
Spatial Range Querying for
Gaussian-Based Imprecise Query Objects

Yoshiharu Ishikawa 1, Yuichi Iijima 2, Jeffrey Xu Yu 3

1Information Technology Center/ 2Graduate School of Information Science, Nagoya University, Japan
1ishikawa@itc.nagoya-u.ac.jp, 2iijima@db.itc.nagoya-u.ac.jp

3The Chinese University of Hong Kong, China
3yu@se.cuhk.edu.hk

Abstract— In sensor environments and moving robot applica-
tions, the position of an object is often known imprecisely because
of measurement error and/or movement of the object. In this
paper, we present query processing methods for spatial databases
in which the position of the query object is imprecisely specified
by a probability density function based on a Gaussian distribution.
We define the notion of a probabilistic range query by extending
the traditional notion of a spatial range query and present three
strategies for query processing. Since the qualification probability
evaluation of target objects requires numerical integration by
a method such as the Monte Carlo method, reduction of the
number of candidate objects that should be evaluated has a large
impact on query performance. We compare three strategies and
their combinations in terms of the experiments and evaluate their
effectiveness.

I. INTRODUCTION

In recent years, much research on the representation and
processing of imprecise and uncertain data has been under-
taken. For example, information obtained from sensors is often
imprecise, meaning that it is often uncertain as to whether
the obtained data can be treated as being accurate. Moreover,
in the context of heterogeneous information integration, the
quality of information contained in the underlying information
sources is not necessarily sufficient and may contain vague-
ness. In response to such problems, several proposed solutions
such as data models for representing uncertain data directly
and query processing techniques for handling imprecise data
have appeared in the literature [10], [16].

In this paper, we propose query processing methods for
spatial range queries based on imprecise location information.
Specifically, we consider a situation in which the location of
a query object is known imprecisely. There has been much
interest in query processing techniques based on imprecise
location information in recent years (e.g., [5], [9], [20]). Let
us consider a database system for use with a mobile sensor
environment. A GPS system is often used to detect the location
of an object, but it is not always possible to receive a GPS
signal in every situation. Moreover, power consumption of
GPS is an important factor to consider when the system is
powered by a battery. In such a case, it may not be possible
to update the location information frequently; consequently,
the accuracy with which the location of a moving object is
known becomes lower.

In the context of moving object databases, problems due to
imprecise location information may occur. For example, when
we monitor the movement status of a number of moving ob-
jects, frequent updates of locations generate a high processing
load. If we use a low update frequency to obtain a satisfactory
efficiency, it is not easy to accurately know the position of
each object. As another example, consider the problem of
location anonymity. There are several approaches to making
a user’s location anonymous for privacy reasons [15]. Even
if the system knows the exact location of a user, it may only
indicate that the user is within a certain region so as to conceal
the exact location of the user.

Furthermore, there is a related problem in robotics research;
localization is an important issue in mobile robotics [22]. By
using sensor data and movement history information obtained
during the movement of a robot, we can estimate the location
of the robot. However, it is not easy to estimate the position
accurately. When we perform localization using a probabilistic
approach, the location of a moving object is typically repre-
sented using a Gaussian distribution [22].

In light of the above circumstances, we consider here the
situation where the locations of objects are imprecisely known.
In particular, we consider the case where the location of a
query object is imprecisely known and is represented by a
Gaussian distribution, while the target objects to be searched
for have exact locations. We extend the traditional notion
of spatial range queries, and then define probabilistic range
queries. We introduce our idea using an example of a moving
robot.

Example 1: Figure 1 illustrates the situation in which a
moving robot performs localization on the basis of on its
movement history. Each of the shown ellipses is an equi-
probability contour of the Gaussian distribution obtained by
the estimation performed at the movement point. For example,
suppose that the location of the robot at time t = τ can
be represented by a Gaussian distribution with the center
q = (qx, qy). The highest probability is that the robot is
located at (qx, qy) at time t = τ , but it is also possible that
the robot is located elsewhere. Consider the situation in which
an object wants to find other nearby objects within a ten-
meters range of itself. This is a location-based range query
if the location of the object is exactly known. However, we

IEEE International Conference on Data Engineering

1084-4627/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDE.2009.93

676

IEEE International Conference on Data Engineering

1084-4627/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDE.2009.93

676

need to extend the notion of the range query to also allow
consideration of imprecisely known locations.

q

x
y

Fig. 1. Localization of a moving robot

In this paper, we propose new query processing approaches
to imprecise location-based spatial queries for the situation
in which the location of the query object is represented by
a d-dimensional Gaussian distribution. We assume that the
target objects are d-dimensional points with precisely known
locations. The query considered here is an extended version
of a conventional location-based range query based on the
Euclidean distance. In past decades, research into distance-
based range queries such as “retrieve all the objects within
distance δ from q” was very active. Nowadays, we find that it
has been conceptually extended to imprecise range queries [5],
[6], [8], [9], [13], [20], [21]. However, most of the existing
approaches assume simple uniform probability distributions,
or consider arbitrary probability density functions. The latter
is good in terms of generality, but the specific features of
the target density function are not utilized. To the authors’
knowledge, there has been no research performed on query
processing methods when the location of a query object
is represented by a Gaussian distribution. Since Gaussian
distributions are widely used in statistics, pattern recognition
[11], and localization in robotics [22], it is important to have
an effective query processing method to use. Moreover, in the
context of spatio-temporal databases, imprecision of location
information of a moving object is also an important issue [27].

The application of our strategies is not limited to 2D or 3D
spatial queries. As another example, consider example-based
multimedia retrieval. When given some example images, an
image retrieval system can make an approximate guess of the
user’s interests, assuming that the interests can be represented
by a Gaussian distribution. After the estimation of the user-
specific Gaussian distribution, we can retrieve target images.

An important problem in this context is that, as described
below, we need to estimate the qualification probability of
a target object using numerical integration. Since Gaussian
distributions cannot be integrated analytically, we need to
perform numerical integration using a method such as the
Monte Carlo method, but this significantly increases the cost.
Thus, we propose an approach to reducing the number of
candidate objects which require numerical integration as much
as possible using sophisticated filtering processes.

In the following discussions, we consider multidimensional

cases (d ≥ 2) because the one-dimensional case is trivial and
can be implemented using a simple algorithm.

The organization of the paper hereafter is as follows.
Section II describes the related work. Section III introduces
the notion of probabilistic range queries. Section IV describes
three query processing strategies that use spatial indexes such
as R-trees [14]. Sections V and VI show the experimental
results and then the conclusion of the paper is given in
Section VII.

