
Direction-Based Spatial Skylines

Xi Guo
Nagoya University

Nagoya 464-8601, Japan
guoxi@db.itc.nagoya-u.ac.jp

Yoshiharu Ishikawa
Nagoya University

Nagoya 464-8601, Japan
ishikawa@itc.nagoya-u.ac.jp

Yunjun Gao
Zhejiang University

Hangzhou 310027, P. R. China
gaoyj@zju.edu.cn

ABSTRACT
Traditional location-based services recommend nearest ob-
jects to the user by considering their spatial proximity. How-
ever, an object not only has its distance but also has its di-
rection which originates from the user to it. In this paper, we
study direction-based spatial skyline queries (DSS queries)
which retrieve nearest objects around the user from different
directions. The closer object is better than or dominates the
further object if they are in the same direction. The objects
that cannot be dominated by any other object are included
in the direction-based spatial skyline (DSS). We propose al-
gorithms to answer snapshot queries which find objects on
the DSS according to the user’s current position. We also
develop algorithms to support continuous queries which re-
trieve objects on the DSS while the user is moving linearly.
Extensive experiments verify the performance of our pro-
posed algorithms using both real and synthetic datasets.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and
GIS; H.2.4 [Systems]: Query processing

General Terms
Algorithms

Keywords
Spatial databases, skyline queries, location-based services,
directions

1. INTRODUCTION
In location-based services such as mobile recommenda-

tions and car navigations, a mobile user often receieves rec-
ommendations of interesting POI (point of interest) objects
based on spatial closeness and the user’s preference [15].
Generally, the nearest neighbor objects to the user’s posi-
tion are good choices. However, the simple nearest neighbor
approach may not work well in some situations.

Example 1 Let us consider a motivating example shown in
Fig. 1. A mobile user is on the way to his home, but he is
wondering whether to go to a bar, a bookshop, or a fitness

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10, June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

gym before going back to home. In addition, suppose that he
would like to buy something at a convenience store. Which
store is the best one for him? It depends on the direction he
will take. If he decides to go to the bookshop from now, store
D, which is the nearest neighbor one, is not a good choice
because store C is on the way to the bookshop. To support
his decision, it would be helpful that the recommendation
system can present the best store for each direction. In this
example, stores A to D should be recommended, but store
E would be omitted because store B is better than store E
in terms of the distance.

Home

Bar

Fitness gym

Bookshop

Store A

Store C

Store B

Store D

Store E

Figure 1: Motivating example

How can we recommend POIs to mobile users in such sit-
uations? In this paper, we propose a new type of spatial
queries, namely direction-based spatial skyline queries (DSS
queries), which find the best objects not only by compar-
ing the distances but also by considering the directions. A
DSS query retrieves nearest objects around the user from
different directions. In the result set, each object is nearer
than any other objects in the same direction with it. We
explain the concept of a DSS query using an example. We
define the problem in the two-dimensional Euclidean space
and take the locations of the user and each POI as points.
For simplicity, we do not take into account non-spatial at-
tributes.

Example 2 In Fig. 2, there are seven target objects (POIs)
around the query object (the user’s location) O = (0, 0). We
have vectors ~a, . . . , ~g originating from O. In this example, let
us consider that two vectors are in the same direction if their
included angle is smaller than a specified threshold θ = π/3.
For instance, the objects in the same direction with a are
b and g. Note that a is the closest object among {a, b, g}
from O. It means that a dominates other two objects in
the same direction and becomes one of the objects to be
recommended to the user. In a similar way, we can say that
d dominates c and f dominates e, and thus a, d, and f are
not dominated by other objects. Consequently a, d, and f
constitute the direction-based spatial skyline (DSS) for O,
i.e., the final result of the DSS query is {a, d, f}.

a

b

c

d

e f g

O

y

object
query point

DSS

x60

pi di ωi
a 22 27◦

b 50 53◦

d 54 158◦

f 60 270◦

c 67 117◦

e 72 236◦

g 112 333◦

Figure 2: Example of a DSS query (θ = π/3)

A DSS query is a new type of skyline queries [2], mostly
focusing on the spatial context. We will give its formal def-
inition in Section 2. The DSS query compares objects in
terms of two spatial properties—distances and directions,
rather than distances only considered in traditional spatial
skyline queries [16]. In this paper, we study two types of
DSS queries, viz. snapshot queries and continuous queries.
An snapshot DSS query finds out the objects which are on
the DSS according to the user’s current position. We have
shown its example above. The purpose of the query is to
provide the current “best view” to the user. The user can
identify the best POI for each direction.

We can extend the concept of a DSS query to the conti-
nous case. A continous DSS query retrieves the objects on
the DSS while the user is moving linearly. Its typical use is
to predict when and how the best view (i.e., DSS) changes
while the movement. Consider the following example to ex-
plain the need for such a query.

Example 3 In Fig. 2, assume that the user linearly moved
along the x-axis and he is currently at the position O′ =
(60, 0). Now object g, which was dominated by a at the
initial moment, is not dominated by a because they are in
the different direction from the user. On the other hand,
object d, which was on the DSS at the initial moment, is
now dominated by a since it is further than a and they are
in the same direction. In this case, the final result of the
DSS query is {a, f, g}, which is different from {a, d, f} at
the initial moment.

