
Finding Probabilistic Nearest Neighbors
for Query Objects with Imprecise Locations

Yuichi Iijima
Graduate School of Information Science

Nagoya University
Nagoya, Japan

e-mail: iijima@db.itc.nagoya-u.ac.jp

Yoshiharu Ishikawa
Information Technology Center

Nagoya University
Nagoya, Japan

e-mail: ishikawa@itc.nagoya-u.ac.jp

Abstract—A nearest neighbor query is an important notion in
spatial databases and moving object databases. In the emerging
application fields of moving object technologies, such as mobile
sensors and mobile robotics, the location of an object is often
imprecise due to noise and estimation errors. We propose
techniques for processing a nearest neighbor query when the
location of the query object is specified by an imprecise Gaussian
distribution. First, we consider two query processing strategies
for pruning candidate objects, which can reduce the number
of objects that require numerical integration for computing the
qualification probabilities. In addition, we consider a hybrid
approach that combines the two strategies. The performance of
the proposed methods is evaluated using test data.

I. INTRODUCTION

In recent years, the need for query processing technologies
for objects which have imprecise locations is growing in the
emerging application field of mobile databases. For example,
in a mobile application, the use of a GPS system is a popular
way to obtain the location of a moving object but, due to
poor signal quality, an accurate location is not necessarily
obtained [24]. In addition, frequent location measurements
should be avoided when a GPS is powered by batteries. As a
second example, consider an autonomous mobile robot which
moves in the real-world. The robot continually estimates its
own location based on sensor readings and movement histories
using some statistical technique [29]. However, the estimated
location is usually imprecise because of measurement noise.
Third, the use of exact location information is prohibited in
some types of mobile applications because of privacy issues.
One solution is to add some noise to the exact location before
providing it to the target application. In these examples, we
can only obtain an imprecise location for a moving object.
This means that traditional spatial query processing techniques
should be enhanced by considering location impreciseness.

In this paper, we propose nearest neighbor query processing
methods for the situation that a query object has an imprecise
location and issues a nearest neighbor query. Specifically, we
assume that the position of a query object is represented by a
Gaussian distribution. The target of a query is a set of points
which have static locations. We define a probabilistic nearest
neighbor query by extending the traditional notion of a nearest
neighbor query.

We introduce two query strategies for efficient query pro-
cessing which are described in detail in Section IV. In addition,
we propose a hybrid approach that combines the two strategies,
and perform some experiments to compare the three strategies
with different query settings. In [18], we proposed range
query processing methods for a similar context. The proposed
methods in this paper partly share the common ideas with this
previous work, but the support for nearest neighbor queries
requires development of new techniques. In particular, we use
a Voronoi diagram for fast query processing.

The rest of this paper is organized as follows. In Section II,
we describe related work. Section III introduces the idea of
a probabilistic nearest neighbor query. Next, we describe the
query processing techniques in Section IV. Section V shows
the experimental results. Finally, conclusions are given in
Section VI.

II. RELATED WORK

Query processing techniques for imprecise information is
a topic of some considerable interest in current database
research [15], [23]. In mobile and spatio-temporal database
research, imprecise location information appears due to variety
of reasons such as noise in GPS signals or sensor readings [12]
and location anonymity. Current proposals can be classified
into the following types according to the situation: i) the
locations of target objects are imprecise [9], [11], [21], [27],
[28], ii), the location of a query object is imprecise [18], and
iii) the locations of both the target objects and the query
object are imprecise [5], [8], [19], [20]. This paper deals
with the second case and assumes that the target objects are
static points. Therefore, we can utilize conventional spatial
index techniques [22], [26] such as R-trees for efficient query
processing.

Another assumption is the uncertainty model used to rep-
resent the location impreciseness. The simplest approach is
to assume that an object is located within a region (usually
a rectangle is used) and its distribution obeys a uniform
distribution [24]. On the other hand, some researchers allow
the use of arbitrary probability distributions [5], [8], [13],
[14], [21], [27], [28]. They usually assume that an uncertainty
region is given for each object [8], [13], [14], [27], [28]. An
uncertainty region represents the bounded area in which the

2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware

978-0-7695-3650-7/09 $25.00 © 2009 IEEE

DOI 10.1109/MDM.2009.16

52

2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware

978-0-7695-3650-7/09 $25.00 © 2009 IEEE

DOI 10.1109/MDM.2009.16

52

object is located. The query processing approach often taken in
this context is an extended version of the case for the uniform
distribution.

In contrast, we consider location impreciseness based on
Gaussian distributions. Gaussian distributions are a popular
choice of probability density function (PDF) in statistics and
pattern recognition [17]. In the context of moving object
databases, Pfoser and Jensen described the idea of representing
the location uncertainty of moving objects using Gaussian
distributions [24]. Moreover, in robotics research, a Gaussian
distribution is often used for localization, which is the process
of estimating the location of a moving robot based on sensor
readings and movement histories stored in the robot. Kalman
filters, a popular localization technique, use the Gaussian
distribution for modeling sensing noises, and the estimated
location is represented by a Gaussian distribution. Because of
its popularity, we focus on specialized techniques for Gaussian
distributions in this paper. By effectively using the properties
of Gaussian distributions, we can develop efficient query
processing algorithms.

We can consider several types of queries based on imprecise
locations such as range queries [11], [14], [18], [28], nearest
neighbor queries [9], [11], [20], [21], join queries [19] and
aggregation queries [10].