II. RELATED WORK

For objects with uncertain locations, consideration of query
processing techniques is a currently very active area in
database research. In particular, Cheng and coworkers have
performed intensive studies on this issue. In one study, [7]
classified the concept of uncertainty of data and introduced
the notions of queries on imprecise data such as sensor data.
Among their definitions, a type of query called probabilistic
threshold queries is related to our notion of probabilistic range
queries described below. In their approach, the location of
target objects are imprecisely known, but our research focuses
on the situation in which the location of a query object is
imprecisely known. In another study, [6] considered processing
of probabilistic queries on one-dimensional uncertain data.
They classified queries into several types and then presented
algorithms that can be used to solve them. [9] also proposed
query processing techniques to be used with moving objects
with imprecisely known locations. The targets of these tech-
niques are range queries and nearest neighbor queries and
several query processing strategies corresponding to different
movement patterns were presented in their paper. In addition,
[8] discussed methods that can be used with one-dimensional
probabilistic range queries from a theoretical perspective.
They assumed several probabilistic density functions including
Gaussian functions and considered averages and distribution of
data. Moreover, [5] proposed a range query processing method
to be used in a case where the locations of both a query object
and target objects are imprecisely known. They assumed that
each object exists within a rectangular region.

Tao et al. have shown a probabilistic range query method
for the case in which all objects in a database have imprecisely
known locations; a probability density function is associated
with each object to represent the existence range of the
object in the target space in which the location of the object
is represented [20], [21]. A query region is specified by a
rectangle. When the probability that an object exists within the
specified rectangle is greater than a given threshold, the object
is added to the query result. They proposed an index structure
U-tree for evaluating such queries efficiently. Although their
probabilistic range queries are similar to those used in our
approach, they considered the opposite situation to ours: the
locations of the target objects are uncertain. In addition, they
considered arbitrary density functions and did not describe
efficient query processing that uses the features of a specific
probability distribution.

677677

Böhm et al. proposed an efficient index structure called
Gauss-Tree for indexing features that obey Gaussian distri-
butions [4]. They assumed that the objects to be indexed are
Gaussian distributions with different centers and covariance
matrices.

The differences between such previous work and our pro-
posal can be summarized as follows:

• The location of a query object is imprecisely known and
it is represented by a Gaussian distribution.

• The target objects have exact locations.
We present an efficient query processing method with consid-
eration of the properties of the Gaussian distribution. Our focus
is generalization of the conventional distance-based range
search, while most of the previous approaches to range queries
for imprecise location data [5], [6], [8], [9], [13], [20], [21]
have considered rectangle-based range queries.

In the context of moving object databases, approaches to
representing the locations of imprecise objects with a Gaussian
distribution can be found in [17]. Uncertain location informa-
tion is also considered in [24], [26], [27].

III. PROBABILISTIC RANGE QUERIES

A. Definitions

We first define the location of a query object in a proba-
bilistic manner.

Definition 1: (Location of Query Object)
Assume that x, the location of a query object q, is represented
by a d-dimensional Gaussian distribution [11]

pq(x) =
1

(2π)d/2|Σ|1/2
exp

[
−1

2
(x− q)tΣ−1(x− q)

]
,

(1)
where q is the average of the distribution, Σ is a d × d
covariance matrix, and |Σ| represents its determinant.

We extend the traditional notion of spatial range queries and
define probabilistic range queries.

Definition 2: (Probabilistic Range Query)
Given the probability density function pq(x), the distance
threshold δ (δ > 0), and the probability threshold θ (0 <
θ < 1), a probabilistic range query PRQ(q, δ, θ) returns all
the objects such that the probabilities, that their distances from
the query object q are less than or equal to δ, are greater than
or equal to θ. It is formally defined as follows:

PRQ(q, δ, θ) = {o | o ∈ O,Pr(‖x− o‖2 ≤ δ2) ≥ θ}, (2)

where O is the set of the target objects, ‖ · ‖ is the length
of a vector, and ‖x − o‖2 represents the squared Euclidean
distance between x, the location of the query object q, and o,
the location of the object o.

The probability threshold should satisfy 0 < θ < 1. Since a
Gaussian distribution has infinite spread, all the target objects
satisfy the query when θ = 0. On the other hand, no object
can satisfy the condition when θ = 1.

Note that the location of the query object is probabilistically
defined, but the target objects are static points. Therefore, we
can use conventional spatial indexes [14] such as R-trees for
efficient query processing.

B. Outline of Query Processing

Next, we show an outline of a query process for a proba-
bilistic range query. It is based on a simple idea: we exchange
the roles of the query object and the target object. Instead
of considering the probability that the object o is within the
distance range δ from the query object q, we evaluate the
probability that q is within the distance range δ from o for
each target object o. If the probability is greater than or equal
to θ, o is added to the result set. In other words, we investigate
whether ∫

x∈R

pq(x)dx ≥ θ (3)

holds, where R is a sphere with center o and radius δ.
However, it is very costly to derive the probability since
integration of the Gaussian density function (Eq. (1)) requires
numerical integration using a method such as the Monte Carlo
method.

The generic query processing strategy consists of the fol-
lowing three phases:

1) Index-Based Search: Find all the candidate objects that
may satisfy the given query using a spatial index. We use
the R-tree index family [14] since it is the most widely
used one. For the retrieval, we need to determine the
rectilinear query region.

2) Filtering: Some of the candidate objects are pruned in
accordance with the analytical result of the query. In ad-
dition, under some conditions, we can safely decide that
some objects will satisfy the query without performing
probability computation. Such objects are added to the
result set without performing numerical integration.

3) Probability Computation: For each remaining candi-
date object, the probability is computed using Eq. (3).
If the result is greater than or equal to θ, the object is
added to the result set.

In traditional spatial queries, the cost of retrieval process
is the main concern. However, in our case, the cost of the
probability computation phase is dominant. As will be shown
later in the experimental results, phase three occupies most
of the processing time. This means that we should reduce the
number of candidate objects in the filtering phase so as to
minimize the probability computation cost. In the following,
we propose three query processing strategies for implementing
the above generic query processing strategy.

IV. QUERY PROCESSING STRATEGIES

A. Rectilinear-Region-Based Approach (RR)

For pruning candidate objects, the notion of an uncertainty
region, the region in which an object with an uncertain
location exists, is often used. Since the object cannot exist
outside its uncertainty region, we can reduce the scope of the
search. Moreover, Tao et al. [20], [21] use a probabilistically
constrained rectangle (PCR) by extending this notion; it is
a rectangle for which the probability that the object is in it
is greater than the specified threshold value. We extend this
approach for our problem.