The problem is how we can know when the DSS changes
while the user’s movement. A näıve solution is to issue a
new query at every moment. However, it is quite costly.
Our approach is to predict DSS changes based on precom-
putation. When the user arrives at the change point, which
is predicted by the algorithm, we can update the former
(i.e., old) DSS to a new one. The method can avoid the
shortcoming of the näıve solution.

In the following, we formalize the notion of a DSS query
in snapshot and continuous setting respectively, and present
the corresponding query processing algorithms. The rest
of this paper is organized as follows. In Section 2, a DSS
query is formally defined. Section 3 describes the query
processing algorithm for the snapshot case. In Section 4,
we extend the algorithm to the continuous case. Section 5
reports experimental results and our findings. In Section 6,
we overview the related work. Finally, Section 7 concludes
the paper.

2. PRELIMINARIES
In this section, we formalize DSS queries. Table 1 sum-

marizes the symbols used in this paper.

2.1 Direction
Consider a database contains the target object set P =
{p1, . . . , pn} in the two-dimensional Euclidean space. We
assume that the user’s location is given as a query object

Table 1: Symbols and descriptions

Symbol Description
−→pi Vector from q to pi

θ Threshold for an acceptable angle
di (dpi) Distance between q and pi (dpi = |−→pi |)
ωi (ωpi) Direction of −→pi : the angle between −→pi and (1, 0)

λij (λpipj) Included angle between −→pi and −→pj

ϕij (ϕpipj) Partition angle between pi and pj

q. The vector going from q to pi is abbreviated as −→pi . We
denote the Euclidean distance between pi and q as dpi = |−→pi |
and denote the angle between −→pi and the unit vector (1, 0) as
ωpi (0 ≤ ωpi < 2π). We refer to dpi and ωpi as pi’s distance
and direction, respectively, and use the abbreviations di and
ωi if the context is clear. For example, the vector −→a in Fig. 2
has the distance da = |−→a | = 22 and the direction ωa = 27◦.

We consider the relationship of two target objects in terms
of the query object. Intuitively, two objects pi and pj are in
the same direction if their directions happen to be the same
with each other (ωi = ωj). This definition, however, is too
strict in practice. Therefore, we argue that two objects are
in the same direction if their directions are approximately
equal (ωi ≈ ωj). For this purpose, we assume that the
threshold θ for an acceptable angle is specified by the user,
and θ should satisfy the condition 0 ≤ θ < π

2
. We limit

that θ is less than π/2. This is reasonable because the two
vectors turn orthogonal when θ reaches π/2. We denote the
included angle between −→pi and −→pj by λpipj (λij for short).
λij should be in the range 0 ≤ λij ≤ π. It is defined as
follows:

λij = arccos
−→pi · −→pj

|−→pi | · |−→pj |
. (1)

Using these assumptions, we define the concept of the same
direction.

Definition 1 (Same Direction) For the given target ob-
jects pi and pj , we say that pi and pj are in the same direc-
tion from q if the condition 0 ≤ λij ≤ θ holds. 2

In Fig. 2, if θ is given as π/3, object b is in the same
direction with a from q since the included angle λab between
their vectors is smaller than θ. On the other hand, object d
is in a different direction with a due to λad > θ.

2.2 Dominance Relationships and DSS Query
The dominance relationship between two objects in terms

of their directions and distances is straightfowardly defined
as follows.

Definition 2 (Dominance Relationship) If two objects
pi and pj are in the same direction and pi is closer than
pj (i.e., di < dj) from q, we say that pi dominates pj , and
denote the dominance relationship as pi ≺ pj . 2

Note that a dominance relationship is not defined for two
objects in different directions.

Based on dominance relationships, we can define direction-
based spatial skylines.

Definition 3 (Direction-Based Spatial Skyline) For the
target objects {p1, . . . , pn} ∈ P , the objects which cannot be
dominated by any other object are included in the direction-
based spatial skyline (DSS). 2

Definition 4 (Direction-Based Spatial Skyline Query)
A direction-based spatial skyline query (DSS query) finds the
objects on the DSS. It is represented by the pair (q, θ), where
q is a specified query object and θ is a threshold angle.

Before going to the next section, we would like to mention
two minor issues and their solutions.

1. In the following discussion, we consider the case of
0 < θ < π/2 and omit the case of θ = 0. In the
latter case, most of the target objects are on the DSS
as pi can dominate pj only if pi and pj are on the same
radial line and pi is closer than pj . Although the term
“same direction”well matches this situation, the result
is meaningless.

2. When the query object q is exactly located on a target
object pi, we can not define the skyline appropriately
because vector −→p is a zero vector. One reasonable
solution is that we extend the definition of a direction-
based spatial skyline: if a target object pi is located
within the distance ε from q, where ε is a small posi-
tive constant, we treat pi as the unique skyline object.
It dominates the remaining target objects in all the
directions. To simplify the presentation, we do not
consider this exceptional case in the following discus-
sion, but the extension of the approach is fairly easy.

3. SNAPSHOT DSS QUERIES
3.1 Definition and Observations

As mentioned in Section 1, a snapshot DSS query finds
the “best view” objects for the user’s current position. Its
definition is presented as follows.

