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11.1 INTRODUCTION

Due to the recent developments in mobile devices and GPS systems and the progress
of network technology, mobile computing has become a key technology today. Along
with the progress in mobile technologies, research on moving object databases is cur-
rently being actively investigated in the area of database research [16]. As its name
suggests, a moving object database is a database that stores and manages information
on moving objects such as vehicles, pedestrians with mobile devices, and so on.
Various research and development efforts regarding moving object databases have
been conducted, including several topics such as data models for representing move-
ment behaviors appropriately, query processing and indexing methods for answering
queries efficiently, and application technologies that utilize the underlying moving
object databases effectively.

In this chapter, we focus on data mining technology for moving object databases.
Since the middle of the 1990s, data mining research has been growing rapidly and it
has become one of the main research fields in computer science [25, 56]. Although
data mining research has been expanding in a variety of fields in recent years, data
mining technology for moving object databases is still in an emerging stage of
development. However, it is highly promising because many moving objects can be
monitored in real-time using current mobile information technologies. Since data
managed in a moving object database is highly dynamic and have spatio-temporal
semantics, new data mining technologies should be developed. This chapter presents
a brief introduction to current trends in data mining on moving object databases
including the author’s own efforts in this area. We do not intend a complete survey
and omit some topics of moving object databases such as data modeling, query
processing, and indexing methods except for the issues related to data mining.



The organization of this article is as follows. Section 11.2 introduces some
approaches to mobility prediction that can be considered as special cases of data
mining for moving objects. Section 11.3 provides a brief survey of methods applying
sequential pattern mining to moving databases. Section 11.4 presents other movement
pattern mining techniques. Section 11.5 introduces techniques for clustering moving
objects and Section 11.6 provides a short summary of density estimation and query
selectivity estimation for moving object databases. Section 11.7 presents some
interesting ideas for comparing trajectories. Finally, Section 11.8 concludes the
article.

11.2 MOBILITY PREDICTION USING MOVEMENT HISTORIES

Mobility prediction, which is used for predicting the future trajectory of a given
moving object, is a widely researched topic in mobile computing. Consider a mobile
user in a cell-based mobile phone network who is moving continuously while making
a call. The underlying network system has to transfer his calling status between cells
[70]. If the next cell to which a mobile user will move can be predicted, then
an efficient resource reservation and quick handover between base stations can be
achieved. So far, various mobility prediction methods have been proposed. A study
[6] provides a good survey of this topic. It roughly classifies the approaches to
mobility prediction into two categories:

• Domain-independent methods: Locations or cells are treated as symbols, and
only location names are considered, without taking other semantics into ac-
count.

• Domain-specific methods: Additional information, such as coordinates, direc-
tions, and velocities of moving objects, road networks and map information,
and/or facility locations are used.

In this subsection, we introduce some selected mobility prediction models that utilize
movement histories, since they are related to the concept of data mining. We focus
in particular on Markov predictors and their extensions.

11.2.1 Domain-Independent Markov Predictors

We first describe the most basic type of mobility predictors, called Markov predictors,
and their variants.

11.2.1.1 Markov Predictors
The underlying idea of Markov predictors is simple: the next location is predicted
from recent movement history based on the notion of Markov chains. In this frame-
work, each location is considered as a state and each movement between locations



corresponds to a transition. In an order-k Markov predictor, the k most recent
locations in a movement history are used for prediction.

Suppose X = (X1, . . . , Xn) is a sequence of random variables taking values in a
finite set of locations L = {l1, . . . , lm}. L represents the state space. The Markov
properties are as follows:

Pr(Xn+1 = li|X1, . . . , Xn) = Pr(Xn+1 = li|Xn−k+1, . . . , Xn) (11.1)

= Pr(Xn+1 = li|Xj+1, . . . , Xj+k) (11.2)

Equation (11.1) implies that the probability only depends on the most recent k move-
ments and Eq. (11.2) indicates that the probability is stationary, or time invariant.
The probability is basically estimated according to movement histories. The next
location predicted is the location that maximizes the probability.

11.2.1.2 Applying String Compression Techniques
There is an approach to extending Markov predictors using the string compression
technique to summarize statistics in a compact manner. The underlying idea is that
a string compression method has the predictive ability to estimate which characters
will follow when an input text is given.

In the following, we briefly illustrate a representative method called the LZ-based
predictor that is an extended version of the order-k Markov predictor, although k is
a variable that changes depending on the input. The method is based on the well-
known Lempel-Zip text compression method (LZ78) [45]. LZ78 reads a text stream
sequentially and constructs a dictionary with trie (or tree) structure to summarize
the occurring patterns in an online manner. The dictionary is referenced while the
compression is in progress. The idea of LZ78 predictors for mobility prediction is
to consider a sequence of location symbols instead of a text stream and to use the
constructed dictionary for the purposes of prediction.

For example, suppose the movement history of a moving object is given as
“ABCABACBADABCD,” where A to D are location symbols. For this input, LZ78 con-
structs a trie as shown in Fig. 11.1, where ε represents an empty character. The trie is
constructed by partitioning the input into substrings such as “A/B/C/AB/AC/BA/D/ABC”
while inserting them. The number shown in the upper-right of each node represents
the node identifier and is referenced when the same substring occurs while reading
the succeeding text. LZ78 encodes the example text as “0A0B0C1B1C2A0D4C.” LZ-
based predictors store additional information: each node contains a counter to record
the number of visits. The count information is used for mobility prediction. For
instance, if we want to estimate the probabilities that an object in A next moves to B
or C, they are basically given as Pr(B|A) = 2/4 and Pr(C|A) = 1/4. B is, therefore,
predicted as the next location.