Cheng et al. [11] proposed a technique for nearest neighbor
queries. The algorithm performs candidate pruning using the
information of uncertainty regions. The technique is also ap-
plied to the context of moving object databases. [9] considered
nearest neighbor queries for one-dimensional imprecise ob-
jects, and a type of query called constrained nearest neighbor
queries is related to our work because it considers a given
probability threshold. One feature of these is the presentation
of an error bound for the result. Ljosa et al. APLA [21]
present a method which constructs an approximated index for
an arbitrary PDF. They proposed an approach for efficient k-
nearest neighbor queries using APLA, but their definition of k-
nearest neighbor queries is based on expected distances, which
is different from our definition of nearest neighbors queries.

In all the approaches discussed so far, the target data objects
are imprecise, but a given query is exact. There exist some pro-
posals of nearest neighbor query processing methods for the
case that both query and target objects are imprecise. Kriegel et
al. proposed an approach that uses a sampling technique [20].
Beskalas et al. [5] recently proposed a processing method for
k-nearest neighbor queries in which they consider uncertain
regions like the other approaches, but also consider uncertainty
of object existence. In addition, they try to strike a balance
between the I/O process and the CPU process. However, none
the methods discussed focus on Gaussian distributions.

In this paper, we extend our idea for probabilistic range
queries [18] to probabilistic nearest neighbor queries. Al-
though the current paper shares some common ideas with our
previous work, the proposed methods consider the features
of probabilistic nearest neighbor queries based on Gaussian
distributions. For Gaussian distributions, Böhm et al. proposed
an index structure called a Gauss-tree [6], [7]. It is used for

indexing imprecise objects that obey Gaussian distributions.
Since their subject is the impreciseness of target objects, this
approach cannot be applied to our problem. In addition, their
assumption is that the dimensions of the Gaussian distributions
are independent, whereas our approach considers the correla-
tion between dimensions.

III. PROBABILISTIC NEAREST NEIGHBOR QUERIES

A nearest neighbor query aims to find the data object
which is closest to the location of a given query object. If
both data objects and the query object have exact locations,
there is no problem; conventional query processing techniques
can be applied. However, if either or both of them have
imprecise locations, standard techniques cannot be applied.
Since the result of a nearest neighbor query is determined by
the positional relationship between the query object and target
data objects, if the query object has an imprecise probabilistic
location, the query result would be also probabilistic. In this
paper, we deal with the situation that the imprecise location
of the query object is specified by a Gaussian distribution.

For our purpose, it is necessary to expand the traditional
nearest neighbor queries. We define a probabilistic nearest
neighbor query formally as follows.

Definition 1: (Probabilistic Nearest Neighbor Query)
Assume that x, the location of the query object q, is repre-
sented by a d-dimensional Gaussian distribution [17]

pq(x) =
1

(2π)d/2|Σ|1/2
exp

[
−1

2
(x− q)tΣ−1(x− q)

]
,

(1)
where q is the average of the distribution, Σ is a d × d
covariance matrix, and |Σ| represents its determinant. Given
the probability density function pq(x) and the probability
threshold θ (0 < θ < 1), a probabilistic nearest neighbor
query PNNQ(q, θ) returns all the objects which satisfy the
following condition: the probability that the object is the
nearest neighbor of q (in terms of the Euclidean distance)
is greater than or equal to θ. Let O be the set of data objects
and let PrNN (o) be the probability that an object o ∈ O is
the nearest neighbor of q:

PrNN (q, o) = Pr(∀o′ ∈ O, o′ �= o, ‖x− o‖2 ≤ ‖x− o′‖2),
(2)

where x is the location of q and ‖x − o‖2 represents the
squared Euclidean distance between x, the location of the
query object q, and o, the location of the data object o. A
probabilistic nearest neighbor query is defined as follows:

PNNQ(q, θ) = {n | n ∈ O,PrNN (q, n) ≥ θ}. (3)

Note that since x, the location of q, is given probabilis-
tically, an object can only be the nearest neighbor of q in a
probabilistic sense. In contrast to the standard nearest neighbor
query, a probabilistic nearest neighbor query can return zero
or multiple objects. In the following section, we propose the
query processing strategies for probabilistic nearest neighbor
queries. Although our main target is query processing in a
two-dimensional space, our algorithms are generic and can be
applied to higher dimensions.

5353

a

b

e

f
g

c

d

h

Fig. 1. Voronoi diagram

IV. QUERY PROCESSING METHODS

A. Basic Ideas

In the conventional non-imprecise setting, a nearest neigh-
bor query can be answered efficiently using a Voronoi di-
agram [4], [16]. In this paper, we also utilize a Voronoi
diagram for processing imprecise nearest neighbor queries.
Given a set of points over a space, a Voronoi diagram is
constructed by dividing the space according to which of
the given points is the nearest. A Voronoi diagram can be
constructed with O(n log n) time for the two-dimensional
case and with O(n�(d+1)/2�) time for the d-dimensional case
(d ≥ 3). Figure 1 shows an example of a Voronoi diagram for
eight point objects (a to h) over a two-dimensional plane. The
influence area of each object is called a Voronoi region, and
we denote the Voronoi region of object o by Vo. For example,
the shaded area shown in Fig. 1 is Voronoi region, Ve, for
object e.

