Finding Probabilistic Nearest Neighbors for Query Objects with Imprecise Locations

Yuichi lijima and Yoshiharu Ishikawa Nagoya University, Japan

Outline

- Background and Problem Formulation
- Related Work
- Query Processing Strategies
- Experimental Results
- Conclusions

Imprecise Location Information

- Sensor Environments
- Measurement Noise
- Frequent updates may not be possible
- GPS-based positioning consumes batteries
- Robotics
- Localization using sensing and movement histories
- Probabilistic approach has vagueness
- Privacy
- Location Anonymity

Nearest Neighbor Queries

- Nearest Neighbor Queries
- Example: Find the closest bus stop
- Traditional problem in spatial databases
- Efficient query processing using spatial indices
- Extensible to multi-dimensional cases (e.g., image retrieval)
- What happen if the location of query object is uncertain?

Example Scenario (1)

- Query: Find the nearest gas station

Nearest gas station 10% depends on the possible car locations

NN objects are defined in a probabilistic way

Example Scenario (2)

- Mobile Robotics
- Location of the robot is estimated based on movement histories and sensor data
- Measurements are noisy
- Localization based on probabilistic modeling
- Kalman filter, particle filter, etc.
- Estimated location is given as a probabilistic density function (PDF)
- PDF changes on each estimation

Probabilistic Nearest Neighbor Query (1)

- PNNQ for short
- Assumptions
- Location of query object q is specified as a
Gaussian distribution
- Target data: static points
- Gaussian Distribution

$$
p_{q}(\boldsymbol{x})=\frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left[-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{q})^{t} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{q})\right]
$$

$-\boldsymbol{\Sigma}$: Covariance matrix

Probabilistic Nearest Neighbor Query (2)

- Definition

$$
\begin{gathered}
\operatorname{Pr}_{N N}(q, o)=\operatorname{Pr}\left(\forall o^{\prime} \in O, o^{\prime} \neq o,\|\boldsymbol{x}-\boldsymbol{o}\| \leq\left\|\boldsymbol{x}-\boldsymbol{o}^{\prime}\right\|\right) \\
\operatorname{PNNQ}(q, \theta)=\left\{o \mid o \in O, \operatorname{Pr}_{N N}(q, o) \geq \theta\right\}
\end{gathered}
$$

- Find objects which satisfy the condition
- The probability that the object is the nearest neighbor of q is greater than or equal to θ

Outline

- Background and Problem Formulation
- Related Work
- Query Processing Strategies
- Experimental Results
- Conclusions

Related Work

- Query processing methods for uncertain (location) data
- Cheng, Prabhakar, et al. (SIGMOD'03, VLDB'04, ...)
- Tao et al. (VLDB'05, TODS'07)
- Consider arbitrary PDFs or uniform PDFs
- Most of the case, target objects are imprecise
- Research related to Gaussian distribution
- Gauss-tree [Böhm et al., ICDE’06]
- Target objects are based on Gaussian distributions
- Our former work
- Ishikawa, lijima, Yu (ICDE'09): Probabilistic range queries

Outline

- Background and Problem Formulation
- Related Work
- Query Processing Strategies
- Experimental Results
- Conclusions

Naïve Approach (1)

- Use of Voronoi Diagram
- Well-known method for standard (non-imprecise) nearest neighbor queries

Naïve Approach (2)

- $\operatorname{Pr}_{N N}(q, o)$: Nearest neighbor probability
- Probability that object o is the nearest neighbor of query object q
- It can be computed by integrating the probability density function $p_{q}(\boldsymbol{x})$ over Voronoi region V_{o}

$$
\operatorname{Pr}_{N N}(q, o)=\int_{V_{o}} p_{q}(\boldsymbol{x}) d \boldsymbol{x}
$$

- Problem
- Need to consider all target objects
- Numerical integration (Monte Carlo method) is quite costly!

