Processing Spatial Queries Based on Uncertain Location Information

Yuichi lijima and Yoshiharu Ishikawa (Nagoya University)

Background

- Uncertain Location Information
 - Sensor environments: GPS consumes batteries
 - Mobile robots: Localization may not be accurate
 - Location privacy: Exact locations are hidden

- Range queries, nearest neighbor queries
- Spatial index-based processing
- What's happen for uncertain locations?

Objectives

- → Query Processing Based on Uncertain Location Information
 - + Location of a query object is specified as a Gaussian distribution
 - Target data: spatial points
- Probabilistic Nearest Neighbor Query (PNNQ)
 - Find objects such that the probabilities that they are the nearest neighbors of q are greater than θ PDF of q (Gaussian)

Gaussian distribution of query object q

$$p_q(\boldsymbol{x}) = \frac{1}{(2\pi)^{d/2}} \exp\left[-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{q})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{q})\right]$$

Naïve Approach

- $\Pr_{NN}(q, o)$: Probability that target object o is the nearest neighbor of query object q
 - \Rightarrow Can be calculated by integrating $p_a(\mathbf{x})$ over Voronoi region V_a

$$\Pr_{NN}(q,o) = \int_{V_o} p_q(\boldsymbol{x}) d\boldsymbol{x}$$

- \rightarrow If the result is greater than θ , object o satisfies the condition
- Compute $Pr_{NN}(q, o)$ for each object o using numerical integration: quite costly

Our Approach

- Use of Filtering
 - Prune non-candidate objects using low-cost filtering conditions
 - Only the remaining candidate objects require numerical integration
 - Filtering should be conservative: no false negatives
- We propose two filtering strategies

Strategy 1: *θ*-Region-Based Approach

+ θ -Region: Ellipsoidal region for which the integration of $p_a(\mathbf{x})$ becomes $1 - 2\theta$:

$$\int_{(x-q)^{t} \Sigma^{-1}(x-q) \le r_{\theta}^{2}} p_{q}(x) dx = 1 - 2\theta$$

Ellipsoidal region
$$(x-q)^{t} \Sigma^{-1}(x-q) \le r_{\theta}^{2}$$

is the
$$\theta$$
-region

- $\rightarrow \theta$ -region can be derived using r_{θ} -table and transformation
- Query Processing
 - Given a query, derive its θ-region and its bounding box
 - Retrieve objects whose Voronoi regions overlap with the box
 - Perform numerical integration for each candidate objects

Strategy 2: Use of SES and $p_a^{T}(x)$

- Compute the smallest enclosing sphere (SES) for each Voronoi region beforehand
 - Idea: Calculate integration

$$\int_{SES_o} p_q(\boldsymbol{x}) d\boldsymbol{x} > \Pr_{NN}(q, o),$$

which overestimates $Pr_{NN}(q, o)$

- Integration over a spherical region is more easier to compute
- + Additional approximation: Use of upper bounding function $p_a^{T}(x)$
 - \rightarrow It gives the upper bound for $p_a(\mathbf{x})$, and has a spherical isosurface
 - Easy to compute integration using a pre-computed table
- In summary, we perform two-step approximations

 $\int_{SES} p_q^{\mathsf{T}}(\boldsymbol{x}) d\boldsymbol{x} \ge \int_{SES} p_q(\boldsymbol{x}) d\boldsymbol{x} > \Pr_{NN}(q, o)$

Experimental Results

- Performance of two strategies depends on parameters and given queries
 - No apparent winner
 - The hybrid strategy shows the best performance
- Query Example (see figure)
 - Enclosing box: bounding box for the θ -region
 - Red cells: candidate cells
 - Green cells: answer cells

Our Related Work

- Y. Ishikawa, Y. Iijima, J.X. Yu, "Spatial Range Querying for Gaussian-Based Imprecise Query Objects", ICDE 2009.
 - → Consider the case for range queries

 $p_{x}^{T}(\mathbf{x})$