The problem of LZ-based predictors is that information for some substrings on the
boundaries is lost. For example, a substring “CBA” is contained in the input but does
not appear in the trie. To cope with this problem, Bhattacharya and Das [3] proposed
the LeZi-Update method. When inserting a substring into a trie, LeZi-Update also



inserts its suffixes. For example, when we insert “ABC” into the trie for the example
text “A/B/C/AB/AC/BA/D/ABC,” its proper suffixes “BC” and “C” are also inserted.
The method then tries to cope with the cross boundary problem, but note that it does
not solve all the boundary problems.
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Fig. 11.1 Trie-structured dictionary of LZ-based predictors

Song et al. [54] collected a large user mobility dataset from an actual mobile wire-
less LAN and made an experimental evaluation of domain-independent predictors.
Several methods including the Markov-based approach, the LZ-based approach and
its variations, and two other related methods were compared. The results are quite
interesting: the experiments show that the low-order Markov predictors perform as
well or better than the more complex predictors. The best result is obtained by an
order-2 Markov predictor with some enhancement. Although the LZ-based approach
and other related approaches are effective for text data, the experimental results in-
dicate that they are not necessarily effective for movement prediction. The reason is
that the statistical properties of text data and movement histories are quite different.

11.2.2 Markov Chain Model Over Spatial Grid Cells

11.2.2.1 Basic Idea
Markov predictors are basically domain-independent, that is, they treat cells as sym-
bols and do not use other information such as locations. The mobility model proposed
by our group [22] extends the basic Markov chain model by incorporating spatial
information directly. The fundamental difference is that we consider a spatial grid
structure over the target space. Fig. 11.2 illustrates this concept. Each dimension
of the target space is equally divided into 2P ranges. The figure shows the case of
P = 2. We call such partitioning level-P partitioning. Based on this partitioning
method, there exist R = 22P grid cells. For each region, a 2P bit grid cell number
that satisfies the Z-ordering method [49] is assigned. The Z-ordering method has the
advantage that close cells tend to have similar values. The figure shows that object A
located in region 9 at t = τ moves to region 12 at t = τ + 1 then moves to region 6



at t = τ + 2. We denote the transition by 9(2) → 12(2) → 6(2), where (2) means that
the partition level is P = 2.

Fig. 11.2 Markov chain model over spatial grid cells

Suppose that another moving object B located in grid cell 9 moves to cell 12
after a unit of time. Supposing that we want to know the probability that object B
moves to region 6 next, and that we denote the probability by Pr(6|9, 12). If we
assume the transition between spatial grid cells satisfies the Markov property, we
can say that the probability is a second-order Markov transition probability. We
can generalize the idea to order-k Markov transition probability Pr(ck|c0, . . . , ck−1),
where ci (i = 0, . . . , k) are cell numbers.

11.2.2.2 Multiple Resolutions
An interesting feature of the model is that it allows multiple resolutions. When
analyzing movement data, it is often necessary to view the data at different degrees
of coarseness. For example, we may wish to analyze the overall trends at a coarse
resolution and then focus on some specific regions and make detailed analyses at
a fine resolution. The situation is similar to the case when we use the drill-down
operation in On-Line Analytical Processing (OLAP) [25, 48]. The opposite operation
from fine to coarse resolution corresponds to the roll-up operation.

We illustrate how to represent roll-up and drill-down operations in a spatial sense
using Figure 11.3, where first-order Markov chains are assumed. The figure on
the left-hand side shows the level-1 partitioning and the figure on the right-hand
side shows the level-2 partitioning. The level-1 (level-2) partitioning is the “roll-
up” (“drill-down”) version of the level-2 (level-1) representation. It is easy to map
representations at different resolutions because of the property of the Z-ordering
method. For example, consider cell number 9 on the level-2 partitioning. Its binary
representation is “1001.” If we omit the last two digits, we get “10,” which is the
corresponding cell number 2 in the level-1 partitioning.

On the basis of the above idea, we have demonstrated a mobility histogram
construction method that approximates the movement statistics in Ref. [22]. Its
details are described in Subsection 11.6.3. We have also proposed an efficient
algorithm to process queries on mobility statistics based on Markov chains [21].



Fig. 11.3 Roll-up and drill-down

Its characteristic feature is the effective use of a spatial index to accelerate query
processing.

11.3 SEQUENTIAL PATTERN MINING-BASED APPROACHES

Sequential pattern mining [2, 25, 56] is an important topic in data mining and is often
applied to basket data analysis and Web usage analysis. There are some interesting
applications of sequential data mining to moving object databases. First, we briefly
explain the notion of sequential pattern mining.