Our Approach

- Outline of processing

1. Filtering

- Prune non-candidate objects whose $\operatorname{Pr}_{N N}$ are obviously smaller than the threshold θ
- Low-cost filtering conditions

2. Numerical integration for the remaining candidate objects

- Two strategies
- θ-region-based Approach
- SES-based Approach
- SES: Smallest Enclosing Sphere

Strategy 1: θ-Region-Based Approach (1)

- θ-region
- Similar concepts are often used in query processing for uncertain spatial databases
- Definition: Ellipsoidal region for which the result of the integration becomes $1-2 \theta$:

$$
\int_{(x-q)^{t} \Sigma^{-1}(x-q) \leq r_{\theta}^{2}} p_{q}(\boldsymbol{x}) d \boldsymbol{x}=1-2 \theta
$$

The ellipsoidal region

$$
(\boldsymbol{x}-\boldsymbol{q})^{t} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{q}) \leq r_{\theta}^{2}
$$

is the θ-region

- Example: θ is specified as 1%, we consider $98 \% \theta$-region

Strategy 1: θ-Region-Based Approach (2)

- Query Processing

1. θ-region for the query is computed at first

- θ-region can be derived using r_{θ}-table:
- It is constructed for the normal Gaussian ($\Sigma=\mathbf{I}, \boldsymbol{q}=\mathbf{0}$): Given θ, it returns appropriate r_{θ}
- Final θ-region can be obtained by transformation

2. Derive the bounding box of θ-region
3. Objects whose Voronoi regions overlaps with the box are the candidates

- $\{a, c, d, f, g\}$, in this example

Strategy 1: θ-Region-Based Approach (3)

- Derivation details
- First, we consider the normal Gaussian
- Using r_{θ}-table, we can get the appropriate r_{θ} for given θ
- Second, a spherical θ region is derived based on transformation
- Transformation is performed by analyzing Σ

- Third, the bonding box is calculated

$$
\begin{aligned}
& w_{i}=\sigma_{i} r_{\theta} \\
& \sigma_{i}=\sqrt{(\mathbf{\Sigma})_{i i}}
\end{aligned}
$$

where $(\boldsymbol{\Sigma})_{i i}$ is the (i, i) entry of Σ

Strategy 2: SES-Based Approach (1)

- SES: Smallest Enclosing Sphere
- For each Voronoi region V_{o}, we compute its SES SES S_{o} beforehand

Strategy 2: SES-Based Approach (2)

- Integration over $S E S_{o}$ gives the upper-bound for $\operatorname{Pr}_{N N}(q, o)$

$$
\operatorname{Pr}_{N N}(q, o)=\int_{V_{o}} p_{q}(\boldsymbol{x}) d \boldsymbol{x}<\int_{S E S_{o}} p_{q}(\boldsymbol{x}) d \boldsymbol{x}
$$

- Integration over a sphere region is more easier to compute
- We use a table called U-catalog constructed beforehand

Strategy 2: SES-Based Approach (3)

- What is U-catalog?
- Given two parameters α and δ, it returns corresponding integral
- U-catalog is made for different (α, δ) pairs by computing the integral of normal Gaussian over sphere region R

$$
\pi(\alpha, \delta)=\int_{x \in R} p_{\text {norm }}(x) d x
$$

α	δ	$\pi(\alpha, \delta)$
0.0	0.1	\ldots
0.0	0.2	\ldots
\ldots	\ldots	\ldots
1.0	0.1	
\ldots	\ldots	\ldots

Strategy 2: SES-Based Approach (4)

- To use U-catalog, another approximation is required since it is only useful for normal Gaussian
- Use of upper-bounding function $p_{q}^{\top}(x)$
- $p_{q}^{\top}(\boldsymbol{x})$ tightly bounds $p_{q}(\boldsymbol{x})$ and has spherical isosurfaces
- For $p_{q}^{\top}(x)$, we can easily derive its integral over $S E S_{o}$ using U-catalog
- In summary, we use two approximations:

$$
\begin{aligned}
\operatorname{Pr}_{N N}(q, o) & =\int_{V_{o}} p_{q}(\boldsymbol{x}) d \boldsymbol{x} \\
& <\int_{S E S_{o}} p_{q}(\boldsymbol{x}) d \boldsymbol{x} \\
& \leq \int_{S E S_{o}} p_{q}^{\top}(\boldsymbol{x}) d \boldsymbol{x}
\end{aligned}
$$