Using a Voronoi diagram, we can reformulate the notion of
a probabilistic nearest neighbor given in Eq. (2). For an object
o ∈ O, if the query object q is located in Vo, o becomes the
nearest neighbor of q. Therefore, PrNN (q, o) can be computed
by calculating the probability that the query object q is inside
Vo. This means that we should integrate the probability density
function pq(x) for the region Vo:

PrNN (q, o) =
∫
x∈Vo

pq(x)dx. (4)

Since we assume that the location of the query object
is represented by a Gaussian distribution, computation of
PrNN (·) needs the integration of the Gaussian distribution
given in Eq. (1) over Vo, the Voronoi region of the data object
o. However, this requires costly numerical integration (e.g.,
using the Monte Carlo method) because it is impossible to
compute the integral of the Gaussian PDF analytically. More-
over, the polyhedral shape of each Voronoi region increases the
numerical integration cost. Therefore, if we compute PrNN (·)
for all data objects, an extremely high cost is incurred. To solve
this problem, our approach prunes the non-candidate objects
whose PrNN (·) can be seen to be obviously smaller than the
threshold θ without numerical integration. We propose two
query processing strategies, which are described in Subsec-
tions IV-B and IV-C.

B. Strategy 1

In Strategy 1, we use the notion of an uncertainty region
[27], [28]. This is a region in which the query object is located
with a specified probability. In particular, we use the term
θ-region [18] to denote the region for which the probability
threshold is 1− 2θ.

Definition 2: (θ-Region)
Consider the integration of the probability density function
pq(x) over an ellipsoidal region (x − q)tΣ−1(x − q) ≤ r2.
Given θ (0 < θ < 1/2), let the value of r for which the result
of the integration becomes 1− 2θ be rθ:∫

(x−q)tΣ−1
(x−q)≤r2

θ

pq(x)dx = 1− 2θ. (5)

We call the ellipsoidal region

(x− q)tΣ−1(x− q) ≤ r2
θ (6)

defined by rθ the θ-region.
Since a θ-region is dependent on given parameters of the

query, we need to derive it dynamically when a query is made.
The simplest way for computing the θ-region for a given query
is to perform a binary search to find an appropriate θ-value
that satisfies Eq. (5), but this is not realistic. To cope with
this problem, we transform the integration over an ellipsoidal
region to an integration over a d-dimensional sphere. To begin
with, let us introduce the normalized Gaussian distribution
defined by assigning values q = 0 and Σ = I in Eq. (1).

pnorm(x) = N (0, I) =
1

(2π)d/2
exp

[
−1

2
‖x‖2

]
(7)

Based on this probability density function, we can derive the
following property.

Property 1: Consider the integration of pnorm(x) over the
region ‖x‖2 ≤ r2, which is a sphere with the origin as its
center and radius r. For a given θ (0 < θ < 1/2), let r̃θ be
the radius with which the integral becomes 1− 2θ. Then∫

‖x‖2≤r̃2
θ

pnorm(x)dx = 1− 2θ (8)

and

rθ = r̃θ . (9)

The proof is given in [18]. Thus, if r̃θ is calculated for a given
θ using Eq. (8), the equality in Eq. (9) means we can use it
for our purpose.

Since the shape of the θ-region is ellipsoidal, it is not easy to
directly apply it to pruning. Therefore, we derive the bounding
box for the given θ-region as shown in Fig. 2. Let the width
of the box from the average of the distribution q along the
i-th dimension axis be wi. Then the following property holds
[18].

Property 2: The value of wi (i = 1, 2, . . . , d) is given by

wi = σirθ, (10)

5454

q

wi

wj

wj

wi

xi

xj

Fig. 2. Using bounding box

q

a

b

e

f
g

c

d

h

Fig. 3. Bounding box and Voronoi regions

where σi corresponds to the standard deviation for the i-th
dimension. That is,

σi =
√

(Σ)ii, (11)

where (Σ)ii represents the (i, i) entry of Σ.
Figure 3 illustrates the idea for query processing. The

shaded area is the θ-region which is bounded by a box. The key
point is that we should only consider the points whose Voronoi
regions overlap with the bounding box. In this case, the points
a, c, d, f , and g become the candidates. We can exclude the
non-overlapped Voronoi regions from further consideration.

The reason is as follows. First, the probability that the query
object is located outside of the bounding box is smaller than
1 − (1 − 2θ) = 2θ. Second, since a Gaussian distribution
is point symmetric, if we draw the symmetry region V ′

o for a
Voronoi region Vo in terms of q, the integral over V ′

o gives the
same probability as that over Vo. This means that the integral
over Vo is less than θ so that PrNN (o) is never larger than
or equal to θ. On the other hand, the remaining objects may
satisfy the qualification condition.

The query processing strategy can be summarized as fol-
lows. First, we retrieve as the candidate objects those objects
whose Voronoi region overlaps with the bounding box of the
θ-region. Then, we compute PrNN (·) of all candidate objects
by numerical integration. Thus we do not need to compute
PrNN (·) for the objects whose integrals are obviously smaller
than θ.

Algorithm 1 PNNQ Based on Strategy 1
1: procedure PNNQ-1(q, Σ, θ)
2: C ← ∅, sum← 0
3: Calculate σi (i = 1, . . . , d) from Σ
4: rθ ← catalog lookup(θ)
5: � may return the closest approximation value
6: Using {σi}di=1, rθ, derive the bounding box shown in

Fig. 2
7: Retrieve objects whose Voronoi region overlap with

the bounding box into C
8: foreach o ∈ C do
9: Compute PrNN (q, o) =

∫
x∈Vo

pq(x)dx
10: sum← sum + PrNN (q, o)
11: if PrNN (q, o) ≥ θ then
12: output o
13: end if
14: if sum > 1− θ then
15: return
16: end if
17: end for
18: end procedure

There exists one remaining issue for query processing: how
to obtain rθ from the given θ. Referring back to Property 1,
we can obtain the θ-region (Eq. (6)) for the given θ by
integrating the normalized formula Eq. (7) over a sphere.
However, since the function pnorm(x) of Eq. (7) cannot be
integrated analytically, it is not possible to compute rθ directly
from θ. To solve this problem, we use a table (constructed in
advance by numerical integration) which contains θ and its
corresponding rθ for each representative value of r. Using the
table, we can quickly find the θ-region. Such an idea is also
used in [27], [28], and the table is called a U-catalog. We
should note that the corresponding entry for the given θ-value
may not exist in the table. For this case, we find the entry r∗θ
which is the maximal within the entries that satisfy θ∗ < θ.
Although the number of retrieved objects may increase, the
correctness of the result is retained.