Suppose that there are four moving objects and their movement histories are given
as h1 = 〈A, B, C〉, h2 = 〈B, C, E〉, h3 = 〈A, C〉, and h4 = 〈A, C, D, C, E〉, where A to E
are location symbols and 〈 〉 represents a sequence. For example, 〈A, B, C〉 means the
moving object visits locations A, B, and C in this order. An example of a sequential
pattern is 〈A, C〉 meaning C is visited after A. Note that other places between A and C
can be visited. For the above examples, this pattern matches h1, h3, and h4. Since
there are two matches for h4, the total number of matches, called the support of the
pattern, is four.

A typical objective of sequential pattern mining is to enumerate all the frequent
sequential patterns. A frequent sequential pattern is defined as a sequential pattern
such that its support is greater than or equal to the given threshold, called min-support.
If we take the domain-independent approach, namely, if we treat locations as symbols,
we can directly apply sequential pattern mining to movement histories, but the spatio-
temporal nature of moving objects is lost. In the following, we introduce some ideas
that incorporate the semantics of moving objects to sequential pattern mining.

11.3.1 TrajPattern: Finding the Top-k Trajectory Patterns

TrajPattern was proposed by Yang and Hu [66] and is a framework inspired by
sequential pattern mining. The algorithm tries to summarize trajectories into k
prominent movement patterns considering imprecision and noise in trajectories.



In their approach, a trajectory has the form t = 〈(l1, σ1), (l2, σ2), . . .〉, where li
and σi are the expected location and the standard deviation of the mobile object at the
ith snapshot. The matching probability Pr(p, t) between a pattern p = 〈p1, . . . , pn〉
and a trajectory t = 〈(l1, σ1), . . . , (ln, σn)〉 considers the ambiguity of the trajectory
(its definition is omitted here). The match measure is defined as follows:

match(p, t) =
log Pr(p, t)

|n| . (11.3)

When a trajectory t whose length is longer than pattern p is given, the match measure
is extended as follows:

match(p, t) = max
∀t′⊆t,|t′|=|p|

match(p, t′), (11.4)

where ‘⊆’ represents the subsequence relationship. When a trajectory data set D is
given, the match measure is further extended as:

match(p,D) =
∑
t∈D

match(p, t). (11.5)

The score is regarded as the expected number of occurrences of pattern p in D.
Roughly speaking, TrajPattern finds the k patterns with the highest scores.

TrajPattern is based on the sequence mining approach, but clustering is also used.
It first identifies short patterns with high scores and then tries to extend the patterns to
longer patterns with high scores. To prune nonqualifying candidates, the algorithm
utilizes the min-max property, which is a similar notion to the apriori property
[1, 25, 56], but it is a weaker notion due to the definition of the match measure.

11.3.2 Mobility Rules: Consideration of Cell Topologies and Noises

Yavaş et al. [67] proposed a method for mining mobility rules from a movement
history (a sequence of cell numbers) by extending sequential pattern mining. First,
the method extracts user mobility patterns from the given sequence. A user mobility
pattern means a frequent cell sequence. The algorithm tries to find meaningful user
mobility patterns by extending the sequential pattern mining approach. The following
two extensions are essential:

• A user mobility pattern is generated such that the pattern consists of neigh-
boring cells considering possible movements of mobile objects. That is, the
method takes the underlying cell topology into account.

• A movement trajectory often contains noise due to random movements and
corruption. They, therefore, provide a robust support counting method that
utilizes the notion of string alignment to enable flexible string matching.



Second, mobility rules are generated. On the basis of the user mobility patterns
extracted in the previous step, the algorithm generates rules such as 〈A, C〉 → 〈D, B〉.
This rule means that an object that moves from A to C will move from D to B with
high support and confidence.

11.3.3 Frequent Mobility Pattern Mining from One Long Trajectory

Cao et al. [4] mine frequent spatio-temporal patterns from one long trajectory. An
example of such data is a trace of a bus for a single day in a city. The method
detects frequent sequential patterns without predefined segmentation of a trajectory.
First, the algorithm simplifies the given trajectory data into a list of approximated
line segments. Next, similar line segments are grouped to find frequent sequential
patterns. Then, each segment contained in each sequential pattern is converted into a
sequence of region IDs, where region means the area surrounding a segment. Finally,
longer frequent sequential patterns are derived by combining the short sequential
patterns. To accelerate the derivation step, they use a tree structure and an apriori-
like pruning technique.

11.3.4 Other Work

The algorithm proposed by Peng and Chen [47] identifies movement patterns from
movement log data. Given a support threshold, the algorithm tries to find long
sequential patterns such as “ABDEB,” each of which corresponds to a cell in a mobile
network. The mined movement patterns are used to allocate data in appropriate
mobile sites, so that moving objects can obtain data efficiently while they move in a
mobile network.

11.4 FINDING OTHER INTERESTING PATTERNS

The former section focused on the extension of sequential pattern mining. This
section introduces other mining approaches to find interesting patterns from moving
object databases.

11.4.1 Spatio-temporal Association Rules

Association rule mining is one of the most popular topics in data mining [1, 25, 56].
An example of an association rule is {notebook} ⇒ {pen}. The rule indicates that
if a notebook is purchased, it is likely that a pen is also purchased. So far, various
association rule mining methods for large transaction data have been proposed.