Strategy 2: SES-Based Approach (5)

- Bounding Function
- Original Gaussian PDF

$$
p_{q}(\boldsymbol{x})=\frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left[-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{q})^{t} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{q})\right]
$$

- Upper-Bounding Function

$$
p_{q}^{\top}(\boldsymbol{x})=\frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left[-\frac{\lambda^{\top}}{2}\|\boldsymbol{x}-\boldsymbol{q}\|^{2}\right]
$$

where

$$
\begin{array}{ll}
\boldsymbol{\Sigma}^{-1}=\sum_{i=1}^{d} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{t} & p_{q}(\boldsymbol{x}) \leq p_{q}^{\top}(\boldsymbol{x}) \\
\lambda^{\top}=\min \left\{\lambda_{i}\right\} & \text { is satisfied }
\end{array}
$$

Outline

- Background and Problem Formulation
- Related Work
- Query Processing Strategies
- Experimental Results
- and Conclusions

Setup of Experiments (1)

- Target Data
- 2D point data (50K entries)
- Based on road line segments in Long Beach
- Computation of Voronoi regions and SESs
- LEDA package was used
- Comparison
- Strategies 1, 2, and their hybrid approach
- Evaluation metric: Response time

Setup of Experiments (2)

- Default Parameters
- Covariance matrix

$$
\boldsymbol{\Sigma}=\gamma\left[\begin{array}{cc}
7 & 2 \sqrt{3} \\
2 \sqrt{3} & 7
\end{array}\right]
$$

- For this matrix the shape of the isosurface of $p_{q}(\mathbf{x})$ is an ellipse titled at 30 degrees and the major-to-minor axis ratio is $3: 1$
- γ : Parameter for controlling vagueness (default: $\gamma=10$)
- Probability threshold value: $\theta=0.01$
- No. of samples for Monte Carlo method: 1,000,000

Candidate Objects in Strategy 1

Bounding box of the θ-region

Query center

\squareVoronoi regions for candidate objects

Voronoi regions for answer objects

Candidate Objects in Strategy 2

Query center

\checkmarkVoronoi regions for candidate objects

-

Voronoi regions for answer objects

Candidate Objects in Hybrid Strategy

Bounding box of the θ-region

Query Center

\checkmarkVoronoi regions for candidate objects

Voronoi regions for answer objects

Experimental Results - Default Parameters

Experimental Results - Different γ Values

$$
\gamma=1 \quad \gamma=10
$$

(almost exact)

- Filtering \square Compute Prob. \square Rest

Number of candidates	24	31	23
Number of answers	8		

179	150	129
26		

$$
\gamma=50
$$

(too vague)

847	276	260
15		

Experimental Results - Different θ Values

$$
\theta=0.01 \quad \theta=0.03 \quad \theta=0.05
$$

■ Filtering ■ Compute Prob. \square Rest

Number of candidates	179	150	129
Number of answers	26		

128	76	68
7		

107	44	40
3		

Experimental Results - Different Shapes

Circle
Default Ellipse
■ Filtering ■ Compute Prob. ■ Rest

Number of candidates	115	50	49
Number of answers	26		

Narrow ellipse (correlated distribution) needs to consider additional candidates

Conclusions of Experimental Results

- Most of the processing time is spent in numerical integration
\Rightarrow A strategy that can prune more objects has better performance
- Superiority or inferiority of two strategies depends on the given query and the specified parameters
- No apparent winner
- The hybrid strategy inherits the benefits of two strategies and shows the best performance

Outline

- Background and Problem Formulation
- Related Work
- Query Processing Strategies
- Experimental Results
- Conclusions

Conclusions

- Nearest neighbor query processing methods for imprecise query objects
- Location of query object is represented by Gaussian distribution
- Two strategies and their combination
- Reduction of numerical integration is important
- Proposal of two pruning strategies and their evaluation
- Future work
- Evaluation for multi-dimensional cases ($d \geq 3$)

Finding Probabilistic Nearest Neighbors for Query Objects with Imprecise Locations

Yuichi lijima and Yoshiharu Ishikawa Nagoya University, Japan