Definition 5 (Snapshot DSS Query) Given a DSS query
(q, θ), an snapshot DSS query finds all the objects on the
DSS. 2

In this section, we explain how to answer a snapshot DSS
query efficiently. A näıve solution to this problem is to com-
pare every object with all the other objects. If the object
cannot be dominated by any other objects, it is on the DSS.
This approach uses the definition of a DSS directly and has
O(n2) time complexity. Obviously, we can get rid of the
further comparisons for an object if it turns out that it is
dominated by another object. However, the cost is still quite
large. Therefore, we propose an alternative method to tackle
a snapshot DSS query efficiently. The method is based on
two observations when we check the objects based on the
increasing distance order.

Observation 1: Limiting the scope to adjacent objects
The first observation is that when we dertermine whether an
object is on the DSS, we do not need to check its dominance
relationships with all the other objects. To explain the idea,
we introduce the notion of adjacent objects.

Definition 6 (Adjacent Object) The objects are adja-
cent to each other if they are adjacent in the circular list
sorted by the order of directions. 2

For each object, there are two adjacent objects: the pre-
decessor and the successor. When we check an object, we
only need to consider the dominance relationships between
its adjacent objects.

Example 4 Let us consider the example in Fig. 2 again and
we already checked a, b, and d. Next we need to check object
f . The situation is shown in Fig. 3(a). Since ωa = 27◦,
ωb = 53◦, ωd = 158◦, and ωf = 270◦ as shown in Fig. 2,
the circular list is [a, b, d, f] (note that the successor of f is
a). When we check f , we only need to consider adjacent
objects d and a because they only have chances to dominate
f . Object d (a) dominates f when the included angle λdf

(λfa) is equal to or smaller than θ.

a

b

d

f

O

y

xλfd
λfa

(a) Observation 1

a

b

d

f

y

x

φab
φbd

φdf φfa

c

e g

(b) Observation 2

Figure 3: Two observations

Based on this observation, we can derive the following
property.

Property 1 Let the current target object be pi and pi’s
adjacent objects among the checked objects be pj and pk. If
both of the included angles λij and λik satisfy the properties
λij ≥ θ and λik ≥ θ, pi is a DSS object. Otherwise, pi is
not a DSS object. 2

Observation 2: Early termination
The second observation is that we can finish the process by
only checking a subset of the whole object set. We first
introduce the notion of a partition angle.

Definition 7 (Partition Angle) Suppose that objects pi’s
successor object is pj . We define the partition angle between
pi and pj as

ϕij = (ωj − ωi) mod 360◦. (2)

2

Example 5 Let us continue our example. Assume that
we have checked the objects a, b, d, and f . As shown
in Fig. 3(b), the vectors of these objects partition the 2π
angle into four partition angles ϕab = 26◦, ϕbd = 105◦,
ϕdf = 112◦, and ϕfa = 117◦. All these angles are smaller
than 2θ = 120◦. It means that any other object, which is
coming in the future checks, will be dominated by the cur-
rent checked objects because at least one of the included
angles between its adjacent objects is smaller than θ. Con-
sequently, we can terminate the process at this stage and
the DSS is {a, d, f}.

Based on this observation, we can derive the Property 2
below.

Property 2 If all the partition angles for the checked ob-
jects are smaller than 2θ, we can terminate the process and
we can say that all the DSS objects are obtained. 2

The algorithm for a snapshot DSS query is based on the
above two observations.

3.2 Query Processing Algorithm
The query processing algorithm is shown in Algorithm 1.

First we retrieve the nearest neighbor object using a spatial
index (lines 2 and 3). It is on the DSS since it is superior
in the distance attribute even though other unchecked ob-
jects may in the same direction with it. After initializing
variables, we check the target objects according to the in-
creasing distance order (lines 7 to 15). In the algorithm, we
maintain the list of checked object l, which is sorted by the
directions. At line 9, we insert the object p into the direction

list l. The function insert() returns adjacent objects of p (p−

and p+) in l. At lines 10 to 12, we determine whether p is
on the DSS by testing the included angles λp−p and λpp+ .
At line 15, we check whether all the angles in Φ is smaller
than 2θ. If yes, we can terminate the procedure.

Algorithm 1 Snapshot DSS Query

1: procedure SnapshotDSSQuery(q, θ)
2: init NN query(q); . Initialize the NN query
3: p← get next(); . Get the first NN object
4: S ← {p}; . Set of objects on the DSS
5: l← [p]; . Initialize the direction list
6: Φ← {ϕpp}; . Initialize the partition angle set
7: repeat
8: p← get next(); . Get the next NN object
9: 〈p−, p+〉 ← l.insert(p);

. Insert p to l and get its adjacent objects
10: if λpp− ≥ θ ∧ λpp+ ≥ θ then
11: S ← S ∪ {p}; . p is on the DSS
12: end if
13: Φ← (Φ− {ϕp−p+}) ∪ {ϕp−p, ϕpp+};
14: . Update the partition angle set
15: until all angles in Φ are smaller than 2θ
16: output S;
17: end procedure

Example 6 We start from the nearest object a (Fig. 4(a)).
We set the partition angle to ϕaa = 2π. Next we check the
second nearest object b (Fig. 4(b)). The object b is not on
the DSS as λab < θ. The partition angles are ϕab < 2θ and
ϕba > 2θ. Since the termination conditon is not satisfied,
the procedure continues. Then we examine the third nearest
object d (Fig. 4(c)). It is on the DSS due to λdb > θ and
λda > θ. As the partition angles are ϕab < 2θ, ϕbd < 2θ, and
ϕda > 2θ, the procedure proceeds. Next we check the fourth
nearest object f (Fig. 4(d)). It is on the DSS because λdf > θ
and λfa > θ. The partition angles are ϕab < 2θ, ϕbd < 2θ,
ϕdf < 2θ and ϕfa < 2θ. Thus, the procedure terminates
and we have found out all the DSS objects {a, d, f}.