Verhein and Chawla [61] extend the notion of association rules to the spatio-
temporal context. They call such rules spatio-temporal association rules. The most



simple type of rule can be written as

R = (ri,Δi) ⇒ (rj ,Δj), (11.6)

where ri, rj are spatial regions and Δi,Δj are time intervals that satisfy Δi < Δj .
The above rule says that objects appearing in ri during time interval Δi will appear
in region rj during Δj . To find interesting rules, they propose the notion of spatial
support:

spatial support(R) =
σ((ri,Δi) ⇒ (rj ,Δj))

area(ri) + area(rj)
, (11.7)

where σ((ri,Δi) ⇒ (rj ,Δj)) denotes the conventional support of the rule—the
number of objects that satisfy the rule and area(r) is the area of region r. The
smaller the area covered, the higher the spatial support of the rule.

In addition, several interesting patterns are proposed in Ref. [61]. Some examples
are as follows:

• Dense region: A region r is called a dense region (or hot spot) during Δ if
density(r,Δ) = σ(r,Δ)/area(r) ≥ δ, where σ(r,Δ) is the number of objects
in r during Δ and δ is a minimum density threshold.

• High traffic region: A region r is a high traffic region if the number of objects
entering r (nr) or leaving r (nl) during Δ satisfies α/area(r) ≥ τ , where
α = ne or nl and τ is a minimum traffic threshold.

• Stationary region: If σ((r,Δi) ⇒ (r,Δi+1))/area(r) ≥ τ , r is called a
stationary region.

In Ref. [62], the methodology is further refined by one of the authors to represent
longer patterns.

11.4.2 Group Patterns

The algorithm proposed by Wang et al. [60] discovers groupings of moving objects
such that members in the same group are spatially close to one another for a significant
amount of time. Such object groupings are called group patterns. Given movement
histories of objects, the algorithm tries to find appropriate groupings based on the
following criteria: (1) the group members should be physically close to one another
and (2) the group members should stay together for some meaningful duration.

Two group pattern mining algorithms apriori-like group pattern mining (AGP) and
valid group-growth (VG-Growth) are proposed. The former is an extension of the
well-known apriori algorithm [1] and the latter is based on the FP-growth algorithm
[24]. Some techniques for accelerating the mining process are also introduced.



11.4.3 Periodic Movement Patterns

Moving objects often follow periodic movements. For example, a bus run on a
regular route shows similar movement patterns every day. Mamoulis et al. [39] try
to discover periodic movement patterns in spatio-temporal data, including a long
movement history of one moving object. The approach is an extension of periodic
pattern mining from event sequences [23].

A periodic pattern is defined as a sequence of spatial regions that appears every T
timestamp: the pattern should appear at least min sup periodic intervals in the input
trajectory. For example, “AB*C*D” is a pattern with length T = 6, where “*” is a
“don’t care” character and matches any region. Namely, the pattern means that the
object visits regions from A to D in order and in a cyclic manner. An interesting aspect
is that the regions are not predefined; the algorithm discovers appropriate regions to
form movement patterns. Regions are defined as dense areas and determined using
a method inspired by density-based clustering [25, 56]. The method is, therefore,
prone to small amounts of noise in the trajectory.

Cao et al. [5] further extend the idea and propose variations of periodic patterns
and ways to discover them.

11.4.4 Flock, Leadership, Convergence, and Encounter

The REMO (RElative MOtion) framework [34, 35] developed by Laube et al. defines
various types of behavior pattern for moving object groups. Gudmundsson et al. [14,
15] select some patterns from the framework and then provide formalized definitions:

• Flock: At least n objects are within a circle of radius r and they move in the
same direction.

• Leadership: In addition to the flock pattern condition, the object group should
satisfy an additional condition: one of the objects is heading the direction for
at least τ time steps.

• Convergence: At least n objects pass through the same circle of radius r
without changing direction, but the objects need not arrive at the same time.

• Encounter: This is a specialization of the convergence pattern. At least n
objects are simultaneously inside the same circle of radius r.

References [14, 15] provide efficient computation algorithms in terms of computa-
tional geometry using approximation techniques.

11.4.5 More Complex Patterns

Some other researchers have proposed using more complex patterns to represent
complex behaviors of moving objects. Although their objectives are data representa-



tion and query processing, the ideas may be applied to data mining on moving object
databases.

Mobility patterns, as proposed by du Mouza and Rigaux [43], is a language to
represent movement patterns between location areas. The following are examples of
mobility patterns:

• Give all the objects that travel from A to F and from F to C in 10 minutes:
start at A, follow F, roam 10, follow C

• Give all the objects that went through F to another area, then went to D or C,
and came back to F using the same area: follow F.@x, follow {D, C},
follow @x.F; @x != F

Symbols such as A are labels for areas and @x is a variable. In Ref. [42], this idea is
generalized to trajectories at multiple resolutions. The target space can be represented
at different levels of coarseness and mobility patterns are generalized depending on
levels.

Hadjieleftheriou et al. [19] also proposed the notion of complex spatio-temporal
pattern queries with their efficient processing methods. Two types of spatio-temporal
queries are considered:

• Spatio-temporal queries with time: Arbitrary types of spatial predicate may be
contained (e.g., range search), and each predicate can be associated with an
exact temporal constraint. An example is “find objects that crossed through
region A at time T1, came as close as possible to point B at a later time T2 and
then stopped inside circle C some time during interval (T3, T4).”