678678

1) Definition and Derivation of θ-Region: First we define
the notion of a θ-region, which is a d-dimensional ellipsoidal
region. It should satisfy the condition that the probability that
the query object q exists in the region is 1−2θ (0 < θ < 1/2).1

Definition 3: (θ-Region)
Consider integration of the probability density function pq(x)
over an ellipsoidal region (x − q)tΣ−1(x − q) ≤ r2. Given
θ (0 < θ < 1/2), let the value of r for which the result of the
integration becomes 1− 2θ be rθ:∫

(x−q)tΣ−1
(x−q)≤r2

θ

pq(x)dx = 1− 2θ. (4)

We call the ellipsoidal region

(x− q)tΣ−1(x− q) ≤ r2
θ (5)

defined by rθ the θ-region.
In other work (e.g., [20], [21]), a similar idea has been

used for objects with uncertain locations stored in a database;
for such static objects, we can compute the θ-region for
each object in advance. In contrast, our problem requires
derivation of the θ-region dynamically for a given query
since it considers an imprecise query object location. The
straightforward approach to computing the θ-region for a given
query is to perform a binary search to find an appropriate
rθ-value that satisfies Eq. (4); however, this is costly to be
performed at run-time.

Next, we show a method for determining the θ-region (and
rθ) for a given query. The approach we take is to transform
the problem to an integration for a d-dimensional spherical
region. To prepare for a description of this approach, let us
introduce the notion of a normalized Gaussian distribution.

Definition 4: (Normalized Gaussian distribution)
The normalized Gaussian distribution is defined as

pnorm(x) =
1

(2π)d/2
exp

[
−1

2
‖x‖2

]
(6)

by assigning values q = 0 and Σ = I in Eq. (1), where I is
the d-dimensional unit matrix.
On the basis of this probability density function, r̃θ is defined
as follows.

Definition 5: Consider integration of pnorm(x) over the
region ‖x‖2 ≤ r2, which is a sphere with the origin as its
center and the radius r. For the given θ (0 < θ < 1/2), let
r̃θ be the the radius with which the integration result becomes
1− 2θ: ∫

‖x‖2≤r̃2
θ

pnorm(x)dx = 1− 2θ. (7)

The following property is satisfied.
Property 1: For a given θ, rθ = r̃θ holds.

Proof. Although this is based on a well-known fact, we will
show a proof for the following discussion. Let the spectral
decomposition of the covariance matrix Σ−1 be

Σ−1 =
d∑

i=1

λiviv
t
i, (8)

1The reason why we use 1 − 2θ instead of 1 − θ is explained later.

where λi and vi are the i-th eigenvalue and its corresponding
eigenvector. Let us define

λ� = min{λi} (9)

λ⊥ = max{λi} (10)

for the following discussion. Note that all the eigenvalues of a
covariance matrix are greater than zero. Then we define d×d
matrices Λ and E as follows:

Λ = diag(
√

λ1,
√

λ2, . . . ,
√

λd) (11)

E = [v1 v2 · · · vd], (12)

where diag(. . .) denotes a diagonal matrix. Using the above,
we define a vector x as

x = ΛEty. (13)

Then we can rewrite Eq. (7) as follows:∫
ytΣ−1y≤r̃2

θ

1
(2π)d/2|Σ|1/2

exp
[
−1

2
ytΣ−1y

]
dy = 1− 2θ.

(14)
If we replace y = x− q, we get∫

(x−q)tΣ−1
(x−q)≤r̃2

θ

pq(x)dx = 1− 2θ. (15)

By comparing this formula with Eq. (4), we can notice that
rθ = r̃θ.

2) Deriving Search Region: Unfortunately, we cannot di-
rectly use a θ-region to retrieve target objects. We assume the
use of an R-tree, but the ellipsoidal shape of a θ-region is not
suited to its use. Thus, we derive the bounding box for the
given θ-region. As shown in Fig. 2, let the width of the box
from the query center q along the i-th dimension axis be wi.

q

wi

wj

wj

wi

xi

xj

Fig. 2. Using bounding box

The width wi satisfies the following property.
Property 2: The value of wi (i = 1, 2, . . . , d) is given as

wi = σirθ, (16)

where σi corresponds to the standard deviation for the i-th
dimension.

σi =
√

(Σ)ii, (17)

where (Σ)ii represents the (i, i) entry of Σ.
Proof. We extend the idea of Ankerst et al. [1] for this
problem. Given an ellipsoidal distance d2

ellip(p, q) = (p −
q)tA(p− q), they showed that a box-shape distance function

679679

that tightly bounds d2
ellip(p, q) is given by d2

MBB(p, q) =

maxd
i=1

[
(pi−qi)

2

(A−1)ii

]
, where (A−1)ii denotes the (i, i) entry

of A−1. [1] also proved that d2
MBB(p, q) ≤ ε ⇔ ∀i :

qi −
√

ε(A−1)ii ≤ pi ≤ qi +
√

ε(A−1)ii holds. If we make
substitutions A = Σ−1 and ε = r2

θ , we get

∀i : qi − σirθ ≤ xi ≤ qi + σirθ. (18)

This means that wi = σirθ.
Consider Fig. 3, where a and b are target objects. The

shaded ellipse represents the θ-region and its bounding rect-
angle is the bounding box derived above. Note that object a
does not satisfy the condition of PRQ(q, δ, θ). The reason is
as follows. First, the probability that the query object is located
outside of the bounding box is 1 − (1 − 2θ) = 2θ since the
probability that the query object is located inside of the θ-
region is 1 − 2θ. Second, since the Gaussian distribution has
point symmetry, if we draw a point symmetry object a′ for
a in terms of q, the integration result for the circular region
centered at a′ with radius δ has the same probability as that
for a. This means that the integration result (the probability)
for a (and a′) is less than θ.

�

� �

a

a’ b

q

Fig. 3. MBB and target objects

On the other hand, object b, for which the enclosing circle
touches the MBB, has a possibility that the integration result
is greater than or equal to θ. Of course, it is clear that, if
we look at the figure, the probability for object b in Fig. 3 is
smaller than θ, but it is not easy to judge that with a simple
condition. On the basis of the above consideration, the objects
inside the rounded solid-line box shown in Fig. 4 will become
candidates that may satisfy the query condition. The region
corresponds to the notion of Minkowski Sum, often used in
similarity-based retrieval [2].