Based on the above considerations, the query processing
algorithm is the procedure shown as Algorithm 1. Note that
the following preparation is required in advance.

1) Create a U-catalog.
2) Compute a Voronoi diagram for the target data objects.
3) For each data object, store its coordinates and the

information about the corresponding Voronoi region in
a file.

The function catalog lookup(·) at line 3 obtains the appropri-
ate rθ using the U-catalog. If the given θ does not match the
entries, it returns the conservative approximation value r∗θ . The
algorithm is simple, but we have an additional improvement. If
the condition at line 14 is satisfied, the remaining candidates
cannot satisfy the threshold θ so that we can terminate the
process here.

5555

a

b

e

f
g

c

d

h

Fig. 4. Smallest enclosing circle of e’s Voronoi region

C. Strategy 2

In Strategy 2, we perform pruning using the upper bound
value of PNN (·) for each data object. First, we obtain the
smallest enclosing sphere (SES) for each Voronoi region.
For the two-dimensional case, the corresponding smallest
enclosing circle [1] can be computed O(m), where m is the
number of vertices of the Voronoi region. For instance, Fig. 4
shows the SES for the Voronoi region Ve. If integrate the
given probability density function pq(x) over the SES, the
result can be used as an upper-bound for the target probability
which we seek. The integral over a sphere can be estimated
easily by creating a table in advance, as shown below. This
technique is effective for the fast pruning of candidate objects.
The approach is described in detail below. First, we consider
a simple case in which the covariance matrix Σ in Eq. (1) is
a unit matrix, and then we extend the idea to the general case.

1) Case of Σ = I: In this case, pq(x) is reduced to
pnorm(x) in Eq. (7). The equi-probable surface of this PDF is
spherical.

Now we consider how to use the information of SESs for
efficient query processing. The sizes and the locations of the
Voronoi regions for target objects are different from each
other. Therefore, the radii and the coordinates of the respective
centers of their SESs are also different. To obtain the integrals
quickly for different SESs, we create a table in advance.
Consider the normalized Gaussian distribution pnorm(x) given
in Eq. (7). Suppose that there is a d-dimensional sphere R with
radius δ and let the distance between its center and the origin
be α as shown in Fig. 5. Now we consider the probability

π(α, δ) =
∫
x∈R

pnorm(x)dx, (12)

which is the result of the integration of pnorm(x) over the
sphere R, represented by the two parameters α and δ. For dif-
ferent combinations of α and δ, we compute the probabilities
using numerical integration and store the results in a table as
shown in Fig. 6. We also call this table a U-catalog. Given a
pair (α, δ), a U-catalog returns the corresponding probability.

Next, we describe the usage of a U-catalog for query
processing. Suppose that a probabilistic nearest neighbor query
PNNQ(q, θ) is issued. To evaluate whether each data ob-
ject o may satisfy the query, we need compute the integral

jx

i
x

R

α

o

δ

Fig. 5. Sphere R

α δ π(α, δ)

0.0 0.1 · · ·
0.0 0.2 · · ·

...
...

...

1.0 0.1 · · ·
...

...
...

Fig. 6. U-catalog for Strategy 2

∫
x∈SESo

pnorm(x)dx, where SESo is the SES for Vo, the
Voronoi region of o. Since αo, the distance between the center
of SESo and the origin, and δo, the radius of SESo, can be
easily obtained, we can search the U-catalog shown in Fig. 6 to
find the entry (αo, δo). If the corresponding probability is less
than θ, we can safely prune the object o. On the other hand,
even if the value is larger than or equal to θ, it is not assured
that o satisfies the query because the bounding sphere SESo

has a large volume compared to Vo. Therefore, in this case,
it is necessary to compute the integration over the Voronoi
region numerically.

As in the case of Strategy 1, since the number of entries
in a U-table is limited, it may not contain the entry for
the given (αo, δo). In that case, we find the entry (α∗

o, δ
∗
o)

whose probability is the smallest within the entries that satisfy
α∗

o ≤ αo and δ∗o ≥ δo. That is to say, we find the closest
entry under the condition that the probability is larger than
the actual value. Although we may need to process additional
candidate objects, the approach assures the correctness of the
process. Next, we generalize this idea and then present a query
processing algorithm.

2) General Case: Now we consider the case that Σ in
Eq. (1) is an arbitrary covariance matrix. Since the equi-
probable surface of pq(x) has an ellipsoidal shape, it is not
possible to obtain the integral of pq(x) over the SES of each
Voronoi region by looking up a U-catalog. Therefore, we
introduce p	q (x), the upper-bounding function of pq(x).