a

b

c

d

e f g

O
x

y

(a) Checking a

a

b

c

d

e f

O

y

g

x

(b) Checking b

a

b

c

d

e f g

xO

y

(c) Checking d

a

b

c

d

e f g

x
O

y

(d) Checking f

Figure 4: Processing snapshot DSS query (θ = π/3)

4. CONTINUOUS DSS QUERIES
4.1 Problem Formulation

In this section, we discuss continuous DSS queries. As
pointed out in Section 1, a continuous DSS query presents

up-to-date DSS objects while the user is continuously mov-
ing. A näıve solution is to issue a new query at every mo-
ment. Nevertheless, it is quite costly. Our alternative ap-
proach is based on prediction—we predict when and how the
DSS changes in the near future.

For the problem formulation, we introduce some assump-
tions and notations. Let t = 0 be the current time. We
assume that the user’s location ~q = (xq, yq)

t is given as fol-
lows using time parameter t ≥ 0:

~q =
“

xq

yq

”

=
“

xv

yv

”

t +
“

x̄q

ȳq

”

, (3)

where the user moves from (x̄q, ȳq)
t with a constant velocity

(xv, yv)t.
A continuous DSS query is defined as follows.

Definition 8 (Continuous DSS Query) Given that the
user moves linearly as depicted in Eq. (3). For the given
parameter τ (τ > 0), a continuous DSS query answers when
and how DSS changes during the time interval [0, τ]. 2

We can easily extend the definition to an interval-based DSS
query : given a time interval [ts, te], it reports DSS changes
while the interval. The extention is straightforward.

Example 7 Assume that we need to predict the change of
DSS until t = τ (τ > 0). As an example, given τ = 100, the
continuous DSS query procedure output the result such as

DSS =

8

>

<

>

:

{a, d, f} t ∈ (0, 4)
{a, d, f, g} t ∈ (4, 23)
{a, f, g} t ∈ (23, 59)
{a, g} t ∈ (59, 100).

(4)

It indicates that the DSS is {a, d, f} at the start time t = 0
and it changes to be {a, d, f, g} at t = 4, turns {a, f, g} at
t = 23 and then turns {a, g} at t = 59. We call t = 4,
t = 23 and t = 59 change moments. Using this query result,
we can achieve efficient DSS updates: when t = 4, t = 23,
and t = 59 the former DSS is replaced with the next DSS.
When t = τ = 100, we issue a new continuous DSS query
and predict new DSSs.

Our assumption was constant movement of the user holds
for short time period τ , but it is not necessary true. In
practice, a constant velocity is not a restriction. If we can
predict when DSS changes, we can also predict where DSS
changes. Therefore, even if the speed of the user changes, we
can perform DSS update correctly. In contrast, the change of
the movement direction makes the prediction invalid. When
we detect a change of the direction, we need to restart the
query process.

4.2 Basic Idea and Outline of Algorithm
For continuous queries, we also employ the approach for

answering snapshot DSS queries. The baseic idea of the
snapshot algorithm is summarized as follows:

1. Check the candidates in turn with the order of the
increasing distances.

2. For each candidate, determine whether it is on the DSS
by checking the included angles with its two adjacent
objects.

3. When all partition angles are smaller than 2θ, finish
the procedure.

Example 8 Let us extend our example to a continuous DSS
query case. Fig. 5 illustrates that the user is moving from
position (x̄q, ȳq)

t = (0, 0)t with a constant speed (xv, yv)t =
(1, 0)t. We consider a continuous DSS query for the time
interval (0, 100) with θ = π/3.

a

b

c

d

e f

O

x

y

0 100v

g

Figure 5: Example of a continuous DSS query

Similar to the case of a snapshot DSS query, we check
the objects from the nearest one in turn with the distance
order. Unlike the snapshot case, the checking order of the
objects changes when the user moves because the distances
of the objects from the query point vary while the query
point moves.

When t = 0, the nearest object is a, but when t = 75
it changes from a to g. Let us focus on the time interval
(0, 75) where the nearest object is a. Of course, object a is
on the DSS. Next we consider the second nearest objects in
this interval. The second nearest objects are b while (0, 71)
and g while (71, 75).

For the time interval (0, 71), we process object b in three
steps like what we did for the snapshot case. First, we find
the order of the directions of the checked objects a and b
during (0, 71). Second, we dertermine whether b is on the
DSS by caculating its included angles (λ) with its adjacent
objects. Third, we check whether we can terminate the pro-
cess by comparing the partition angles (ϕ) with 2θ. In this
case, we can not terminate the process1 and we proceed to
consider the third nearest objects in (0, 71). They are d
while (0, 7), f while (7, 45), and g while (45, 71). In a simi-
lar manner, we process the object d for (0, 7) in three steps.
The process continues until the termination.

As shown in Fig. 5, we can represent the query process
by a tree structure. We expand the tree nodes in a depth-
first manner and every branch of the tree means a different
checking order. Our example discussed above follows the
path root→ a→ b→ d→ f → · · · .