• Spatio-temporal queries with order: The difference with respect to the former
is that each predicate is associated with a relative order. In this sense, they are
more general than the former. An example is “find objects that first crossed
through region A, then passed as close as possible from point B and finally
stopped inside circle C.”

Efficient query processing methods that use indexing methods have been proposed.

Jin et al. [29] tried to find movement patterns from user movement logs. They
considered graph structures in which nodes correspond to locations. Their algorithm
considers support counts of node traversals and finds typical movement patterns. An
interesting point is that the algorithm finds seldom-visited nodes and random walks
from movement logs. A random walk consists of multiple nodes that the user moves
between frequently in a random manner. Location prediction and location query
techniques based on the mined movement behaviors are also proposed.

11.5 CLUSTERING MOVING OBJECTS

Clustering is a technique for grouping a large number of objects and generates
clusters, which are used to summarize the original dataset. There have been a lot



of clustering algorithms proposed in data mining [25, 56]. In the following, we
introduce some clustering techniques for moving object databases.

11.5.1 Continual Maintenance of Moving Clusters

Li et al. [36] proposed a real-time and adaptive cluster maintenance method for
moving points. The approach is based on the notion of micro-clusters. A micro-
cluster is a small-sized cluster consisting of nearby objects. After the generation
of micro-clusters, some different clustering algorithms can be applied to the micro-
clusters by treating each micro-cluster as if it were an individual entity. The idea of
micro-clusters was initially proposed in BIRCH [69]. The method in Ref. [36] gen-
erates moving micro-clusters from the target moving objects, and then global clusters
are generated using the micro-clusters. Since moving objects change positions and
directions, the method maintains clusters adaptively.

The merging and partitioning processes for micro-clusters are performed using
clustering features, which summarize the clusters. A clustering feature for a (micro-)
cluster Ci is defined as

cfi = (sxi, syi, svxi
, svyi

, ni, ti), (11.8)

where ti is the cluster generation time, ni the number of elements (ni = |Ci|), and
sxi (syi) the sum of the x-axis (y-axis) values of the elements (sxi =

∑
j:oj∈Ci

xj).
svxi

(svyi
) is the sum of x-axis (y-axis) velocity values for the elements (svxi

=∑
j:oj∈Ci

vxj
).

When two clusters Ci, Cj are merged at time tk (ti, tj < tk), the clustering feature
cfk of the result cluster Ck is defined as

cfk = (sxk, syk, svxi
+ svxj

, svyi
+ svyj

, ni + nj , t), (11.9)

where sxk is defined as follows:

sxk = sxi + (t − ti)svxi
+ sxj + (t − tj)svxj

. (11.10)

syk is defined in a similar manner. When partitioning a cluster into two clusters, the
resulting clustering features can also be easily computed (the calculation method is
omitted here).

An interesting point of this approach is its cluster management scheme. It tries
to keep the spatial extent of moving micro-clusters small. The compactness of a
micro-cluster is measured by its bounding rectangle. If the size of the bounding
rectangle exceeds a certain threshold, the micro-cluster is split.

11.5.2 Detecting Moving Clusters from Object Movement Histories

Kalnis et al. [30] identify moving clusters in long movement histories . Intuitively,
a moving cluster in their approach is a sequence of spatial clusters that appear in



consecutive snapshots of object movements, such as two consecutive spatial clusters
that share a large number of common objects.

The basic idea is as follows. The input is the snapshots of moving object positions.
If two clusters Ct at time t and and Ct+1 at time t + 1 satisfy the condition

|Ct ∩ Ct+1|
|Ct ∪ Ct+1| ≥ θ, (11.11)

(Ct, Ct+1) is called a moving cluster. The idea resembles the notion of dense regions
which will be described in Section 11.6, but the difference is that clusters move
continually while sharing objects. A number of cluster-detection algorithms have
been proposed.

Figure 11.4 shows an example illustrating the concept. St, St+1, and St+2 are
three consecutive snapshots of movements. Each circle in each snapshot represents
a cluster. If a threshold value, say, θ = 0.5, is used, then three clusters are treated as
one moving cluster.
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Fig. 11.4 Example of a moving cluster

11.5.3 Clustering Moving Objects while Considering Positional Uncertainty

The clustering method proposed by Kriegel and Pfeifle [31] considers uncertainty
in the positions of moving objects. Their focus is the fuzzy nature of the positions
of moving objects. The uncertainty of a moving object is modeled by a spatial
density function that represents the likelihood that a certain object is located at a
certain position. Since the locations of moving objects are uncertain, their algorithm
performs several clusterings of points sampled from the probability density functions
of the moving objects. A ranking value is assigned to each of the obtained clusterings,
which reflects its distance to other sample clusterings. The clustering with the smallest
ranking value is called the medoid clustering and can be regarded as the average
clustering of all the sample clusterings. The method obtains robust clustering results
based on this approach.



11.5.4 Other Work

Nanni and Pedreschi [44] employed density-based clustering [25, 56] to cluster
trajectories. This method groups objects into clusters based on density, which is the
population within a given region in the space. Typical constraints used in density-
based clustering are as follows: for each object in a cluster, its neighborhood, defined
by a given radius ε, must contain at least a minimum number of objects, n. Density-
based clustering has some advantageous features: it can detect nonspherical clusters
of arbitrary shapes and it is robust with respect to noise. Since trajectories may have
“snake” shapes and often contain noise, such features are desirable.