Definition 3: (Upper-bounding Function)
Let the spectral decomposition of the inverse of the covariance
matrix Σ−1 be

Σ−1 =
d∑

i=1

λiviv
t
i, (13)

where λi and vi are the i-th eigenvalue and its corresponding
eigenvector. Let us define

λ	 = min{λi}. (14)

Note that λ	 > 0 holds because all the eigenvalues of a
covariance matrix are greater than zero. We define the matrix

5656

jx

i
x

q

)(x
T

q
P

)(x
q
P

Fig. 7. pq(x) and p�q (x)

M	 as follows:

M	 = λ	
d∑

i=1

viv
t
i = λ	I. (15)

Then, we define the following function obtained by substituting
Σ−1 in Eq. (1) with M	:

p	q (x) =
1

(2π)d/2|Σ|1/2
exp

[
−λ	

2
‖x− q‖2

]
. (16)

The equi-probable surface of p	q (x) is spherical. Note that
p	q (x) is not a probability density function since its integral
over the whole space is not equal to one. The function p	q (x)
has the following property:

Property 3: For any point x,

pq(x) ≤ p	q (x). (17)

p	q (x) is the function with the smallest spherical equi-
probable surface that satisfies this property. This means that
p	q (x) is the least upper-bounding function of pq(x). Figure 7
illustrates p	q (x). This figure shows the isosurface of equal
probability for each function.

It is easy to obtain the integral p	q (x) by looking in the
U-catalog constructed for the case of Σ = I. Since p	q (x)
satisfies Property 3, the integral of p	q (x) is never smaller
than that of pq(x) for the same integration region. Therefore,
the obtained value can be used for pruning: if the estimated
integral of p	q (x) is smaller than θ, the object does not have
any chance of satisfying the query condition. Note that if there
is no entry that exactly matches the given parameters (α, δ),
we should find the closest conservative setting as described
for the case of Σ = I.

The query processing algorithm based on Strategy 2 is
given as Algorithm 2. Note that the following preprocessing
is required in advance.

1) Construct a U-catalog.
2) Compute Voronoi regions and their SESs for all data

objects.

Algorithm 2 PNNQ Based on Strategy 2
1: procedure PNNQ-2(q, Σ, θ)
2: C ← ∅, sum← 0
3: Calculate λ	 and |Σ| from Σ
4: for each data object o ∈ O do
5: Calculate the distance αo

6: π(αo, δo)← catalog lookup(αo, δo)
7: � may return the closest approximation value
8: if π(αo, δo) ≥ θ then
9: C ← C ∪ {o}

10: end if
11: end for
12: Sort objects in C in descending order of π(α, δ)
13: for each o ∈ C do � with descending order
14: Compute PrNN (o)← ∫

x∈Vo
pq(x)dx

15: sum← sum + PrNN (o)
16: if PrNN (o) ≥ θ then
17: output o
18: end if
19: if sum > 1− θ then
20: return
21: end if
22: end for
23: end procedure

3) For each data object, store its coordinates, the center, and
the radius of its SES, and information about its Voronoi
region in a file.

The function catalog lookup at line 6 finds the correspond-
ing entry for the parameters (αo, δo), where αo is the distance
between the center of SESo and the query center q and δo is
the radius of SESo. The function returns the probability for
SESo. If it cannot find an exact match, it returns the closest
value as described above. The reason why we sort objects in
descending order of the probability (line 12) is for efficiency.
If this optimization is applied, the query processing terminates
more quickly on average than is the case for a random order,
because an object which has a large probability for its SES
usually also has a large probability over its Voronoi region.

V. EXPERIMENTS

A. Experimental Setup

For the experiments, we used road line segment data of
Long Beach from the TIGER database [3]. We extracted
the midpoint for each line segment and made a point set.
This set consisted of 50,747 points and was normalized
in [0, 1000] × [0, 1000] space. We evaluated the two query
strategies proposed in Section IV for PNNQ(q, θ) using this
dataset. We also evaluated their combination. This hybrid strat-
egy performs filtering using Strategy 1, then does additional
filtering using Strategy 2 for the remaining objects.

The covariance matrix Σ in Eq. (1) was defined to be

Σ = γ

[
7 2

√
3

2
√

3 3

]

5757

For this matrix the shape of the isosurface of pq(x) is an
ellipse titled at 30◦ and the major-to-minor axis ratio is
3:1. The coefficient γ specifies the overall uncertainty of the
distribution. We used γ = 10 and θ = 0.01 as the default
but we performed evaluations with different γ and θ values.
Moreover, we also evaluated strategies for different isosurface
shapes by changing elements of Σ. We used the averaged
response time of ten query trials as the evaluation metric.

We used LEDA 6.1 for computing Voronoi regions and
smallest enclosing circles. LEDA [1] is a C++ class library
with geometric data types and algorithms, and is based on deep
knowledge of graph and network problems and computational
geometry. In addition, we used RANDLIB [2] to compute
probabilities by numerical integration. RANDLIB is a C
library which can be used for generating random numbers that
obey a specified two-dimensional Gaussian distribution. The
proportion of such random numbers that fall in the specified
region corresponds to the probability to be estimated. This
method is called the importance sampling technique [25]. It
is a kind of Monte Carlo method, but is more efficient than
the standard Monte Carlo approach. In these experiments,
1,000,000 random numbers were generated for each numer-
ical integration procedure. It took about 0.8 seconds for the
numerical integration for one object.

The programs for the experiments were implemented using
C++ and were run on a PC with an Intel Pentium CPU (2.0
GHz), 1GB of memory, a 143GB hard disk, and Fedora Core
5 OS.