(0,100)

(0,75)

a

(75,100)

g

(0,71)

b

(71,75)

g

(0,7)

d

(7,45)

f

(45,71)

g

(7,32)

d

(32,45)

g

(0,7)

f

(45,71)

f

(71,75)

b

(71,75)

f

(75,100)

a

(75,100)

b

(75,100)

f

...

root

1st

2nd

3rd

4th

...

Figure 6: Process tree for continual DSS query

Algorithm 2 presents the outline of the continuous query
algorithm. The algorithm calls the function FindDSS re-
cursively as the tree expansion process shown above. At
line 7, function CNNQuery retrieves the k-nearest objects
for the moving query point ~q within the time interval I.
The result is a set of pairs with the form 〈p, Ip〉, where p

1Since θ < π/2, at least three DSS objects are required to
cover 2π angles.

is the k-nearest object while the time interval Ip. For in-
stance, in the example of Fig. 5, CNNQuery(~q, (0, 100), 1) is
{〈a, (0, 75)〉, 〈g, (75, 100)〉}. In the long version of the paper
[8], we explain how to implement the function by extending
the existing algorithm proposed by Tao, Papadias, and Shen
[17].

Algorithm 2 Continuous DSS Query

1: procedure ContinuousDSSQuery(~q, θ, I)
. I is the target time interval: I = [0, τ]

2: r ← create root node(); . Create a root node
3: FindDSS(~q, I, 1, r);
4: output S;
5: end procedure

6: procedure FindDSS(~q, I, k, n)
7: foreach 〈p, Ip〉 ∈ CNNQuery(~q, I, k) do

. Find k-NN object(s) while I
8: A = FindAdjacentObj(p, Ip);

. Find p’s adjacent objects while Ip

9: foreach 〈p−, p+, I〉 ∈ A do
10: foreach I′ ∈ DomCheck(p, 〈p−, p+, I〉) do

. Check dominance
11: n.create child node(〈p, I〉);
12: end for
13: end for
14: if NotTerminate() then

. Termination condition is not satisfied
15: FindDSS(~q, I, k + 1, S);

. Expand the child nodes
16: end if
17: end for
18: end procedure

At line 8, FindAdjacentObj() finds the adjacent objects
of object p within the time interval Ip. Note that p may have
different adjacent objects while different sub-intervals. In
the algorithm, j represents the adjacent objects for a certain
interval. In Section 4.3, we discuss the function in detail. At
line 10, DomCheck() checks whether p is on the DSS and
updates the DSS results S. The algorithm for the function is
explained in Section 4.4. At line 14, NotTerminate() de-
termines whether we can terminate the process by checking
all patition angles. In Section 4.5, its detail is described.

4.3 Finding Adjacent Objects
As described in Section 3, we consider two adjacent ob-

jects for the current target object. In contrast to the snap-
shot case, such neighborhood relationship is only valid for
a certain time interval because the directions of objects de-
pend on the moving query point q.

Example 9 Let us consider our example in Fig. 6 again.
Assume that we take the branch a → b → f and arrive at
the node 〈d, (7, 32)〉. When t = 7, the adjacent objects of d
are b and f as shown in Fig. 7(a). However, when t = 32,
the adjacent objects are a and f as illustrated in Fig. 7(b).
The change happens at t = 18 when a and b are co-linear
with q. In other words, b and f are adjacent to d during
(7, 18), and a and f are adjacent to d during (18, 32). Hence
for the node 〈d, (7, 32)〉 in Fig. 6, we maintain two direction
order lists: 〈a, b, d, f〉(7,18) and 〈b, a, d, f〉(18,32).

The observation above can be summarized as follows.

Property 3 The direction order changes when two objects
are co-linear. The new direction order is obtained from the
former one by swapping two co-linear objects. 2

This means that we need to maintain a group of direction
order lists for every tree node in order to preserve different
neighborhoods for different time intervals.

a

b

c

d

e f
g

7
x

y

0 100

(a) t = 7

a

b

c

d

e f
g

32
x

y

0 100

(b) t = 32

Figure 7: Change of direction order

Example 9 (Continued) Fig. 8 shows the process of creat-
ing direction order lists while traversing through a → b →
f → d. At the beginning, we traverse the first tree node
〈a, (0, 75)〉 and set its direction order list to 〈a〉. Then we
reach the next tree node 〈b, (0, 71)〉. We initialize its direc-
tion order list by using its parent’s lists and insert b into the
list. However, the objects b and a are co-linear when t = 18
during this interval, and thus we split the interval into two
sub-intervals (0, 18) and (18, 71). For (0, 18), we keep the
original direction order, namely, 〈a, b〉. But for (18, 71), we
create a new list 〈b, a〉 by swapping a and b. Next we reach
the tree node 〈f, (7, 45)〉. We initialize its lists by using its
parent’s lists and insert f into two lists respectively. As ob-
ject f has no co-linear objects in both intervals, we do not
need to split the interval and swap objects. Then we create
the lists for the tree node 〈d, (7, 32)〉 likewise.

