Finding Probabilistic Nearest Neighbors for Query Objects with Imprecise Locations

Yuichi Iijima and <u>Yoshiharu Ishikawa</u> Nagoya University, Japan

Outline

- Background and Problem Formulation
- Related Work
- Query Processing Strategies
- Experimental Results
- Conclusions

Imprecise Location Information

- Sensor Environments
 - Measurement Noise
 - Frequent updates may not be possible
 - GPS-based positioning consumes batteries
- Robotics
 - Localization using sensing and movement histories
 - Probabilistic approach has vagueness
- Privacy
 - Location Anonymity

Nearest Neighbor Queries

- Nearest Neighbor Queries
 - Example: Find the closest bus stop
 - Traditional problem in spatial databases
 - Efficient query processing using spatial indices
 - Extensible to multi-dimensional cases (e.g., image retrieval)
- What happen if the location of query object is uncertain?

Example Scenario (1)

Query: Find the nearest gas station

Example Scenario (2)

- Mobile Robotics
 - Location of the robot is estimated based on movement histories and sensor data
 - Measurements are noisy
 - Localization based on probabilistic modeling
 - Kalman filter, particle filter, etc.
 - Estimated location is given as a probabilistic density function (PDF)
 - PDF changes on each estimation

Probabilistic Nearest Neighbor Query (1)

- PNNQ for short
- Assumptions
 - Location of query object
 q is specified as a
 Gaussian distribution
 - Target data: static points
- Gaussian Distribution

$$p_q(\boldsymbol{x}) = \frac{1}{(2\pi)^{d/2}} \left| \boldsymbol{\Sigma} \right|^{1/2} \exp \left[-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{q})^t \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{q}) \right]$$

 $-\Sigma$: Covariance matrix

Probabilistic Nearest Neighbor Query (2)

Definition

$$\Pr_{NN}(q, o) = \Pr(\forall o' \in O, o' \neq o, \|\boldsymbol{x} - \boldsymbol{o}\| \leq \|\boldsymbol{x} - \boldsymbol{o'}\|)$$

$$PNNQ(q, \theta) = \{ o \mid o \in O, \Pr_{NN}(q, o) \ge \theta \}$$

- Find objects which satisfy the condition
 - The probability that the object is the nearest neighbor of qis greater than or equal to θ

Outline

- Background and Problem Formulation
- Related Work
- Query Processing Strategies
- Experimental Results
- Conclusions

Related Work

- Query processing methods for uncertain (location) data
 - Cheng, Prabhakar, et al. (SIGMOD'03, VLDB'04, ...)
 - Tao et al. (VLDB'05, TODS'07)
 - Consider arbitrary PDFs or uniform PDFs
 - Most of the case, target objects are imprecise
- Research related to Gaussian distribution
 - Gauss-tree [Böhm et al., ICDE'06]
 - Target objects are based on Gaussian distributions
- Our former work
 - Ishikawa, Iijima, Yu (ICDE'09): Probabilistic range queries

Outline

- Background and Problem Formulation
- Related Work
- Query Processing Strategies
- Experimental Results
- Conclusions

Naïve Approach (1)

- Use of Voronoi Diagram
 - Well-known method for standard (non-imprecise) nearest neighbor queries

Naïve Approach (2)

- $Pr_{NN}(q, o)$: Nearest neighbor probability
 - Probability that object o is the nearest neighbor of query object q
 - It can be computed by integrating the probability density function $p_q(\mathbf{x})$ over Voronoi region V_o

$$\Pr_{NN}(q,o) = \int_{V_o} p_q(\mathbf{x}) d\mathbf{x}$$

- Problem
 - Need to consider all target objects
 - Numerical integration (Monte Carlo method) is quite costly!

 $p_a(\mathbf{x})$

0.08

0.06 0.05 0.04 0.03 0.02

0.01

Our Approach

- Outline of processing
 - 1. Filtering
 - Prune non-candidate objects whose $\Pr_{N\!N}$ are obviously smaller than the threshold θ
 - Low-cost filtering conditions
 - 2. Numerical integration for the remaining candidate objects
- Two strategies
 - θ -region-based Approach
 - SES-based Approach
 - SES: Smallest Enclosing Sphere

Strategy 1: θ-Region-Based Approach (1)

- *θ*-region
 - Similar concepts are often used in query processing for uncertain spatial databases
 - Definition: Ellipsoidal region for which the result of the integration becomes $1 2\theta$:

$$\int_{(\boldsymbol{x}-\boldsymbol{q})^t \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{q}) \leq r_{\theta}^2} p_q(\boldsymbol{x}) d\boldsymbol{x} = 1 - 2\theta$$

The ellipsoidal region

$$(\boldsymbol{x} - \boldsymbol{q})^{t} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{q}) \leq r_{\theta}^{2}$$

is the θ -region

• Example: θ is specified as 1%, we consider 98% θ -region

Strategy 1: θ -Region-Based Approach (2)

- Query Processing
 - 1. θ -region for the query is computed at first
 - θ -region can be derived using r_{θ} -table:
 - It is constructed for the normal Gaussian ($\Sigma = I, q = 0$): Given θ , it returns appropriate r_{θ}
 - Final *θ*-region can be obtained by transformation
 - 2. Derive the bounding box of θ -region
 - 3. Objects whose Voronoi regions overlaps with the box are the candidates
 - $\{a, c, d, f, g\}$, in this example

Strategy 1: *θ*-Region-Based Approach (3)

- Derivation details
- First, we consider the normal Gaussian
 - Using r_{θ} -table, we can get the appropriate r_{θ} for given θ
- Second, a spherical θregion is derived based on transformation
 - Transformation is performed by analyzing Σ