B. Experimental Results

1) Experiments Using Default Parameters: We show the
query processing time for each strategy with default parameter
settings (γ = 10, θ = 0.01) in Fig. 8. We also show the number
of candidate objects that required numerical integration in
Table I. The number of resulting answer objects is 26.

Figure 8 shows that most of the processing time is spent in
numerical integration for deriving PrNN (·). Since our method
reduces the computational cost by pruning objects, a strategy
that can prune more objects will have better performance.
Table I shows that the number of objects that require numerical
integration is 177 in Strategy 1 and 157 in Strategy 2 and the
hybrid approach reduces the number to 132. The reason is
that the candidate sets obtained by the two strategies share
common objects. The hybrid strategy only needs to perform
numerical integration for the common objects.

The reader should note that the response time is quite large
even for the hybrid strategy; it takes nearly 120 seconds for ob-
taining only 26 answer objects. To reduce the processing time
further, the most effective way is to reduce the time for nu-
merical integration. One obvious approach is to use a smaller
number of random numbers for the numerical integration
procedure. For example, if we use 100,000 random numbers
instead of 1,000,000 in this experiment, the integration time
is approximately reduced to 1/10 of what it was and we can
achieve efficient query processing. However, this approach has
a negative effect on accuracy. In this experiment, we use the

0.86 7.32 0.95

145.51 129.48

112.12

7.64
7.59

7.59

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

strategy1 strategy2 strategy1+2

R
e
s
p
o
n
se
 T
im
e
[s
]

filtering compute prob. rest

Fig. 8. Response time (γ = 10, θ = 0.01)

TABLE I
NUMBER OF CANDIDATES (γ = 10, θ = 0.01)

Strategy 1 Strategy 2 Strategy 1+2

177 157 132

probability threshold value θ = 0.01. This smaller parameter
setting also requires accuracy for numerical integration so we
chose to use 1,000,000 samples based on several trials. If the
probability threshold value is larger, for example θ = 0.1, we
may be able to reduce the number of samples without loss of
accuracy.

Figure 8 shows that the processing time for filtering in
Strategy 2 is almost ten times larger than that in Strategy 1.
The reason is that in lines 4 to 11 of Algorithm 2, we scan
all the table entries. The processing time is improved in the
hybrid strategy since it uses Strategy 1 first and then Strategy 2
only checks the selected candidate objects. Although we use a
naive strategy for the lookup phase in Algorithm 2, we would
be able to improve the performance of the algorithm using an
additional index structure. For example, we could construct an
in-memory spatial index for the entries of the U-catalog using
the center of each SES as an index key. If we perform a nearest
neighbor query from q using the index, we can arrange the
entries in ascending order of the α values. Then we can check
the promising entries first. We will evaluate this optimization
method in future work.

Figures 9, 10, and 11 show the candidate objects in each
strategy for a query with default parameters. The small white
circle located in the center in each figure denotes the average
point of the distribution. The polygons with thick lines and
the black polygons correspond to the candidate objects and
the result objects, respectively. The rectangles in Figs. 9 and
10 are the bounding boxes of the θ-regions used for filtering
in Strategy 1.

2) Using Different γ Values (γ = 1 and γ = 50):
To examine the impact of the degree of uncertainty on the
performance of the strategies, we changed γ, which determines
the uncertainty of the covariance matrix Σ in Eq. (1) to γ = 1

5858

Fig. 9. Candidate objects in Strategy 1 Fig. 10. Candidate objects in Strategy 2 Fig. 11. Candidate objects in Strategy 1+2

and γ = 50. If we change γ, the shape of the isosurface of
pq(x) does not change but its size does. Specifically, if γ
becomes larger, the size of the isosurface also becomes larger.
The size of the isosurface represents the degree of uncertainty
of location of the query object. Therefore, compared to the
default value γ = 10, γ = 1 means that the location of
the query object is more accurately known while γ = 50
represents a more vague location.

Figures 12 and 13 show the query processing time for each
of the strategies with γ = 1 and γ = 50, respectively. Tables II
and III show the number of candidate objects that require
numerical integration. The number of resulting objects is 8
in the case of γ = 1, and is 15 in the case of γ = 50.

Figure 12 shows that the proportion of the processing time
spent on probability computation in the case of γ = 1 is lower
than that of γ = 10. The reason is that the number of candidate
objects is small because the location of the query object is
not so uncertain. On the other hand, the processing time for
filtering is unchanged by the degree of uncertainty of the query
object. Therefore, in the case of γ = 1, since the ratio of
the processing time for filtering is larger than that of γ =
10, Strategy 2 (which has a high filtering cost) has a longer
processing time than Strategy 1.

We can see an interesting result in Fig. 12. In the case of
γ = 1, since the number of the candidate objects in Strategy
2 is larger than that of Strategy 1, it would seem that the
processing time for probability computation in Strategy 2
should take more time than Strategy 1. However, the result
is the opposite. The reason is that Algorithm 2 performs an
ordering of candidates at line 12. Since the promising objects
are processed earlier, the query process can terminate more
quickly.

In the case of γ = 50, when the location of the query object
is more imprecise, the processing time of Strategy 2 is much
shorter than that of Strategy 1 as shown Fig. 13. The reason is
that Strategy 2 prunes more objects than Strategy 1 as shown
in Table III.