Tree Node Time Interval List Operation
〈a, (0, 75)〉 (0, 75) 〈a〉 insert a
〈b, (0, 71)〉 (0, 18) 〈a, b〉 insert b

(18, 71) 〈b, a〉 insert b; swap(a, b)
〈f, (7, 45)〉 (7, 18) 〈a, b, f〉 insert f

(18, 45) 〈b, a, f〉 insert f
〈d, (7, 32)〉 (7, 18) 〈a, b, d, f〉 insert d

(18, 32) 〈b, a, d, f〉 insert d

Figure 8: Incremental maintenance of direction order lists

The algorithm to find adjacent objects is presented in Al-
gorithm 2 in the long version of our paper [8]. It is the
implementation of FindAdjacentObj() in Algorithm 2.

4.4 Checking Dominance
We describe the algorithm for function DomCheck() in

Algorithm 2. In the case of an instance DSS query, we check
the included angles of one object and its two adjacent ob-
jects to determine whether it is on the DSS. The object is
dominated if at least one of the angles is smaller than θ. In
the continuous case, however, included angles change when
the user moves.

Example 10 Take Fig. 6 as an example again. Assume
that we take the branch g → a → b and arrive at the
node 〈f, (75, 100)〉, and we want to determine whether it
is on the DSS. Object f has adjacent objects a and g during
(75, 100). Let us consider the included angle λfg. When
t = 75, λfg > θ = π/3 (Fig. 9(a)), but when t = 100,
λfg < θ (Fig. 9(b)). The change happens at the moment
t = 95 when λfg = θ. In other words, f is not dominated by
g during (0, 95), but it is dominated by g during (95, 100).
The dominance relationship of two adjacent objects changes
when their included angle equals to θ.

Object pi is not dominated by its adjacent object pj dur-
ing the time interval when their included angle λij ≥ θ. The
condition can be represented as follows:

λij = arccos
~pi · ~pj

|~pi||~pj |
≥ θ (0 ≤ λij ≤ π). (5)

Note that ~pi and ~pj are time-parameterized vectors that
change with parameter t. To obtain the time intervals for

a

b

c

d

e f
g

θ

x

y

0 10075

(a) t = 75

a

b

c

d

e f
g

θ

x

y

0 10075

(b) t = 100

Figure 9: Change of dominance relationship

which the formula holds, we need to solve a quartic inequal-
ity. It is not a difficult task. We first solve the corresponding
quartic equation numerically using GNU Scientific Library
[7], then we can derive the valid intervals that make the
above condition true 2.

For object p, we need to consider two adjacent objects
p− and p+. We calculate the time intervals I− and I+

when λpp− ≥ θ and λpp+ ≥ θ, respectively. Then we take
their intersection to obtain the time interval while p is on
the DSS. The algorithm to check dominance relationship is
straightforward.

4.5 Checking Termination Condition
In the snapshot DSS query, the checking procedure ter-

minates when all partition angles are smaller than 2θ. The
partition angles depends on the direction order list. Note
that, in the continous DSS query, one tree node has several
direction order lists.

Example 11 Consider the sitiuation of Example 9. The
tree node 〈d, (7, 32)〉 has two direction lists 〈a, b, d, f〉(7,18)

and 〈b, a, d, f〉(18,32) as shown in Fig. 7. Their partition
angle sets are Φ(7,18) = {ϕab, ϕbd, ϕdf , ϕfa} and Φ(18,32) =
{ϕba, ϕad, ϕdf , ϕfb}. The procedure can terminate when all
angles in Φ(7,18) and Φ(18,32) are smaller than 2θ during
(7, 18) and (18, 32), respectively.

Therefore, we need to check partition angles for every list
in order to determine whether we have found out all DSS
objects. For checking, we check whether all ϕ’s in every
direction order list are less than 2θ while the time inter-
val attached to the tree node. The outline of the checking
procedure is presented in the long version of the paper [8].

5. EXPERIMENTS
This section experimentally evaluates the performance of

the proposed algorithms. We implemented all algorithms
in GNU C++ and conducted the experiments on an Intel
Core2 Duo 2.40GHz PC (2.0GB RAM) with a Ubuntu Linux
2.6.31.

5.1 Experimental Setup
We implemented the experiments by deploying both real

and synthetic datasets. Some additional experiments are
covered in the long version of our paper [8]. The real datasets
came from line segment data of Long Beach from the TIGER
database [18]. We made this point set by extracting the mid-
point for each road line segment. The set consists of 50, 747
points normalized in [0, 1000] × [0, 1000] space. There are
three synthetic datasets s1, s2 and s3 with different densi-
ties normalized in [0, 1000]× [0, 1000] space (Table 2). Here
density means how many points fall into one square unit in
average. The points in each synthetic dataset are distributed
randomly. We indexed all datasets by using an R∗-tree li-
brary [1]. with the block size as 8, 192 bytes.

2The details are shown in the long version of the paper [8]

Table 2: Datasets

Dataset Objects Number Density (ρ)

r 50, 747 −
s1 80, 000 0.08
s2 50, 000 0.05
s3 20, 000 0.02

5.2 Results on Snapshot DSS Queries
The first experiment studies the numbers of DSS objects

under different θ’s and different densities. Fig. 10(a) plots
that the total numbers of DSS objects from datasets r, s1,
s2 and s3 when θ varies in [15◦, 85◦]. The total number
decreases while θ increases. The reason is that one object
can dominate more objects if θ becomes larger. However,
difference of densities3 does not affect the total number of
DSS objects.