�

��

q

Fig. 4. Minkowski-sum

3) Query Processing: In Subsection III-B, the generic
query processing strategy was shown. The correspondence
between the approach shown here and the generic one is as fol-
lows. In Phase 1 (Index-Based Search), the R-tree is searched

using the bounding box that tightly bounds the Minkowski-
sum region in Fig. 4. In Phase 2 (Filtering), the objects in
the fringe part (the black regions in Fig. 4) are deleted from
the candidate set. Unfortunately, computation of fringe part
is not easy for d ≥ 3. Thus, we apply this filtering method
only for d = 2. Finally, in Phase 3 (Probability Computation),
the probabilities are computed for all the remaining objects
inside the Minkowski-region using numerical integration. If
the probability is greater than or equal to θ, the object satisfies
the query.

We have one issue to consider in regard to query process-
ing: how to obtain rθ from the given θ. Referring back to
Property 1, to obtain θ-region (Eq. (5)) for the given θ, we
can use the normalized formula Eq. (7). Since the function
pnorm(x) of Eq. (6) cannot be integrated analytically, it is not
possible to compute rθ directly from θ. To solve this problem,
we construct a table that contains θ and its corresponding rθ

for each representative value of r. When a query is given, we
can search this table to find rθ for the given θ to derive the θ-
region. A similar table-based approach was used in other work.
For example, [20], [21] called such a table a U-catalog. We
should note that the corresponding entry for the given θ-value
(e.g., θ = 0.06) may not exist in the table. For this case, we
find the entry r∗θ which is the maximal entry in the table that
satisfies θ∗ < θ and use the corresponding value r∗θ . Although
this approach may increase the number of target objects for
numerical integration, the correctness of the result is retained.

On the basis of the above consideration, the query process-
ing algorithm can be given as Algorithm 1.

Algorithm 1 Rectilinear-Region-Based Approach
1: procedure PRQ-RR(q, Σ, δ, θ)
2: /* Preparation */
3: Calculate σi (i = 1, . . . , d) and λ� from Σ
4: From the U-catalog, obtain r∗θ that corresponds to θ∗,

which is the maximal value satisfying θ∗ ≤ θ
5: /* Phase 1: Index-Based Search */
6: Using {σi}di=1, r

∗
θ , δ, derive the search region shown

in Fig. 4
7: Perform R-tree-based search to get candidate objects
8: /* Phase 2: Filtering (only for d = 2) */
9: Delete o ∈ C if it is in the fringe regions of Fig. 4

10: /* Phase 3: Probability Computation */
11: For each o ∈ C, compute

∫
x∈R

pq(x)dx. If the result
is greater than or equal to θ, o is output.

12: end procedure

B. Oblique-region-based approach (OR)

The second approach to query processing is an oblique-
region-based one, as shown in Fig. 5. The oblique box is
parallel to the axes of the θ-region ellipsoid, and the distance
between the bounding box and the ellipsoid is greater than
or equal to δ. On the basis of the same consideration as in
the rectilinear-region-based approach, the objects inside of the

680680

rectangle become the candidates of the query. In Fig. 5, a is
not a candidate but b, c, and d are candidates.

�
�

� �

q

a

b

d

c

Fig. 5. Oblique region

�

�

�

�

q

a

b

d
c

Fig. 6. Axis transformation

However, it is not easy to directly apply filtering using
the oblique region. To make the problem easier to solve, we
perform an axis transformation. As shown in Fig. 6, we can
transform the oblique rectangle into a parallel-axis rectangle.
The filtering process can be easily implemented with this
transformation. The idea is formalized as follows:

Property 3: Now we refer back to the matrix E =
[v1v2 · · ·vd] in Eq. (12) that consists of the eigenvectors of
Σ−1. For the given d-dimensional point x, we consider the
vector y that satisfies

x = Ey. (19)

The point y corresponds to the transformed point.
Proof. Suppose that x is located on the ellipsoid (x −
q)tΣ−1(x − q) = r2. We subtract q from x beforehand
(x← x− q) and let q = 0. We have the following result.

xtΣ−1x = xt

(
d∑

i=1

λiviv
t
i

)
x =

d∑
i=1

λix
tviv

t
ix

=
d∑

i=1

λi(Ey)tviv
t
i(Ey) =

d∑
i=1

λiy
2
i = r2

This means that x is translated to the point y on the ellipsoid∑d
i=1 λiy

2
i = r2.

The filtering region for this strategy is illustrated as Fig. 7.
For the i-th dimension, the box is described by the range

− r√
λi

− δ ≤ yi ≤ r√
λi

+ δ. (20)

q
r() +i

-1/2
��

r() +j

-1/2
��

r()i
-1/2

�

r()j
-1/2

�

yi

yj

Fig. 7. Filtering region for OR

How can we use the above property? We can compute a
bounding box for the oblique rectangle (shown in Fig. 5)
for index-based retrieval, but the size of the bounding box is
generally large. Therefore, it is possible to use the property
as an additional filtering step (Phase 2). For example, we
can enhance Algorithm 1 by adding the oblique-region-based
filtering to Phase 2. The filtering process used is quite simple:
given a candidate object o with the corresponding vector x,
we derive the transformed vector y using Eq. (19). If y is not
inside of the box expressed by Eq. (20), we can delete it from
the candidate set.

C. Bounding-Function-Based Approach (BF)

The third strategy takes a different approach: it uses upper-
and lower-bounding functions for the probability density func-
tion.

1) Basic Idea: First, consider a special case q = 0 and
Σ = I. Namely, we are considering the probability density
function pnorm(x) shown in Eq. (6). The idea is illustrated in
Fig. 8. An equi-distance surface of pnorm(x) and two target
objects a and b are shown. Suppose that there is a sphere R
with the radius δ which has a circumference the distance α
from the origin. The shaded region in Fig. 8 corresponds to
R. Then, suppose that α satisfies the condition∫

x∈R

pnorm(x)dx = θ. (21)

This means that the integration result of pnorm(x) for region
R is equal to θ.

xi

xj

�

�
a

b

O

R

Fig. 8. Basic idea of BF

If we are given an appropriate α for the given query, the
query can be directly processed: we retrieve all the objects

681681

within the sphere with radius α. In Fig. 8, only object a sat-
isfies the condition and we can determine that the probability
is greater than θ without numerical integration.

Since it is not possible to obtain α analytically from the
given δ and θ, we need to apply the U-catalog approach.
In the preparation step, we perform numerical integration for
different combinations of δ and θ, and then create a table
containing entries with the form (δ, θ, α).

2) General Case:
a) Upper- and Lower-bounding Functions: For the gen-

eral case, we cannot use the simple strategy shown above since
the probability distribution is not isotropic. Thus, we define the
upper- and lower-bounding functions.