0.85

7.61

0.89

20.28

19.41

18.25

7.74

7.64

7.72

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

strategy1 strategy2 strategy1+2

R
e
s
p
o
n
se
 T
im
e
[s
]

filtering compute prob. rest

Fig. 12. Response time (γ = 1)

0.86 7.37 1.12

665.40

267.81 246.89

7.66

7.63
7.60

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

strategy1 strategy2 strategy1+2

R
e
s
p
o
n
se
 T
im
e
[s
]

filtering compute prob. rest

Fig. 13. Response time (γ = 50)

TABLE II
NUMBER OF CANDIDATES (γ = 1)

Str1 Str2 Str1+2

24 32 23

TABLE III
NUMBER OF CANDIDATES

(γ = 50)

Str1 Str2 Str1+2

847 316 292

5959

0.84
7.32

0.98

102.87
80.48

72.13

7.66

7.58

7.65

0.00

20.00

40.00

60.00

80.00

100.00

120.00

strategy1 strategy2 strategy1+2

R
e
s
p
o
n
se
 T
im
e
[s
]

filtering compute prob. rest

Fig. 14. Response time (θ = 0.03)

0.86
7.32

0.94

86.65

52.02

46.99

7.66

7.61

7.71

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

strategy1 strategy2 strategy1+2

R
e
s
p
o
n
se
 T
im
e
[s
]

filtering compute prob. rest

Fig. 15. Response time (θ = 0.05)

TABLE IV
NUMBER OF CANDIDATES

(θ = 0.03)

Str1 Str2 Str1+2

128 93 82

TABLE V
NUMBER OF CANDIDATES

(θ = 0.05)

Str1 Str2 Str1+2

107 58 53

3) Using Different θ Values (θ = 0.03 and θ = 0.05):
To examine the impact of the probability threshold on the
performance of the strategies, we changed θ to θ = 0.03 and
θ = 0.05.

Figures 14 and 15 show the query processing time for each
strategy with θ = 0.03 and θ = 0.05, respectively. Tables IV
and V show the number of candidate objects that required
numerical integration. The number of resulting objects is 7
in the case of θ = 0.03, and is 3 in the case of θ = 0.05.
The reason why the number of resulting objects decreases as
the threshold becomes larger is clear from the definition of a
probabilistic nearest neighbor query.

Figures 8, 14, and 15 show that the superiority of Strategy 2
over Strategy 1 becomes greater as θ becomes larger. As
shown in Tables I, IV, and V, Strategy 2 prunes more objects
(compared to Strategy 1) as θ becomes larger.

4) Using Different Shapes of the Isosurface of pq(x): In
the default setting, the shape of the isosurface of pq(x) was

an ellipse titled at 30◦ and the major-to-minor axis ratio is
3:1. However, we also considered different shaped isosurfaces.
Specifically, we performed calculations for a circular isosur-
face and for a narrow ellipse titled at 30◦ with a major-to-
minor axis ratio of 9:1. To let the shape of the isosurface
of pq(x) be a circle, we defined the covariance matrix Σ in
Eq. (1) to be

Σ = γ

[
1 0
0 1

]
.

Similarly, to let the shape of the isosurface of pq(x) be a
narrow ellipse titled at 30◦ with a major-to-minor axis ratio
of 9:1, we defined Σ to be

Σ = γ

[
61 20

√
3

20
√

3 21

]
.

We used γ = 30 in the former case and γ = 2 in the latter
case so that the numbers of resulting objects in these cases are
approximately the same as in the default setting. Figures 16
and 17 show the query processing time for each strategy for
the case of a circle and a narrow ellipse, respectively. Tables VI
and VII show the number of candidate objects that required
numerical integration. The number of resulting objects is 26
in the former case, and is 24 in the latter case.

Figure 16 shows that Strategy 2 is superior to Strategy 1
when the shape of the isosurface is a circle. On the other
hand, Figure 17 shows that Strategy 1 is superior to Strategy
2 when the shape of the isosurface is a narrow ellipse. The
reason is that Strategy 1 can prune more objects (compared to
Strategy 2) as the shape of the isosurface becomes thinner as
shown in Tables I, VI, and VII.

VI. CONCLUSIONS

In this paper, we have proposed nearest neighbor query pro-
cessing methods for query objects with imprecise Gaussian-
based locations. A standard nearest neighbor query method
cannot be adapted to this context, since the query result
is also probabilistic. Therefore, we defined the notion of a
probabilistic nearest neighbor query, and proposed efficient
query processing methods.

The simplest method is to compute the probability that
each data object satisfies a query by integrating the Gaussian
PDF over the Voronoi region for the object. However, since
it is impossible to compute the integral of the Gaussian
PDF analytically, costly numerical integration is required. Our
methods reduce the computational cost by pruning the objects
whose probabilities can be seen to be obviously smaller than
the threshold without heavy computation. We proposed two
query processing strategies based on this approach. Strategy 1
is based on the concept of a θ-region and Strategy 2 utilizes
the notion of a smallest enclosing sphere (SES) and an upper-
bounding function. Both approaches use tables, called U-
catalogs, for the efficient query processing.