 0

 2

 4

 6

 8

 10

 12

 14

20° 40° 60° 80°

to
ta

l n
um

be
r

r
s1
s2
s3

(a) DSS number

0.8

r s1 s2 s3

50

tim
e

(s
ec

)

nu
m

be
r

20°
40°
60°

80°
CPU

(b) Cost and checked NNs

Figure 10: Performance of snapshot queries

The second experiment explores the performance of the
algorithm under different θ’s and different densities. CPU
times and the number of checked nearest objects (NNs)
are measured. As shown in Fig. 10(b), the number of the
checked objects is small (less than 0.14% of the whole ob-
jects set). And the number of checked NNs is impacted by
the setting of θ. This is because if θ grows it is easier to reach
the termination condition and we only need to check fewer
NNs. The query cost depends on the number of checked
NNs and decreases when θ increases. However, the query
cost is independent of dataset densities.

5.3 Results on Continuous DSS Queries
For the real dataset, we set the scenario as the user moves

with the speed of 0.06 unit distance per unit time4 along
the positive x-axis during time intervals [0, 10], [0, 20] and
[0, 30].

The first experiment investigates the number of varying
moments under different θ’s and different time intervals. As
demonstrated in Fig. 11(a), the number of varying moments
decreases while θ increases because a DSS becomes stable
when θ is getting larger. And the number of varying mo-
ments is fewer when the density is lower. Consequently, both
the setting of θ and the density of dataset affect the number
of varying moments. As shown in Fig. 11(b), the number of
varying moments decreases while the time interval becomes
shorter.

The second experiment studies the query costs under dif-
ferent θ’s and different time intervals. In Fig. 12(a), the
tree size decreases when θ grows. The reason is that we can
terminate the query procedure ealier if θ is larger. And the

3Note that we did not know the density of the r dataset but
we still aligned this set for comparisons.
4In the space of our datasets, 1 unit distance equals to 1
kilometer approximately. And we regard 1 unit time as 1
minute. Then we simulate the user’s moving speed as hu-
man’s average walking speed 1m/s.

2

4

6

8

30° 50° 70° 90°

nu
m

be
r

r
s1
s2
s3

(a) 0 ≤ t ≤ 30

2

4

6

r s1 s2 s3

nu
m

be
r

[0,30]
[0,20]
[0,10]

(b) θ = 30◦

Figure 11: Number of varying moments

query cost depends on the tree size. Thus, the query cost
also decreases when θ grows. Moreover, the tree size de-
creases when objects density decreases. This is because we
constructed the processing tree based on the distance order
of objects, and the order changes less frequently when the
dataset density is lower. Fig. 12(b) shows that the tree size
and the query cost decrease when the time interval becomes
shorter.

3

r s1 s2 s3

800

tim
e

(s
ec

)

nu
m

be
r

30°
45°
60°
75°

CPU

(a) 0 ≤ t ≤ 30

3

r s1 s2 s3

800

tim
e

(s
ec

)

nu
m

be
r

[0,30]
[0,20]
[0,10]
CPU

(b) θ = 30◦

Figure 12: Costs and tree sizes of continuous queries

We also investigate the change of the properties of pro-
cessing trees for continous queries under different θ’s and
different time intervals. Fig. 13(a) demonstrates that the
tree depth decreases when θ grows, because we can termi-
nate the query procedure earlier when θ is larger. However,
the tree depth is not affected by densities. In other words,
we can derive that the growth of the tree size is caused by
the increase of the branches. Fig. 13(b) shows that the tree
depth is not influenced by the length of the time interval.
Therefore, these results confirm that our termination strat-
egy is stable for different objects densities and different time
interval lengths.

6. RELATED WORK
Skyline queries have received considerable attention from

the database community since 2001 when the pioneering pa-
per [2] considering skyline queries in relational databases ap-
peared. Afterwards, many subsequent algorithms proposed
to improve the approach. The well-known algorithms in-
clude branch-and-bound skyline algorithm (BBS) [11], sort-
filter-skyline (SFS) [4], and linear elimination sort for skyline
(LESS) [14], etc.

Skyline queries in spatial databases become a hot topic
with the development of mobile technologies. Spatial sky-
line queries often consider the dynamic spatial attribute—
distance. The distance attribute is different from other static
attributes (e.g., price) because it depends on the query point
(e.g., mobile user) which moves continuously in most of spa-

40

r s1 s2 s3

800

de
pt

h

nu
m

be
r

30°
45°
60°

75°
depth

(a) 0 ≤ t ≤ 30

40

r s1 s2 s3

800

de
pt

h

nu
m

be
r

[0,30]
[0,20]
[0,10]
depth

(b) θ = 30◦

Figure 13: Tree depth of continuous queries

tial database applications. Some approaches [9, 19] address
on skyline queries including the distance attribute for only
one query point in the continuous case. Huang et al. [9] pro-
posed efficient algorithms to solve the problem by exploit-
ing the spatiaotemporal coherences. They observed that
some skyline points are permanent and derived a search
bound. Then they predicted the skyline changes. Zhang
et al. [19] proposed another algorithm by predicting a valid
scope for query results . Both of them can avoid unneces-
sary updates of skylines. On the other hand, the spatial
skyline query in [16] focuses on the context where are sev-
eral query points. In summary, these works studied skyline
queries with non-spatial attributes and one dynamic spatial
attribute—distance.