Yiu and Mamoulis [68] presented a method to cluster objects on a spatial network
such as a road network. Each object (not necessarily a moving object) lies on an
edge of a large network. The distance between objects is defined by the length of the
shortest path between them over the network. Variants of partitioning, density-based,
and hierarchical clustering methods have been developed.

The method proposed by Zhang and Lin [71] generates k clusters considering the
positions, speeds, and sizes of moving objects. They proposed a special distance
function that considers speeds and positions and formalized the clustering as a k-
center optimization problem. An approximation-based efficient solution method and
a cluster refinement method were proposed. The constructed clusters are used to
estimate the selectivity of queries on a moving object database.

There exist statistical model-based approaches for trajectory clustering. Gaffney
and Smyth [13] applied regression models to cluster similar trajectories. The ap-
proach considers two trajectories to be “similar” when they are likely to be generated
from a common core trajectory by adding Gaussian noise. A clustering method
that is invariant to spatial and temporal shifting of trajectories within clusters was
also proposed [10]. The technique was applied to the clustering of human motion
trajectories, cyclone trajectories, and so on.

There are some approaches to clustering moving objects from a theoretical per-
spective. Hershberger [27] proposed a deterministic kinetic data structure for main-
taining a covering of moving points in Rd by d-dimensional boxes in an online
fashion. The number of boxes is always within a factor of 3d of the best possible
static covering. Har-Peled [26] shows how to partition n linearly moving points into
k2 static clusters, so that at any time the diameter of each cluster is at most equal
to the maximum cluster diameter in an optimal k-clustering for the current point
positions. However, all the movements must be known in advance.

11.6 DENSE REGIONS AND SELECTIVITY ESTIMATION

A region on a space is called a dense region if the number of moving objects contained
in the region is above some threshold. Detection of dense regions from the underly-
ing moving object database is highly related to density-based clustering (described
above). Dense region detection is also related to the estimation problem regarding



query selectivity for moving object databases. Some dense region detection methods
and query selectivity estimation techniques are briefly reviewed below.

11.6.1 Detecting Dense Regions

Hadjieleftheriou et al. [17] considered processing density-based queries on moving
object databases. The density of region r during time interval Δt is defined as:

density(r,Δt) =
mint∈Δt n(r, t)

area(r)
, (11.12)

where n(r, t) is the number of objects inside r at time t and area(r) is the area of r.
This definition of a dense region is intuitive, but tiny dense regions are also detected.
To detect meaningful dense regions, they extend the above basic notion.

For example, a period density query is defined as follows. Given movement
trajectories, a constant H , and thresholds α1, α2, and ξ, find regions {r1, . . . , rk}
and associated maximal time intervals {Δt1, . . . ,Δtk | Δti ⊂ [tnow, tnow + H]}
such that α1 ≤ area(ri) ≤ α2 and density(ri,Δti) > ξ, where tnow is the current
time. Some algorithms have been provided to find dense areas from a moving object
database of linear movements with uniform speeds. To simplify the problem, they
partition the data space into disjoint cells instead of arbitrary regions and then find
dense regions.

Jensen et al. [28] focused on the identification of dense regions at time t ∈
[tnow, tnow + H]. Objects move continuously and their positions and velocities are
updated often. Queries are processed in an online setting, where they assume that
objects move linearly until changes are reported. The algorithm computes given
queries efficiently using a density histogram, which is maintained online.

11.6.2 Selectivity Estimation and Histograms

The selectivity of a query is a ratio indicating how many of the objects in the database
satisfy the given query [48]. Assume that a query to a moving object database
such as “retrieve all the objects that enter a specified region r at time t” is given. To
construct an efficient query evaluation plan, the moving object database system needs
to estimate the number of objects that qualify for the query. Several methods have
been proposed to estimate spatio-temporal query selectivitiy. A typical approach
to estimating query selectivity is to construct a histogram [20], which is a compact
structure summarizing the underlying database statistics.

11.6.2.1 Histogram for Static Queries on Moving Objects
Choi and Chung [8] extended the traditional histogram technique for spatial databases
to cope with linearly moving point objects. The method estimates the selectivity of
spatial range queries. Given a rectangular range r and timestamp t that represents
some future time, the method estimates the selectivity. In this sense, the method



focuses on the case of moving points and static queries. To create a histogram,
moving objects are clustered based on their current positions and then organized
into buckets. For each bucket, a spatial bounding rectangle that covers the objects
within the bucket and a velocity bounding rectangle that bounds the velocities of
the objects within the bucket are constructed. However, the histogram should be
rebuilt frequently for accurate estimation. Estimation is performed by assuming the
uniformity of velocities. The same authors proposed a further improved method [9].
Nonuniformity of velocities is also considered and a refined histogram is constructed.

Hadjieleftheriou et al. [18] also propose a selectivity estimation method in which
they assume linear trajectories. In their approach, the duality transform technique
is used: the moving points in the primal space-time space are transformed into
dual velocity-intercept space. A histogram is then constructed on the dual velocity-
intercept space.

11.6.2.2 Histogram for Moving Queries on Moving Objects
In contrast, Tao et al. [57] proposed a further improved method. Their multidimen-
sional spatio-temporal histogram supports all types of objects (static/dynamic and
points/rectangles) and moving queries. Their method constructs a spatio-temporal
histogram, which considers both locations and velocities for partitioning. In addition,
an incremental histogram maintenance method was proposed.

