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Imprecise Location Information

• Sensor Environments
– Measurement Noise
– Frequent updates may not be possibleq p y p

• GPS-based positioning consumes batteries

• Robotics• Robotics
– Localization using sensing and

t hi t imovement histories
– Probabilistic approach has

vagueness
• Privacy
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Privacy
– Location Anonymity



Nearest Neighbor Queries

• Nearest Neighbor Queries
E l Fi d th l t b t– Example: Find the closest bus stop

– Traditional problem in spatial databases
• Efficient query processing using spatial indices
• Extensible to multi-dimensional cases (e.g., image 

retrieval)

• What happen if the NN of qpp
location of query object 
is uncertain? qis uncertain?
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Example Scenario (1)

• Query: Find the nearest gas station

Location estimation 
based on noisy GPS0% based on noisy GPS 
data

35%

0%

35%

10%
Nearest gas station
depends on the possible10%

55%

depends on the possible
car locations

55%

NN objects are defined
i b bili ti
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in a probabilistic way



Example Scenario (2)

• Mobile Robotics
– Location of the robot is estimated

based on movement histories and
sensor data

– Measurements are noisyy
– Localization based on probabilistic

modelingmodeling
• Kalman filter, particle filter, etc.

Estimated location is given as a– Estimated location is given as a
probabilistic density function (PDF)

PDF changes on each estimation• PDF changes on each estimation
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Probabilistic Nearest Neighbor Query (1)

• PNNQ for short
0 07
 0.08

0 04
 0.06
 0.08

pq(x)

• Assumptions
– Location of query object  0.01

 0.02
 0.03
 0.04
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q y j
q is specified as a 
Gaussian distribution

 0
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– Target data: static points
G i Di t ib ti
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• Gaussian Distribution
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– Σ: Covariance matrix



Probabilistic Nearest Neighbor Query (2)

• Definition
),','Pr(),(Pr o'xox  ooΟooqNN

• Find objects which
}),(Pr,|{),(   oqOooqPNNQ NN

• Find objects which 
satisfy the condition
– The probability that 

the object is the
q

nearest neighbor of q 
is greater than or 
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Related Work

• Query processing methods for uncertain (location) 
datadata
– Cheng, Prabhakar, et al. (SIGMOD’03, VLDB’04, …)

T t l (VLDB’05 TODS’07)– Tao et al. (VLDB’05, TODS’07)
– Consider arbitrary PDFs or uniform PDFs

M t f th t t bj t i i– Most of the case, target objects are imprecise
• Research related to Gaussian distribution

– Gauss-tree [Böhm et al., ICDE’06]
• Target objects are based on Gaussian distributions

• Our former work
– Ishikawa, Iijima, Yu (ICDE’09): Probabilistic , j , ( )

range queries
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Naïve Approach (1)

• Use of Voronoi Diagram
– Well-known method for standard (non-imprecise) 

nearest neighbor queries

aa b
c

Voronoi region V
e

d

Voronoi region Ve

f g h
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Naïve Approach (2)

• PrNN(q, o): Nearest neighbor probability
P b bilit th t bj t i th t

pq(x)
– Probability that object o is the nearest 

neighbor of query object q
It can be computed by integrating the  0.02

 0.03
 0.04
 0.05
 0.06
 0.07
 0.08

 0
 0.02
 0.04
 0.06
 0.08

– It can be computed by integrating the 
probability density function pq(x) over 
Voronoi region Vo

 0
 0.01

-4
-2

 0
 2

4o o o eg o Vo

a b V qNN dpoq xx)(),(Pr

• Problem
b

e
c

q
pq(x)


oV

– Need to consider all target
objects
N i l i t ti (M t

e

g

d

h

q
Ve

– Numerical integration (Monte
Carlo method) is quite costly!
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Our Approach

• Outline of processing
1. Filtering

• Prune non-candidate objects whose PrNN are 
obviously smaller than the threshold 

• Low-cost filtering conditions
2. Numerical integration for the remaining 

candidate objects
• Two strategies

 region based Approach– -region-based Approach
– SES-based Approach

• SES: Smallest Enclosing Sphere
13



Strategy 1: -Region-Based Approach (1)

• -region
Si il t ft d i i f– Similar concepts are often used in query processing for 
uncertain spatial databases
Definition: Ellipsoidal region for which the result of the– Definition: Ellipsoidal region for which the result of the 
integration becomes 1 – 2 :

 )( d  


21 )()(
21)(




r qt

dp
qxqx

xx
Σ

The ellipsoidal region
21

)()( r
t




qxqx Σ

is the -region
• Example:  is specified as 1%



q
• Example:  is specified as 1%,

we consider 98%  -region
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Strategy 1: -Region-Based Approach (2)

• Query Processing
1. -region for the query is computed at first

• -region can be derived using r-table:
– It is constructed for the normal Gaussian ( = I, q = 0): Given , 

it returns appropriate r
Final  region can be obtained by transformation• Final -region can be obtained by transformation

2. Derive the bounding box of
 i ba-region

3. Objects whose Voronoi
q

b

e

a
c

regions overlaps with the 
box are the candidates

q e

hf

d
g

• {a, c, d, f, g}, in this example
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Strategy 1: -Region-Based Approach (3)