We performed experiments to compare three strategies
Strategy 1, Strategy 2, and a hybrid approach with different
parameter settings. We found that the superiority or inferiority

6060

0.85
7.40

0.94

89.61

47.23
46.97

7.66

7.76
7.60

0.00

20.00

40.00

60.00

80.00

100.00

120.00

strategy1 strategy2 strategy1+2

R
e
s
p
o
n
se
 T
im
e
[s
]

filtering compute prob. rest

Fig. 16. Response time (circle)

0.86 7.32 0.99

230.64

300.53

205.71

7.61

7.70

7.64

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

strategy1 strategy2 strategy1+2

R
e
s
p
o
n
se
 T
im
e
[s
]

filtering compute prob. rest

Fig. 17. Response time (narrow ellipse)

TABLE VI
NUMBER OF CANDIDATES

(CIRCLE)

Str1 Str2 Str1+2

116 53 53

TABLE VII
NUMBER OF CANDIDATES

(NARROW ELLIPSE)

Str1 Str2 Str1+2

277 383 256

of Strategies 1 and 2 depends on the given query and the
specified parameters. Specifically, Strategy 1 is better than
Strategy 2 when the uncertainty of the query object is smaller,
the probability threshold is lower, and the shape of the
isosurface is narrower. For the opposite cases, Strategy 2 shows
better results. The hybrid strategy inherits the benefits of two
methods and shows the best performance. For practical use,
the combined strategy would be highly recommended.

In future work, we will improve the efficiency of our query
processing methods using additional data structures. We are
also considering the development of new methods for non-
planar cases (d = 3, for example).

ACKNOWLEDGMENTS

This research was partly supported by a Grant-in-Aid for
Scientific Research on Priority Areas, Japan (19024037).

REFERENCES

[1] “LEDA,” http://www.algorithmic-solutions.com/leda/.
[2] “RANDLIB,” http://biostatistics.mdanderson.org/SoftwareDownload/.
[3] “TIGER,” http://tiger.census.gov/.
[4] F. Aurenhammer, “Voronoi diagrams: A survey of a fundamental ge-

ometric data structure,” ACM Computing Surveys, vol. 23, no. 3, pp.
345–405, 1991.

[5] G. Beskales, M. A. Soliman, and I. F. Ilyas, “Efficient search for the top-
k probable nearest neighbors in uncertain databases,” in Proc. VLDB,
2008, pp. 326–339.

[6] C. Böhm, A. Pryakhin, and M. Schubert, “The Gauss-tree: Efficient
object identification in databases of probabilistic feature vectors,” in
Proc. ICDE, 2006.

[7] ——, “Probabilistic ranking queries on Gaussians,” in Proc. SSDBM,
2006, pp. 119–128.

[8] J. Chen and R. Cheng, “Efficient evaluation of imprecise location-
dependent queries,” in Proc. ICDE, 2007, pp. 586–595.

[9] R. Cheng, J. Chen, M. Mokbel, and C.-Y. Chow, “Probabilistic verifiers:
Evaluating constrained nearest-neighbor queries over uncertain data,” in
Proc. ICDE, 2008, pp. 973–982.

[10] R. Cheng, D. V. Kalashnikov, and S. Prabhakar, “Evaluating probabilistic
queries over imprecise data,” in Proc. ACM SIGMOD, 2003, pp. 98–109.

[11] ——, “Querying imprecise data in moving object environments,” IEEE
TKDE, vol. 16, no. 9, pp. 1112–1127, 2004.

[12] R. Cheng and S. Prabhakar, “Managing uncertainty in sensor databases,”
SIGMOD Record, vol. 32, no. 4, pp. 41–46, 2003.

[13] R. Cheng, S. Singh, S. Prabhakar, R. Shah, J. S. Vitter, and Y. Xia,
“Efficient join processing over uncertain data,” in Proc. CIKM, 2006,
pp. 738–747.

[14] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter, “Efficient
indexing methods for probabilistic threshold queries over uncertain
data,” in Proc. VLDB, 2004, pp. 876–887.

[15] N. Dalvi and D. Suciu, “Management of probabilistic data: foundations
and challenges,” in Proc. ACM PODS, 2007.

[16] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Com-
putational Geometry: Algorithms and Applications, 2nd ed. Springer,
2000.

[17] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed.
Wiley, 2000.

[18] Y. Ishikawa, Y. Iijima, and J. X. Yu, “Spatial range querying for
gaussian-based imprecise query objects,” in Proc. ICDE, 2009 (to
appear).

[19] H.-P. Kriegel, P. Kunath, M. Pfeifle, and M. Renz, “Probabilistic
similarity join on uncertain data,” in Proc. DASFAA, 2006, pp. 295–
309.

[20] H.-P. Kriegel, P. Kunath, and M. Renz, “Probabilistic nearest-neighbor
query on uncertain objects,” in Proc. DASFAA, 2007, pp. 337–348.

[21] V. Ljosa and A. K. Singh, “APLA: Indexing arbitrary probability
distributions,” in Proc. ICDE, 2007, pp. 946–955.

[22] Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos, and Y. Theodor-
idis, R-Trees: Theory and Applications. Springer, 2005.

[23] J. Pei, M. Hua, Y. Tao, and X. Lin, “Query answering techniques on
uncertain and probabilistic data (tutorial),” in Proc. SIGMOD, 2008.

[24] D. Pfoser and C. S. Jensen, “Capturing the uncertainty of moving-
object representations,” in Proc. 6th Intl. Symp. on Advances in Spatial
Databases (SSD’99), 1999, pp. 111–131.

[25] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Nu-
merical Recipies: The Art of Scientific Computing, 3rd ed. Cambridge
University Press, 2007.

[26] P. Rigaux, M. Scholl, and A. Voisard, Spatial Databases with Applica-
tion to GIS. Morgan Kaufmann, 2001.

[27] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and S. Prabhakar,
“Indexing multi-dimensional uncertain data with arbitrary probability
density functions,” in Proc. VLDB, 2005, pp. 922–933.

[28] Y. Tao, X. Xiao, and R. Cheng, “Range search on multidimensional
uncertain data,” ACM TODS, vol. 32, no. 3, 2007.

[29] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The MIT
Press, 2005.

6161

