Processing Spatial Queries Based on Uncertain Location Information

Yuichi lijima and Yoshiharu Ishikawa (Nagoya University)

Background

- Uncertain Location Information
* Sensor environments: GPS consumes batteries
- Mobile robots: Localization may not be accurate
- Location privacy: Exact locations are hidden

- Location-based Queries
- Range queries, nearest neighbor queries
- Spatial index-based processing
*What's happen for uncertain locations?

Objectives

- Query Processing Based on Uncertain Location Information
- Location of a query object is specified as a Gaussian distribution
* Target data: spatial points
+ Probabilistic Nearest Neighbor Query (PNNQ)
* Find objects such that the probabilities that they are the nearest neighbors of q are greater than θ

- Gaussian distribution of query object q

$$
p_{q}(x)=\frac{1}{(2 \pi)^{d / 2}|\Sigma|^{1 / 2}} \exp \left[-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{q})^{t} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{q})\right]
$$

Naïve Approach

- $\operatorname{Pr}_{N N}(q, o)$: Probability that target object o is the nearest neighbor of query object q
* Can be calculated by integrating $p_{q}(x)$ over Voronoi region V_{o}

$$
\operatorname{Pr}_{N N}(q, o)=\int_{V_{o}} p_{q}(x) d x
$$

* If the result is greater than θ, object o satisfies the condition
- Compute $\operatorname{Pr}_{N N}(q, o)$ for each object o using numerical integration: quite costly?

Our Approach

- Use of Filtering
* Prune non-candidate objects using low-cost filtering conditions
* Only the remaining candidate objects require numerical integration
* Filtering should be conservative: no false negatives
* We propose two filtering strategies

Strategy 1: $\boldsymbol{\theta}$-Region-Based Approach

$\rightarrow \theta$-Region: Ellipsoidal region for which the integration of $p_{q}(\boldsymbol{x})$ becomes $1-2 \theta$:

$$
\int_{(x-q)^{t} \Sigma^{-1}(x-q) \leq r_{\theta}^{2}} p_{q}(x) d x=1-2 \theta
$$

- Ellipsoidal region

$$
(\boldsymbol{x}-\boldsymbol{q})^{t} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{q}) \leq r_{\theta}^{2}
$$

is the θ-region
$+\theta$-region can be derived using r_{θ}-table and transformation

- Query Processing
+ Given a query, derive its θ-region and its bounding box
+ Retrieve objects whose Voronoi regions overlap with the box
* Perform numerical integration for each candidate objects

Strategy 2: Use of SES and $p_{a}^{\top}(x)$

- Compute the smallest enclosing sphere (SES) for each Voronoi region beforehand
+ Idea: Calculate integration
$\int_{S E S_{o}} p_{q}(x) d x>\operatorname{Pr}_{N N}(q, o)$,
which overestimates $\operatorname{Pr}_{N N}(q, o)$

- Integration over a spherical region is more easier to compute
- Additional approximation: Use of upper bounding function $p_{q}^{\top}(\boldsymbol{x})$
\rightarrow It gives the upper bound for $p_{q}(\boldsymbol{x})$, and has a spherical isosurface
- Easy to compute integration using a pre-computed table
- In summary, we perform two-step approximations

$$
\int_{S E S_{o}} p_{q}^{\top}(x) d x \geq \int_{S E S_{o}} p_{q}(x) d x>\operatorname{Pr}_{N N}(q, o)
$$

Experimental Results

\downarrow Performance of two strategies depends on parameters and given queries

- No apparent winner
- The hybrid strategy shows the best performance
- Query Example (see figure)
- Enclosing box: bounding box for the θ-region
\rightarrow Red cells: candidate cells

- Green cells: answer cells

Our Related Work

- Y. Ishikawa, Y. lijima, J.X. Yu, "Spatial Range Querying for Gaussian-Based Imprecise Query Objects", ICDE 2009.
\rightarrow Consider the case for range queries