• Third, the bonding box is calculated

$$w_i = \sigma_i r_{\theta}$$
$$\sigma_i = \sqrt{(\Sigma)_{ii}}$$

where $(\Sigma)_{ii}$ is the (i, i)entry of Σ

Strategy 2: SES-Based Approach (1)

- SES: Smallest Enclosing Sphere
 - For each Voronoi region V_o , we compute its SES SES_o beforehand

Strategy 2: SES-Based Approach (2)

 Integration over SES_o gives the upper-bound for Pr_{NN}(q, o)

$$\Pr_{NN}(q,o) = \int_{V_o} p_q(\mathbf{x}) d\mathbf{x} < \int_{SES_o} p_q(\mathbf{x}) d\mathbf{x}$$

- Integration over a sphere region is more easier to compute
 - We use a table called U-catalog constructed beforehand

Strategy 2: SES-Based Approach (3)

- What is U-catalog?
 - Given two parameters α and δ , it returns corresponding integral
 - U-catalog is made for different (α , δ) pairs by computing the integral of normal Gaussian over sphere region *R*

$$\pi(\alpha,\delta) = \int_{x \in R} p_{\text{norm}}(x) dx$$

$$q$$

α	δ	$\pi(\alpha, \delta)$
0.0	0.1	
0.0	0.2	
1.0	0.1	

Strategy 2: SES-Based Approach (4)

- To use U-catalog, another approximation is required since it is only useful for normal Gaussian
 - Use of upper-bounding function $p_q^{T}(\mathbf{x})$
 - $-p_q^{T}(\mathbf{x})$ tightly bounds $p_q(\mathbf{x})$ and has spherical isosurfaces
 - For $p_q^{\mathsf{T}}(\mathbf{x})$, we can easily derive its integral over *SES*_o using U-catalog
- In summary, we use two approximations:

$$Pr_{NN}(q,o) = \int_{V_o} p_q(\mathbf{x}) d\mathbf{x}$$

$$< \int_{SES_o} p_q(\mathbf{x}) d\mathbf{x}$$

$$\leq \int_{SES_o} p_q^{\mathsf{T}}(\mathbf{x}) d\mathbf{x}$$

Strategy 2: SES-Based Approach (5)

- Bounding Function
 - Original Gaussian PDF

$$p_q(\boldsymbol{x}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{q})^t \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{q})\right]$$

Upper-Bounding Function

$$p_q^{\mathsf{T}}(\boldsymbol{x}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left[-\frac{\lambda^{\mathsf{T}}}{2} \|\boldsymbol{x} - \boldsymbol{q}\|^2\right]$$

where

$$\boldsymbol{\Sigma}^{-1} = \sum_{i=1}^{d} \lambda_i \mathbf{v}_i \mathbf{v}_i^t$$
$$\lambda^{\mathsf{T}} = \min\{\lambda_i\}$$

$$p_q(\boldsymbol{x}) \leq p_q^{\mathsf{T}}(\boldsymbol{x})$$

is satisfied

Outline

- Background and Problem Formulation
- Related Work
- Query Processing Strategies
- Experimental Results
- and Conclusions

Setup of Experiments (1)

- Target Data
 - 2D point data (50K entries)
 - Based on road line segments in Long Beach
- Computation of Voronoi regions and SESs
 - LEDA package was used
- Comparison
 - Strategies 1, 2, and their hybrid approach
 - Evaluation metric: Response time

Setup of Experiments (2)

- Default Parameters
 - Covariance matrix

$$\Sigma = \gamma \begin{bmatrix} 7 & 2\sqrt{3} \\ 2\sqrt{3} & 7 \end{bmatrix}$$

- For this matrix the shape of the isosurface of $p_q(\mathbf{x})$ is an ellipse titled at 30 degrees and the major-to-minor axis ratio is 3:1
- γ : Parameter for controlling vagueness (default: $\gamma = 10$)
- Probability threshold value: $\theta = 0.01$
- No. of samples for Monte Carlo method: 1,000,000

Candidate Objects in Strategy 1

Candidate Objects in Strategy 2

Candidate Objects in Hybrid Strategy

Experimental Results - Default Parameters

- Most of the processing time is spent in numerical integration
- A strategy that can prune more objects has better performance

Experimental Results - Different y Values

Query is costly when impreciseness is high

Experimental Results - Different θ Values

 $\theta = 0.01$ $\theta = 0.03$

 $\theta = 0.05$

Experimental Results - Different Shapes

Circle

Default Ellipse

Narrow Ellipse

Narrow ellipse (correlated distribution) needs to consider additional candidates

Conclusions of Experimental Results

- Most of the processing time is spent in numerical integration
 - ⇒A strategy that can prune more objects has better performance
- Superiority or inferiority of two strategies depends on the given query and the specified parameters
 - No apparent winner
- The hybrid strategy inherits the benefits of two strategies and shows the best performance

Outline

- Background and Problem Formulation
- Related Work
- Query Processing Strategies
- Experimental Results
- Conclusions

Conclusions

- Nearest neighbor query processing methods for imprecise query objects
 - Location of query object is represented by Gaussian distribution
 - Two strategies and their combination
 - Reduction of numerical integration is important
 - Proposal of two pruning strategies and their evaluation
- Future work
 - Evaluation for multi-dimensional cases ($d \ge 3$)

Finding Probabilistic Nearest Neighbors for Query Objects with Imprecise Locations

Yuichi Iijima and <u>Yoshiharu Ishikawa</u> Nagoya University, Japan