There are also several approaches not only consider the
distance attribute but also consider other spatial attributes.
Patroumpas et al. [12] proposed the notion of an orientation-
based query which finds objects moving towards the query
point. For example, it finds trucks moving towards the port
from the west at a distance less than 2km. They used a po-
lar tree to index the moving objects by their directions and
retrieved the objects within the required direction and dis-
tance ranges. Lee et al. [10] studied the nearest surrounder
query which retrieves nearest neighbors from the query point
at different angles. For instance, it finds closer sights for
the tourist to provide a good picture of his surroundings.
The query regards the objects as rectangles in contrast to
our algorithms, and takes the distance attribute as an static
attribute (i.e., the query object is not moving). The DSS
query also determines nearest surrounding objects but the
decision is based on distances and the specified threshold an-
gle θ. Our proposed algorithms cover not only the snapshot
case but also the continuous case. Chen et al. [3] identified
the path nearest neighbor query which retrieves the nearest
neighbor along the user’s moving path. For example, there
are several gas stations along the user’s moving path and it
finds the potential nearest one for the user. These proposals
consider not only the distance attribute but also other spa-
tial attributes. However, to the best of our knowledge, the
direction attribute is not used in the most of literatures.

We use continuous nearest neighbor queries to construct
the processing tree in our continuous DSS query. There are
many proposals on continuous nearest neighbor queries. Tao
et al. [17] proposed an efficient algorithm to solve this prob-
lem (See the long version of our paper [8].). We also used
the basic idea of Katerina et al. [13] which make use of the
intersections of distance functions to find changes of nearest
neighbors. There are also several variations of conventional
continuous nearest neighbor queries such as continous vis-
ible nearest neighbor search [6] and continuous obstructed
nearest neighbor search [5].

7. CONCLUSION
In this paper, we study the problem of direction-based

spatial skylines. We develop efficient algorithms for effi-
ciently processing snapshot DSS queries and continuous DSS

queries, respectively. Extensive experiments with both real
and synthetic datasets evaluate the performance of our pro-
posed algorithms. The experiment results demonstrate that
the proposed algorithms work well for both the snapshot
case and the continuous case.

Acknowledgments
This research was partly supported by the Grant-in-Aid for
Scientific Research (#21013023, #22300034) from the Japan
Society for the Promotion of Science (JSPS).

8. REFERENCES
[1] R∗-tree library. http://research.nii.ac.jp/˜katayama/

homepage/research/srtree/English.html.
[2] S. Börzsönyi, D. Kossmann, and K. Stocker. The

skyline operator. Proc. Int’l Conf. on Data
Engineering (ICDE), 2001.

[3] Z. Chen, H. T. Shen, X. Zhou, and J. X. Yu.
Monitoring path nearest neighbor in road networks.
Proc. Int’l Conf. ACM SIGMOD, 2009.

[4] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang.
Skyline with presorting. Proc. Int’l Conf. on Data
Engineering (ICDE), 2003.

[5] Y. Gao and B. Zheng. Continuous obstructed nearest
neighbor queries in spatial database. Proc. Int’l Conf.
ACM SIGMOD, 2009.

[6] Y. Gao, B. Zheng, G. Chen, W. C. Lee, and G. Chen.
Continuous visible reverse nearest neighbor queries.
Proc. Int’l Conf. on Extending Database Technology
(EDBT), 2009.

[7] Gnu scientific library.
http://www.gnu.org/software/gsl/.

[8] X. Guo, Y. Ishikawa, and Y. Gao. Direction-based
spatial skylines (long version).
http://www.db.itc.nagoya-u.ac.jp/˜guoxi/tmp/
mobide-long.pdf, 2010.

[9] Z. Huang, H. Lu, B. C. Ooi, and A. K. H. Tung.
Continuous skyline queries for moving objects. IEEE
Transactions on Knowledge and Data Engineering
(TKDE), 18(12):1645–1658, 2006.

[10] K. C. K. Lee, W.-C. Lee, and H. V. Leong. Nearest
surrounder queries. Proc. Int’l Conf. on Data
Engineering (ICDE), 2006.

[11] D. Padadias, Y. Tao, G. Fu, and B. Seeger. An
optimal and progressive algorithm for skyline queries.
Proc. Int’l Conf. ACM SIGMOD, 2003.

[12] K. Patroumpas and T. Sellis. Monitoring orientation of
moving objects around focal points. Proc. Int’l Symp.
on Spatial and Temporal Databases (SSTD), 2009.

[13] K. Raptopoulou, A. Papadopoulos, and
Y. Manolopoulos. Fast nearest-neighbor query
processing in moving-object databases.
GeoInformatica, 7(2):113–137, 2003.

[14] P. G. Ryan, R. Shipley, and J. Gryz. Maximal vector
computation in large data sets. Proc. Int’l Conf. on
Very Large Data Bases (VLDB), 2005.

[15] J. Schiller and A. Voisard. Location-Based Services.
Morgan Kaufmann, 2004.

[16] M. Sharifzadeh and C. Shahabi. The spatial skyline
queries. Proc. Int’l Conf. on Very Large Data Bases
(VLDB), 2006.

[17] Y. Tao, D. Papadias, and Q. Shen. Continuous nearest
neighbor search. Proc. Int’l Conf. on Very Large Data
Bases (VLDB), 2002.

[18] Tiger. http://tiger.census.gov/.
[19] B. Zhang, K. C. K. Lee, and W.-C. Lee.

Location-dependent skyline query. Proc. Int’l Conf. on
Mobile Data Management (MDM), 2008.