• Derivation details
• First we consider the

• Third, the bonding box 
is calculated• First, we consider the 

normal Gaussian
– Using r-table, we can get

is calculated

ii rw  Using r table, we can get 
the appropriate r for given 

• Second, a spherical - iii

ii

)(Σ


region is derived based on 
transformation 

Transformation is performed
where (Σ)ii is the (i, i) 
entry of Σ– Transformation is performed 

by analyzing 
entry of Σ

xj

q
r

q q
wj

w
xi
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Strategy 2: SES-Based Approach (1)

• SES: Smallest Enclosing Sphere
– For each Voronoi region Vo, we compute its SES 

SESo beforehand

a
SESe: SES for Voronoi
region of e

a b
c g

ed

f g h
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Strategy 2: SES-Based Approach (2)

• Integration over SESo gives the upper-bound
f P ( )for PrNN(q, o)

  dpdpoq xxxx )()()(Pr

– Integration over a sphere region is more easier

 
oo SES qV qNN dpdpoq xxxx )()(),(Pr

– Integration over a sphere region is more easier 
to compute

• We use a table called a b• We use a table called 
U-catalog constructed 
beforehand

a b

e
c

q e

g

d

h

q
pq(x)
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Strategy 2: SES-Based Approach (3)

• What is U-catalog?
Gi t t d  it t di– Given two parameters  and , it returns corresponding 
integral
U catalog is made for different (  ) pairs by computing– U-catalog is made for different (,  ) pairs by computing 
the integral of normal Gaussian over sphere region R

xx
x

dp
R 

 )(),( norm
α δ π(α, δ)


R

( , )
0.0 0.1 …
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

q

… … …
1.0 0.1
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Strategy 2: SES-Based Approach (4)

• To use U-catalog, another approximation is 
required since it is only useful for normal Gaussianrequired since it is only useful for normal Gaussian
– Use of upper-bounding function pq(x)

( ) ti htl b d ( ) d h h i l i f

T

T– pq(x) tightly bounds pq(x) and has spherical isosurfaces
– For pq(x), we can easily derive its integral over SESo using 

U catalog

T

T

U-catalog
• In summary, we use two

i ti
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c

pq(x)T
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Strategy 2: SES-Based Approach (5)

• Bounding Function
O i i l G i PDF– Original Gaussian PDF
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Setup of Experiments (1)

• Target Data
– 2D point data (50K entries)
– Based on road lineBased on road line 

segments in Long Beach
• Computation of Voronoi• Computation of Voronoi

regions and SESs
– LEDA package was used

• ComparisonComparison
– Strategies 1, 2, and their hybrid approach

E l ti t i R ti
23

– Evaluation metric: Response time



Setup of Experiments (2)

• Default Parameters
– Covariance matrix











732
327Σ

q
pq(x)

• For this matrix the shape of the isosurface of p (x) is an

 732

For this matrix the shape of the isosurface of pq(x) is an 
ellipse titled at 30 degrees and the major-to-minor axis 
ratio is 3:1

• γ : Parameter for controlling vagueness (default: γ = 10)
– Probability threshold value: θ = 0.01
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Probability threshold value: θ  0.01
– No. of samples for Monte Carlo method: 1,000,000



Candidate Objects in Strategy 1

Bounding box 
of the θ-regionof the θ region

Query center

Voronoi regions for 
candidate objects

Voronoi regions for 
answer objects
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Candidate Objects in Strategy 2

Query center

Voronoi regions for 
candidate objects

Voronoi regions for 
answer objects
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Candidate Objects in Hybrid Strategy

Bounding box 
of the θ-regionof the θ region

Query Center

Voronoi regions for 
candidate objects

Voronoi regions for 
answer objects
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Experimental Results - Default Parameters

Filtering Compute Prob. Rest

• Most of the processing 
i i i
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Experimental Results - Different γ Values

γ = 1
(almost exact)

γ = 10 γ = 50
(too vague)( ) ( g )
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Query is costly when impreciseness is high



Experimental Results - Different θ Values

θ = 0.01 θ = 0.03 θ = 0.05
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Experimental Results - Different Shapes
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Narrow ellipse (correlated distribution) needs to consider additional candidates



Conclusions of Experimental Results

• Most of the processing time is spent in 
numerical integrationnumerical integration
⇒A strategy that can prune more objects has 

better performance
Superiority or inferiority of two strategies Superiority or inferiority of two strategies 
depends on the given query and the specified 

tparameters
 No apparent winner

• The hybrid strategy inherits the benefits of two 
strategies and shows the best performancestrategies and shows the best performance
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Conclusions

• Nearest neighbor query processing methods 
f i i bj tfor imprecise query objects
– Location of query object is represented by q y j p y

Gaussian distribution
– Two strategies and their combinationTwo strategies and their combination
– Reduction of numerical integration is important

Proposal of two pruning strategies and their– Proposal of two pruning strategies and their 
evaluation

• Future work
– Evaluation for multi-dimensional cases (d  3)( )
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