Definition 6: (Bounding Functions)
We define the two matrices M� and M⊥ as follows:

M� = λ�
d∑

i=1

viv
t
i = λ�I (22)

M⊥ = λ⊥
d∑

i=1

viv
t
i = λ⊥I. (23)

Then, we define the following functions obtained by substitut-
ing Σ−1in Eq. (1) with M� and M⊥:

p�q (x) =
1

(2π)d/2|Σ|1/2
exp

[
−λ�

2
‖x− q‖2

]
(24)

p⊥q (x) =
1

(2π)d/2|Σ|1/2
exp

[
−λ⊥

2
‖x− q‖2

]
. (25)

The equi-probable surfaces of p�q (x) and p⊥q (x) have spher-
ical shapes.
Note that p�q (x) and p⊥q (x) are not probability density func-
tions since their integration results for the whole space are not
equal to one.

The functions p�q (x) and p⊥q (x) have the following lower-
and upper-bounding properties:

Property 4: For any point x, p⊥q (x) ≤ pq(x) ≤ p�q (x)
holds. This means that they are the lower- and upper-bounding
functions of pq(x).
In fact, p�q (x) and p⊥q (x) are the optimal functions with
spherical shapes that have the bounding properties.

Figure 9 illustrates p�q (x) and p⊥q (x). The outside and
inside spheres correspond to p�q (x) and p⊥q (x), respectively.
This figure shows the isosurface of equal probability for each
function.

b) Query Processing: We next consider the query pro-
cessing method using the above properties. As shown in
Fig. 10, let R� be a spherical region with radius δ and its
center relative to q is α�, but assume that R� satisfies the
following constraint for the given θ:∫

x∈R�
p�q (x)dx = θ (26)

The value of α� can be determined by the following property.

xi

xj

q

pq

pq

pq

T

T

Fig. 9. p�q (x) and p⊥q (x)

Property 5: Let S� be a spherical region with radius
√

λ�δ
and its center relative to the origin is β�, and assume that
S� satisfies the following equation:∫

x∈S�
pnorm(x)dx = (λ�)d/2|Σ|1/2θ. (27)

We can determine β� on the basis of this constraint. If we get
β�, we can derive α� as

α� =
β�
√

λ� . (28)

This property can be proved by transforming Eq. (26). The
proof is shown in the appendix.

q �T

�

R
T

Fig. 10. R� and α�

Remember the basic case pq(x) = pnorm(x) given in the
previous subsection. Given a probability threshold θ and a
search distance δ, if we have a table that returns α which
satisfies the constraint of Eq. (21), we can perform the query
using a range query with the radius α. Similarly, the properties
shown here indicate that we can obtain the α� value using a
table. When we process a query, we search the table to find an
appropriate α for the given δ and θ. We denote this function
as α = ucatalog lookup(δ, θ).

To derive α� in Eq. (28) using Property 5, first we derive
β� using

β� = ucatalog lookup(
√

λ�δ, (λ�)d/2|Σ|1/2θ), (29)

then obtain α� based on Eq. (28). We can obtain α⊥ in a
similar manner. First, we derive β⊥ using

β⊥ = ucatalog lookup(
√

λ⊥δ, (λ⊥)d/2|Σ|1/2θ), (30)

682682

then obtain α⊥ using

α⊥ =
β⊥
√

λ⊥ . (31)

Next, we describe the meaning of the above properties.
Figure 11 shows a conceptual figure in which the horizontal
axis represents the xi axis and the vertical axis represents
the value of the functions. The query center q is located on
the origin. We can notice that the curve of the probabilistic
density function pq(x) is located between functions p�q (x)
and p⊥q (x). The shaded left region represents the integration
of p�q ; the integration range is a sphere with radius δ and
its center is separated from q by α⊥. As described above,
the integration result is θ. Similarly, the right shaded region
represents the integration of p�q (x) for a sphere with radius δ
and the distance between the center and q is α�. Its volume
is also θ.

xi

z

q � �

T

T

T

T

pq

pq
pq

Fig. 11. Roles of α� and α⊥

From this figure, we note that if the distance from point
q is greater than α�, even using the upper estimate function
p�q (x), the result of integration is less than θ. Thus, an object
whose distance from q is greater than α� is not a candidate.
On the other hand, if the distance from q is less than α⊥, even
using the lower estimate function p⊥q (x), we obtain a result
greater than θ. If the distance from the origin is between α�

and α⊥, we need to compute the probability of the object
using numerical integration.

c) Query Processing Algorithm: In this case, the same
problem as with the rectilinear-region-based approach also
occurs: we may not be able to find the entry corresponding
to the values α� and α⊥. The solution is as follows. When
we derive α�, we look up the U-catalog based on Eq. (29),
and then find the entry for the pair (

√
λ�δ, (λ�)d/2|Σ|1/2θ).

If we cannot find the entry, we use the next best entry β�
∗

defined as follows:

β�
∗ = min{α | (δ, θ, α) ∈ U ∧ δ ≥

√
λ�δ ∧

θ ≤ (λ�)d/2|Σ|1/2θ}, (32)

where U represents the U-catalog. Using β�
∗ , we can derive

α� from Eq. (28). We call the resulting value α�
∗ . Since

α�
∗ > α� holds, the search based on α�

∗ may retrieve
additional objects compared to the case of α�, and increase
the probability computation cost. Similarly, for α⊥, we derive

β⊥
∗ = max{α | (δ, θ, α) ∈ U ∧ δ ≤

√
λ⊥δ ∧

θ ≥ (λ⊥)d/2|Σ|1/2θ}, (33)

and then use Eq. (31) to obtain α⊥
∗ instead of α⊥. The usage

of α⊥
∗ means that we need to compute the probabilities for

some additional objects. On the basis of the above discussion,
we can derive the query processing algorithm Algorithm 2.

Algorithm 2 Bounding-Function-Based Approach
1: procedure PRQ-BF(q, Σ, δ, θ)
2: /* Preparation */
3: Derive λ�, λ⊥, |Σ| from Σ
4: Obtain β�

∗ and β⊥
∗ by Eqs. (32) and (33), then compute

α�
∗ and α⊥

∗ using Eqs. (28) and (31)
5: /* Phase 1: Index-Based Search */
6: Using an R-tree, retrieve objects within a range [qi −

α�
∗ , qi + α�

∗] for each dimension i. The resulting set of
candidate objects is denoted by C.