11.6.2.3 Other Work
The approach of Sun et al. [55] is to use an adaptive multidimensional histogram to
summarize the positions of moving objects for the present time. Past histograms are
archived as historical synopses and allow users to issue aggregate queries related to
the past. In addition, a prediction method is proposed for future movements based on
the current movement statistics. Tao et al. [58] present an interesting approach. The
method integrates spatio-temporal indexes with sketches in order to aggregate spatio-
temporal statistics, including object movements. A sketch is a common approach to
approximate counting information and is considered as a special kind of histogram.
The idea proposed is applicable for finding spatio-temporal association rules such as
(ri, T, p) ⇒ rj . This rule means that a user in region ri at time t will appear in region
rj by time t + T with probability p. Other approaches to spatio-temporal histograms
for moving objects can be found in Refs. [12, 46].

11.6.3 Mobility Histograms Based on Markov Chains

Our mobility representation model using Markov chains over spatial grid cells is pre-
sented in subsection 11.2.2. In this subsection, we describe its histogram structure for
summarizing mobility statistics [22]. The histogram structure has two representation
levels: logical and physical.

11.6.3.1 Logical Level: Data Cubes



To represent order-k Markov chain-based movement statistics, a mobility histogram
is constructed as a (k+1)-dimensional data cube. A data cube [25] is a data structure
that summarizes the underlying data in a multidimensional array and is often used
in OLAP, which provides flexible analysis facilities. Figure 11.5 shows an example
of data cube for k = 2. The data cube corresponds to the level-1 space partitioning
(P = 1), mentioned in subsection 11.2.2. Since the two-dimensional target space is
partitioned into R = 22P = 4 spatial regions, the data cube contains Rk+1 = 64 cells.
For each dimension of the data cube, each step 0, 1, and 2 corresponds to each step
of an order-2 Markov chain. For instance, when the sequence 1(1) → 1(1) → 2(1) is
given as an input transition sequence, the value of the corresponding cell (1, 1, 2) is
incremented.

Step 0

Step 1

Step 2

0
1

2
3

0 1 2 3

0

1

2

3

Fig. 11.5 Logical histogram representation as a data cube

More intuitive data manipulation is possible using the data cube representation.
For example, consider the data cube shown in Figure 11.5. The probability that an
object has moved from region 1 to region 2 and then moves to region 4 is calculated
as Pr(4|1, 2) = val(1, 2, 4)/val(1, 2, ∗), where val(1, 2, 4) is the value of the cube

cell (1, 2, 4) and val(1, 2, ∗) =
∑2P −1

i=0 val(1, 2, i). Moreover, the probability that an
object in region 1 at t = τ and in region 3 at t = τ + 2 is in region 2 at t = τ + 1 (τ
is some arbitrary time) is calculated as val(1, 2, 3)/val(1, ∗, 3).

As described in subsection 11.2.2, our mobility model allows multiple resolutions
using different partition level settings. Roll-up and drill-down operations are also
supported for data cubes and users can change resolutions when they perform anal-
yses. Other types of queries can also be supported by the data cube representation.
For example, density queries can be processed by a data cube using aggregation and
selection.

11.6.3.2 Physical Histogram: Multidimensional Trie
A physical histogram has a structure like a multidimensional trie for summarizing
mobility statistics with multiple resolutions. It has the following features:

1. Each node of a trie has four branches labeled 00, 01, 10, and 11. Each of the
branches corresponds to a quarter region obtained by decomposing the space



into 2 × 2 components. That is, the space decomposition is performed in a
similar manner to a quadtree [51].

2. The first branch of the trie root corresponds to step 0 of a Markov chain and the
next branch to step 1, and so on. Each branch thus corresponds to a Markov
transition steps in turn. The idea is inherited from k-d trees [51].

3. Each node of a trie has a counter for accumulating the number of trajectory
patterns visited.

Fig. 11.6 Physical histogram structure based on a multidimensional trie.

Figure 11.6 shows the structure in the case of the maximal partition level P = 2.
The dotted lines mean that the edges are not instantiated because the corresponding
sequences do not appear. The example shows the situation that a transition sequence
3(2) → 6(2) → 12(2) is inserted. As described in subsection 11.2.2, the model assigns
region numbers based on the Z-ordering method. The merit of using this numbering
method is that the four-way branching approach corresponds exactly to the Z-ordering
numbering. Using this approach, we can accumulate movement patterns adaptively so
as not to create unnecessary branches for the trie. Furthermore, in order to reduce the
storage overhead of the histogram, an approximate histogram construction algorithm
was proposed [22]. The algorithm receives movement trajectories as a stream and
gradually expands the trie considering the statistical properties of the nodes in the
trie. Although the histogram constructed does not contain exact count information,
it represents the overall statistics approximately with a relatively small storage cost.



11.7 COMPARING MOVING OBJECT TRAJECTORIES

11.7.1 Distance Between Trajectories

To perform clustering or similarity searches on trajectories of moving objects, an
appropriate definition of the distance (or similarity) between two trajectories is im-
portant. Typically, the trajectory of a moving object is represented as a sequence
of consecutive locations in a two- or three- dimensional space, in contrast to the
one-dimensional case, which is common in timeseries databases [33, 52]. In ad-
dition, distances for moving object trajectories should be robust to outliers since
measurements in mobile environments are noisy and the movement of objects may
contain “gaps.” Some distance measures proposed for moving object trajectories are
investigated below.

