efficiency of maintaining the top-k answers

6 Related Work
Keyword search in relational databases has recently emerged as a new research topic
[11]. Existing approaches can be broadly classified into two categories: ones based on
candidate networks [2, 3, 7] and others based on Steiner trees [1, 8, 10].

DISCOVER2 [3] proposed ranking tuple trees according to their IR relevance scores
to a query. Our work adopts the Global Pipelined algorithm of [3], and can be viewed
as a further improvement to the direction of continual keyword search in relational
databases. SPARK [5] proposed a new ranking formula by adapting existing IR tech-
niques based on the natural idea of a virtual document. They also proposed two al-
gorithms, based on the algorithm of [3], that minimize the number of accesses to the
database. Our method of incremental maintenance of top-k query answers can also be
applied to these algorithms, which will be a direction of future work.

12 Yanwei Xu, Yoshiharu Ishikawa, and Jihong Guan

7 Conclusion
In this paper, we have studied the problem of finding the top-k answers in relational
databases for a continuous keyword query. We proposed storing the state of the CN
evaluation process, which can be used to restart the query evaluation after the insertion
of new tuples. An algorithm to maintain the top-k answer list on the insertion of new tu-
ples was presented. Our method can efficiently maintain a top-k answers list for a query
without recomputing the keyword query. It can, therefore, be used to solve the problem
of answering continual keyword searches in a database that is updated frequently.

Acknowledgments
This research is partly supported by the Grant-in-Aid for Scientific Research, Japan
(#22300034), the National Natural Science Foundation of China (NSFC) under grant
No.60873040, 863 Program under grant No.2009AA01Z135 and Open Research Pro-
gram of Key Lab of Earth Exploration & Information Techniques of Ministry of China
(2008DTKF008). Jihong Guan was also supported by the Program for New Century Ex-
cellent Talents in University of China (NCET-06-0376) and the “Shu Guang” Program
of Shanghai Municipal Education Commission and Shanghai Education Development
Foundation.

References
1. Aditya, B., Bhalotia, G., Chakrabarti, S., Hulgeri, A., Nakhe, C., Parag, Sudarshan, S.:

BANKS: Browsing and keyword searching in relational databases. In: VLDB. (2002) 1083–
1086

2. Agrawal, S., Chaudhuri, S., Das, G.: DBXplorer: Enabling keyword search over relational
databases. In: ACM SIGMOD. (2002) 627

3. Hristidis, V., Gravano, L., Papakonstantinou, Y.: Efficient IR-style keyword search over
relational databases. In: VLDB. (2003) 850–861

4. Liu, F., Yu, C., Meng, W., Chowdhury, A.: Effective keyword search in relational databases.
In: ACM SIGMOD. (2006) 563–574

5. Luo, Y., Lin, X., Wang, W., Zhou, X.: SPARK: Top-k keyword query in relational databases.
In: ACM SIGMOD. (2007) 115–126

6. Li, G., Zhou, X., Feng, J., Wang, J.: Progressive keyword search in relational databases. In:
ICDE. (2009) 1183–1186

7. Hristidis, V., Papakonstantinou, Y.: DISCOVER: Keyword search in relational databases. In:
VLDB. (2002) 670–681

8. Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R., Karambelkar, H.: Bidirec-
tional expansion for keyword search on graph databases. In: VLDB. (2005) 505–516

9. He, H., Wang, H., Yang, J., Yu, P.S.: Blinks: Ranked keyword searches on graphs. In: ACM
SIGMOD, New York, NY, USA, ACM (2007) 305–316

10. Li, G., Ooi, B.C., Feng, J., Wang, J., Zhou, L.: EASE: An effective 3-in-1 keyword search
method for unstructured, semi-structured and structured data. In: ACM SIGMOD. (2008)
903–914

11. Wang, S., Zhang, K.: Searching databases with keywords. J. Comput. Sci. Technol. 20(1)
(2005) 55–62

12. Burns, A.: Preemptive priority based scheduling: An appropriate engineering approach. In
Advances in Real Time Systems. S. H. Son, Prentice Hall. (1994) 225–248