7: /* Phase 2: Filtering */
8: C ← {o | o ∈ C, dist(o, q) ≤ α�

∗ }
9: Q ← {o | o ∈ C, dist(o, q) ≤ α⊥

∗ }
10: C ← C −Q
11: /* Phase 3: Probability Computation */
12: foreach o ∈ C do
13: Let R be a sphere centered at o with radius δ
14: if

∫
x∈R

pq(x)dx ≥ θ then Q ← Q∪ {o}
15: end for
16: end procedure

The next example illustrates the above idea.
Example 2: Figure 12 shows an example of query process-

ing. With the first filtering condition, a, b, c become the target
objects, but we do not have to calculate the actual probability
of a since it is within the distance α⊥. In contrast, b and c
require numerical integration.

x

y

a

d

c

b

q
��

T

T

�

�

Fig. 12. Query processing for BF

683683

V. EXPERIMENTS I (2D DATA)

A. Experimental Setup

For the experiments, we used road line segment data of
Long Beach, California from the TIGER database [23]. We
extracted the midpoint for each line segment then made a
point set. The point set consisted of 50,747 points and was
normalized in a [0, 1000] × [0, 1000] space. We evaluated
the query strategies described in Section IV for PRQ(q, δ, θ)
using this dataset.

Section IV introduced three strategies 1) Rectilinear-
Region-Based (RR), 2) Oblique-Region-Based (OR), and 3)
Bounding-Function-Based (BF) ones. We also evaluated their
combinations. Since OR is only useful as a filtering method,
we considered the following six combinations: 1) RR, 2) BF,
3) RR+BF, 4) RR+OR, 5) BF+OR, and 6) ALL (RR+BF+OR).
For RR, RR+BF, RR+OR, and ALL, Algorithm 1 was used as
the underlying algorithm. For BF and BF+OR, Algorithm 2
was used. For example, in RR+OR, Algorithm 1 was used to
find candidate objects on the basis of the region in Fig. 4, then
a filtering was performed for the region shown in Fig. 5. In
ALL, all three strategies were combined. In the experiments,
we computed accurate β� and β⊥ values for BF using
Eqs. (29) and (30), instead of approximate values.

To define a target query, we needed to specify some param-
eters. For the distance and probability threshold values, we
used δ = 25 and θ = 0.01 as the default ones. The covariance
matrix Σ was defined as follows:

Σ = γ

[
7 2

√
3

2
√

3 3

]
, (34)

where γ specifies the uncertainty of the distribution. We used
γ = 10 as the default. When γ is large, the spread (uncertainty)
of the distribution becomes large. The setting of parameters
means that the shape of the isosurface of pq(x) was an ellipse
titled at 30◦ and the major-to-minor axis ratio is 3:1.

We compared the elapsed times (wallclock time) for query
processing. We selected one target object randomly as the
query center then issued a probabilistic range query. The
averaged time of five query trials was used for the comparison.
In this experiment, we used the importance sampling method
[18], a kind of the Monte Carlo method. We generate random
numbers that obey a Gaussian distribution and derive the ratio
such that random numbers enter the specified region. The
ratio corresponds to the probability to be estimated. For our
problem, this method converges quickly compared to the stan-
dard Monte Carlo method, especially for medium-dimensional
cases. For generating random variables, we used RANDLIB
[19]. For each numerical integration, 100,000 random numbers
were generated and it took about 0.05 seconds for numerical
integration for one object. As the spatial index, we used an
implementation of the R∗-tree index [12]. The page size of an
R∗-tree node was set as 1KB.

The programs for the experiments were implemented using
C language. The experiments were conducted using a PC with
an Intel Pentium CPU (2.0 GHz), 1GB of memory, a 143GB
hard disk, and Fedora Core 5 OS.

B. Experimental Results

1) Experiments Using Default Parameters (γ = 10, δ =
25, θ = 0.01): Table I shows the query processing time
for each combination of strategies with the default parameter
setting.2 Table II shows the number of candidate objects that
require numerical integration. For this query, the number of
resulting objects (shown in the ANS column) is 546. As shown
in Table II, RR and BF required integration of 792 and 683
objects, respectively, but with the combination RR+BF, this
could be reduced to 636. Similarly, with other combinations,
the number of candidates was reduced and the combination of
the three strategies (ALL) was the best one.

TABLE I

QUERY PROCESSING TIME (SECONDS) (δ = 25, θ = 0.01)

γ RR BF RR+BF RR+OR BF+OR ALL
1 18.6 15.9 15.7 17.7 15.1 14.8

10 41.2 35.9 33.5 35.6 29.8 29.4
100 155.3 136.7 123.5 119.3 97.3 93.7

TABLE II

NUMBER OF CANDIDATES (δ = 25, θ = 0.01)

γ RR BF RR+BF RR+OR BF+OR ALL ANS
1 357 302 297 335 285 281 295

10 792 683 636 682 569 558 546
100 2998 2599 2346 2270 1832 1788 1566

For each combination, at least 97% of the total processing
time was taken up with numerical integration. This means that
the number of candidates for numerical integration directly
influence the total cost. Actually, if we compare Tables I and
II, we can notice their correspondence.

Figure 13 shows the three regions, for which we needed
to perform numerical integration for RR, OR, and BF. If we
assume the target objects are uniformly distributed, their areas
correspond to the query processing costs. For the combination
of three strategies (ALL), we needed to consider only the
shaded region of Fig. 14.

9.46

0.25

6.15

x

y

4.23

3.15

Fig. 13. Three integration regions

2The table includes the cases for γ = 1 and 100. They are explained later.

684684

Fig. 14. Integration region for ALL

2) Using Different γ Values (γ = 1 and γ = 100): In this
experiment, we compared the trends for different γ values.
Compared to the default value γ = 10, γ = 1 means that
the location of the query object is more accurate. In contrast,
γ = 100 represents a more vague location. The results are also
shown in Tables I and II. Although large γ value increases the
query cost due to the large ambiguity, the overall trends are
similar, but note that the combination of the strategies is more
effective for γ = 100.

Figures 15 and 16 show the integration regions for γ = 1
and γ = 100, respectively. We can easily see that combining
the strategies does not improve the query cost very much
for γ = 1. In contrast, combining the strategies can achieve
efficient processing for γ = 100.

0.32

0.25

7.10

4.7

8.4

x

y

Fig. 15. Integration regions (γ = 1)

8.92

9.30

0.25

1.74

5.48

x

y

Fig. 16. Integration regions (γ = 100)

3) Changing Other Parameters: We conducted other exper-
iments by changing the parameters δ, θ and Σ. Due to space
limitations, we summarize the results here:

• The overall trend does not change if we modify δ, the
distance threshold, but for a small δ value, the combina-
tion generally becomes more effective. When δ is large,
RR and BF have almost the same filtering regions, and
the difference between them is rather small.

• Change of θ, the probability threshold, does not influence
the trend directly, and the combination approach is better.
An interesting observation is that the processing cost does
not increase, for example, if we change the threshold
value from θ = 0.1 to θ = 0.01. This is due to the
exponential feature of the Gaussian distribution: their
filtering regions are almost same.