For example, consider two trajectories of moving objects on the (x, y)-plane given
as A = ((ax,1, ay,1), . . . , (ax,n, ay,n)) and B = ((bx,1, by,1), . . . , (bx,m, by,m)).
Their lengths are n and m, respectively. When n = m, we can apply the Euclidean
distance (L2 distance), which is simple and also the most popular:

L2(A,B) =

(
n∑

i=1

[
(ax,i − bx,i)2 + (ay,i − by,i)2

]) 1
2

. (11.13)

Although the Euclidean distance can be evaluated efficiently, it cannot be applied
when two trajectories have different lengths.

11.7.2 Dynamic Time Warping (DTW)

It is often necessary to compute the similarity between two trajectories with different
lengths. A well-known approach is to use dynamic time warping (DTW) [33, 52],
which is defined as follows:

DTW(A,B) = |an, bm| + min{DTW(head(A),head(B)),
DTW(head(A), B),DTW(A,head(B))}, (11.14)

where |an, bm| is the distance between the two points an = (ax,n, ay,n) and bn =
(bx,m, by,m) and is usually measured using the Euclidean distance. head(A) is a
sequence A without the last item (ax,n, ay,n). An example of DTW matching is
shown in Figure 11.7, where A and B are two trajectories. DTW is the accumulated
distance between the matching nodes and allows flexible sequence matching, but it is
not an effective distance metric for noisy trajectory data because all the elements in
two trajectories must be matched when using DTW. In the figure, three points x, y,
and z are outliers, but DTW tries to match these points. Although the two trajectories
are similar except for these outliers, DTW returns a large distance value.
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Fig. 11.7 DTW matching.
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Fig. 11.8 LCSS matching.

11.7.3 More Robust Distance Measures

On the basis of this observation, Vlachos et al. [63] proposed the least common sub-
sequence (LCSS) distance for similarity-based retrieval of moving object trajectories.
The LCSS score is defined as follows (we have simplified the original definition for
simplicity):

LCSS(A,B) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if A or B is empty
1 + LCSS(head(A),head(B))

if |an − bm| < ε and |n − m| ≤ δ
max(LCSS(head(A), B),LCSS(A,head(B)))

otherwise

(11.15)

The parameters ε and δ are given by the user. The condition |an−bm| < ε means that
an and bm can be regarded as if they are the same symbols. The LCSS score means
the number of matching symbols and takes a large value when two trajectories are
similar. Figure 11.8 shows an example of LCSS matching where LCSS(A,B) = 6.
Vlachos et al. defined the LCSS distance with the following formula:

D(A,B) = 1 − LCSS(A,B)
min(n,m)

. (11.16)

As shown in the figure, the LCSS matching omits outliers so that it is more robust to
noise. They extend the distance considering time stretching and translations.

Chen et al. [7] further extended the idea in this direction. They proposed a new
distance called edit distance on real sequence (EDR) for moving object trajectories.
The basic idea of EDR is that it assigns penalties to nonmatched points. EDR
is therefore more sensitive than LCSS according to the number of outliers. The
distance between two trajectories becomes small when they are similar in the sense
of LCSS and have less outliers. This distance function was shown to be more robust
than DTW and LCSS over trajectories with noise.

11.7.4 Other Work

Yanagisawa et al. [64] discussed the issues of shape-based similarity queries for
moving object trajectories. They proposed some similarity measures considering



trajectory approximation. Yanagisawa and Satoh [65] define two distance measures
for trajectories. They are extensions of the Euclidean distance and DTW respectively
and consider the shapes and velocities of moving object trajectories. Lin and Su [37]
proposed the “one way distance” function for comparing moving object trajectories.
In addition, several techniques for implementation were presented.

11.8 CONCLUSIONS

In this chapter, we have reviewed current trends in data mining technologies on
moving object databases. Data mining on moving object databases has different
requirements from conventional data mining since moving objects have a dynamic
nature and spatio-temporal semantics, and different use is made of mined knowledge.
The new requirements give birth to new technologies. As described above, a variety
of interesting approaches have appeared in this field of research.

We have also shown some pointers to related areas. The spatio-temporal database
technology is a closely related topic in moving object databases. It is a generic
name for databases that store and manage information regarding objects with tem-
poral and spatial features, and includes the notion of moving objects databases. A
spatio-temporal database is, however, not necessarily for moving objects because
it is used, for example, for representation of time-varying geographic information.
Refs. [32, 41] are collections of articles on spatio-temporal data mining. Roddick
et al. [50] provides a reference list concerning data mining technology including
spatio-temporal databases up to the year 2000. López et al. [38] survey aggrega-
tion techniques for spatial, temporal, and spatio-temporal databases. Aggregation
is used to accumulate statistics from an underlying database and is useful for data
mining and learning from the data. Dunham et al. [11] and Wang et al. [59] review
spatio-temporal data mining technologies. There are a number of textbooks on spatial
databases [40, 49, 51, 53], and well-known data mining textbooks [25, 56].
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