• The internal entries of the covariance matrix Σ deter-
mines the shape of the isosurface of the distribution.
When the matrix is close to being a unit matrix, the
difference between the three strategies becomes small
since the isosurface is close to being a sphere. In contrast,
if we choose a matrix such that its isosurface has a thin
ellipsoidal shape, the difference will increase. In this case,
their combination reduces the query cost.

VI. EXPERIMENTS II (9D DATA)

A. Experimental Setup

Next, we perform small experiments for observing the
behaviors of our method for medium-dimensional cases. The
purpose is not an exhaustive analysis, but to get intuitions for
our framework. We used Corel Image Features data set from
UCI KDD Archive [25]. Specifically, Color Moments data,
which consists of 68,040 nine-dimensional vectors, was used.
For this data, the Euclidean distance is assumed for similarity
retrieval.

We consider the following scenario that is based on the
“pseudo-feedback” technique. First, we select a random object
from the dataset and search its k-nearest neighbors (k-NN). In
the experiment, we used k = 20. Note that k-NN includes
the query object itself. We assume that the k-NN objects
are sample images given by the user, and then derive the
covariance matrix as

Σ = Σ̃ + κI, (35)

where Σ̃ is the covariance matrix derived from k sample
vectors. The additional term κI is a normalization factor —
it is used for avoiding overfitting due to a small number
of sample objects. The constant κ is set as κ = |Σ̃|1/9 to
satisfy |Σ̃| = |κI|; it means that we blend the sample-based
and the Euclidean distance-based approaches with the same
importance. As the center of the feedback query q, we use
the vector of the object selected initially.

The distance parameter of a range query is set as δ = 0.7.
If we use this δ value for a standard range query with non-
imprecise query location, 15.3 objects are retrieved on average.
The probability threshold is set as θ = 40%. Using Eq. (7),
the appropriate rθ was derived as rθ = 2.32.

685685

B. Experimental Results

Based on the above procedure, we performed ten random
trials. As described in the previous experiments, the cost of
Phase 1 (Index-based Search) is negligible so that we focus
on Phase 2 (Filtering) and Phase 3 (Probability Computation).
Table III shows the averaged number of candidate objects for
each method. Compared to RR, BF has a better result. Similar
to the previous experiments, combination of three methods
gives the best filtering power.

TABLE III

NUMBER OF CANDIDATES (δ = 0.7, θ = 0.4)

RR BF RR+BF RR+OR BF+OR ALL ANS
3713 3216 2468 1905 1998 1699 3.9

In this situation, OR-based filtering is more effective com-
pared to the 2D case. In this experiment, the number of
candidate objects which enter within the filtering region of
OR method was 2,620 on average: the value is rather smaller
than those of RR and BF. The reason is as follows. The equi-
probability isosurfaces of the 9D Gaussian distributions in this
experiment have rather narrow shapes. Thus, rectilinear-based
bounding (RR) and sphere-based bounding (BF) select many
objects as candidates. In contrast, the slanted shape of OR
gives more tight regions.

An important problem we can find in Table III is the number
of candidate objects is too large compared to the final answer.
It may not be surprising that the number of answer objects is
small since the probability threshold θ = 40% is a rather strict
setting. However, it means that we need to perform numerical
integration for 1,700 objects on average to derive a tiny answer
set. This phenomenon is caused by the increase of dimensions.

To understand the effect of the dimensionality, we show
Fig. 17. The figure plots the results of numerical integration
of the normalized Gaussian distribution pnorm for several
different dimensionalities. The x-axis represents the radius of
the integration range and the y-axis is the integration result
(probability). For example, if a query object obeys 2D pnorm

distribution, the probability that the object is located within
distance one from the origin (the center of the distribution)
is 39%. Looking at the figure, we can observe that the radius
increases along with the increase of dimensionality for the
same probability level. For instance, for the 9D case, the
probability that a query object is located within distance two
from the query center is only 9%. The reason of this behavior
is due to the phenomenon called “curse of dimensionality” [3].
Its effect is critical even for a medium-dimensional case.

The property explains why the number of answers is so
small in Table III. For the 9D case, the location of a query
object becomes more “imprecise” and it may not be nearby
the center of the distribution. Thus, even if a candidate object
is close to the distribution center, the result of numerical
integration may not be large. Actually, the computed quali-
fication probability of the query object, which is located at
the distribution center q, was only 70.0% on average for this

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6

Pr
ob

ab
ili

ty
 o

f
E

xi
st

en
ce

Radius

2D
3D
5D
9D

15D

Fig. 17. Probabilities of existence

experiment.
In other words, when the dimensionality increases, we need

to search a larger area if we want to perform queries with the
same level of a probability threshold. For example, consider
that we are given a query “retrieve objects for the specified
distance range with the probability threshold θ = 1%”.
Remember that RR and OR need to derive 1 − 2θ = 98%
θ-region based on Eq. (4). In contrast to the corresponding
value rθ = 2.79 for the 2D case, we need to use rθ = 4.44
for the 9D case. It will increase the volume of the search
region.

In addition, the increase of dimensionality gives a negative
effect to the BF method. In BF, we need to derive β�

based on Eq. (29). In medium-dimensional cases, the value
(λ�)d/2|Σ|1/2θ, required for the derivation, tends to be a tiny
value. Since the relationship

(λ�)d/2|Σ|1/2 =
(λ�)d/2

|Σ−1|1/2
=

(
(λ�)d∏d

i=1 λi

)1/2

(36)

holds, if the shape of a Gaussian distribution is narrow (it
means the ratio λ⊥/λ� is large), the value (λ�)d/2|Σ|1/2θ
may become too small. That means the estimation of β�

requires more accurate computation, which needs a large num-
ber of random samples. Moreover, for an ill-shaped Gaussian
distribution, the value

(λ⊥)d/2|Σ|1/2 =

(
(λ⊥)d∏d

i=1 λi

)1/2

, (37)

required to compute β⊥, may become larger than one. That
means we cannot find an internal “hole” shown in Fig. 9. Note
that BF is still effective for a sphere-like distribution, in which
λ� � λ⊥ holds. Particularly, if λ� = λ⊥ is satisfied — that
means that the distribution is completely spherical — BF is
the best method since it can directly select answer objects and
does not require numerical integration.

686686

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we described a probabilistic range query
processing technique for a query object with imprecise lo-
cation information obeying a Gaussian distribution. The query
process consisted of three phases: index-based searching,
filtering, and probability computation. Since the last phase
dominates the processing cost due to time-consuming numer-
ical integration, the filtering phase for pruning the candidate
objects plays an important role. We proposed three filtering
strategies, Rectilinear-Region-Based (RR), Oblique-Region-
Based (OR), and Bounding-Function-Based (BF), and combi-
nations of these approaches that effectively use the underlying
properties of the Gaussian distribution. Their effectiveness was
evaluated by performing experiments.

In our context, reduction of candidate objects for numerical
integration is the most critical factor because the integration
process dominates the overall query processing time. For low-
dimensional cases, combination of three strategies (ALL) pro-
vides the best performance in general since it can filter many
objects. If the location of a query object is not so imprecise,
RR (or BF) and ALL will provide no remarkable difference.
For medium-dimensional cases, the problem itself becomes
difficult due to “curse of dimensionality”; since search area
increases, we need to perform numerical integration for many
candidates for selecting the result objects. For the efficient
processing of medium- or high-dimensional cases, we need
further development by considering the nature of Gaussian
distributions.

Planned future work is as follows. First, we are planning
to expand use of our technique to other types of queries such
as probabilistic nearest neighbor queries. Second, we would
like to extend the framework to environments where the target
objects also have uncertain locations. Further future work will
include the effective use of the proposed technique in real-
world situations such as moving robotics applications and GPS
sensor environments.

ACKNOWLEDGMENTS

This research is partly supported by the Grant-in-Aid for
Scientific Research, Japan (#19024037, #19300027).

REFERENCES

[1] M. Ankerst, B. Braunmüller, H.-P. Kriegel, and T. Seidl, “Improving
adaptable similarity query processing by using approximations,” in Proc.
VLDB, 1998.

[2] S. Berchtold, C. Böhm, D. A. Keim, and H.-P. Kriegel, “A cost model
for nearest neighbor search in high-dimensional data space,” in Proc.
PODS, 1997.

[3] C. Böhm, S. Berchtold, and D. A. Keim, “Searching in high-dimensional
spaces: Index structures for improving the performance of multimedia
databases,” ACM Comput. Surv., vol. 33, no. 3, pp. 322–373, 2001.

[4] C. Böhm, A. Pryakhin, and M. Schubert, “The Gauss-tree: Efficient
object identification in databases of probabilistic feature vectors,” in
Proc. ICDE, 2006.

[5] J. Chen and R. Cheng, “Efficient evaluation of imprecise location-
dependent queries,” in Proc. ICDE, 2007.

[6] R. Cheng, D. V. Kalashnikov, and S. Prabhakar, “Evaluating probabilistic
queries over imprecise data,” in Proc. ACM SIGMOD, 2003.

[7] R. Cheng and S. Prabhakar, “Managing uncertainty in sensor databases,”
SIGMOD Record, vol. 32, no. 4, pp. 41–46, 2003.

[8] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter, “Efficient
indexing methods for probabilistic threshold queries over uncertain
data,” in Proc. VLDB, 2004.

[9] R. Cheng, D. V. Kalashnikov, and S. Prabhakar, “Querying imprecise
data in moving object environments,” IEEE TKDE, vol. 16, no. 9, 2004.

[10] N. Dalvi and D. Suciu, “Management of probabilistic data: foundations
and challenges,” in Proc. ACM PODS, 2007.

[11] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed.
Wiley, 2000.

[12] N. Katayama, “HnRStar-1.0,” http://research.nii.ac.jp/˜katayama/homepage/
research/srtree/HnRStar-1.0.tar.gz.

[13] V. Ljosa and A. K. Singh, “APLA: Indexing arbitrary probability
distributions,” in Proc. ICDE, 2007.

[14] Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos, and Y. Theodor-
idis, R-Trees: Theory and Applications. Springer, 2005.

[15] M. F. Mokbel, “Towards privacy-aware location-based database servers,”
in Proc. Intl. Workshop on Privacy Data Management (PDM), 2006.

[16] J. Pei, M. Hua, Y. Tao, and X. Lin, “Query answering techniques on
uncertain and probabilistic data (tutorial),” in Proc. SIGMOD, 2008.

[17] D. Pfoser and C. S. Jensen, “Capturing the uncertainty of moving-
object representations,” in Proc. 6th Intl. Symp. on Advances in Spatial
Databases (SSD’99), 1999.

[18] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipies: The Art of Scientific Computing, 3rd ed., Cambridge
University Press, 2007.

[19] “RANDLIB,” http://biostatistics.mdanderson.org/SoftwareDownload/.
[20] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and S. Prabhakar,

“Indexing multi-dimensional uncertain data with arbitrary probability
density functions,” in Proc. VLDB, 2005.

[21] Y. Tao, X. Xiao, and R. Cheng, “Range search on multidimensional
uncertain data,” ACM TODS, vol. 32, no. 3, 2007.

[22] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The MIT
Press, 2005.

[23] http://tiger.census.gov/.
[24] G. Trajcevski, O. Wolfson, K. Hinrichs, and S. Chamberlain, “Managing

uncertainty in moving objects databases,” ACM TODS, vol. 29, no. 3,
pp. 463–507, 2004.

[25] “UCI KDD Archive,” http://kdd.ics.uci.edu/.
[26] O. Wolfson, S. Chamberlain, S. Dao, J. Jiang, and G. Mendez, “Cost

and imprecision in modeling the position of moving objects,” in Proc.
ICDE, 1998.

[27] O. Wolfson, A. P. Sistla, S. Chamberlain, and Y. Yesha, “Updating and
querying databases that track mobile units,” Distributed and Parallel
Databases, vol. 7, no. 3, pp. 257–287, 1999.

APPENDIX

Proof of Property 5: Suppose q = 0. It does not lose
generality. Expanding Eq. (26), we get∫

x∈R�

1
(2π)d/2|Σ|1/2

exp
[
−λ�

2
‖x‖2

]
dx = θ. (38)

We consider a sample sphere (x1 − α�)2 + x2
2 + · · ·+ x2

d =
δ2 that satisfies the target problem. We perform the variable
transformation xi = ui/

√
λ� (i = 1, . . . , d). Then R� is

transformed into (u1 −
√

λ�α�)2 + u2
2 + · · ·u2

d = λ�δ2. Let
the spherical region be S�. The distance between the center
of S� and the origin is β� =

√
λ�α� and the radius of S� is√

λ�δ. Using variable transformation, the formula above can
be converted into∫

u∈S�

1
(2π)d/2|Σ|1/2

exp
[
−1

2
‖u‖2

]
|J(u)|du = θ, (39)

where |J(u)| is a Jacobian. In this case, |J(u)| = (λ�)−d/2

holds. Thus, we get∫
u∈S�

1
(2π)d/2

exp
[
−1

2
‖u‖2

]
du = (λ�)d/2|Σ|1/2θ. (40)

687687

