Spatial Range Querying for Gaussian-Based Imprecise Query Objects

Yoshiharu Ishikawa, Yuichi Iijima Nagoya University Jeffrey Xu Yu The Chinese University of Hong Kong

# Outline

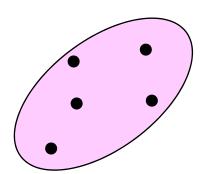
- Background and Problem Formulation
- Related Work
- Query Processing Strategies
- Experimental Results
- Conclusions

# **Imprecise Location Information**

- Sensor Environments
  - Frequent updates may not be possible
    - GPS-based positioning consumes batteries
- Robotics
  - Localization using sensing and movement histories
  - Probabilistic approach has vagueness
- Privacy
  - Location Anonymity

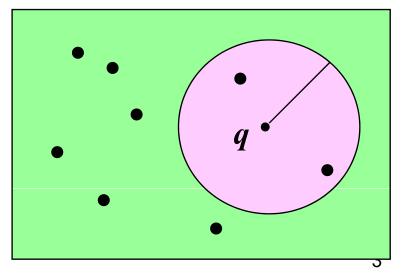






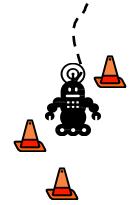
### Location-based Range Queries

- Location-based Range Queries
  - Example: Find hotels located within 2 km from Yuyuan Garden
  - Traditional problem in spatial databases
    - Efficient query processing using spatial indices
    - Extensible to multi-dimensional cases (e.g., image retrieval)
- What happen if the location of query object is uncertain?



# Probabilistic Range Query (PRQ) (1)

- Assumptions
  - Location of query object *q* is specified as a Gaussian distribution
  - Target data: static points
- Gaussian Distribution



$$p_q(\boldsymbol{x}) = \frac{1}{(2\pi)^{d/2}} \exp\left[-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{q})^t \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{q})\right]$$

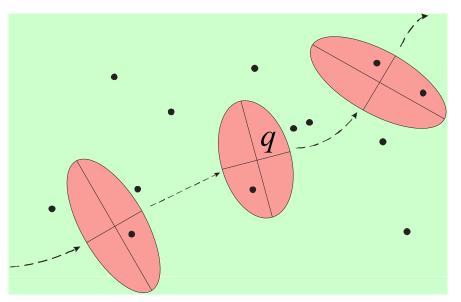
#### $-\Sigma$ : Covariance matrix

# Probabilistic Range Query (PRQ) (2)

Probabilistic Range Query (PRQ)

$$PRQ(q, \delta, \theta) = \{ o \mid o \in O, \Pr(\|\boldsymbol{x} - \boldsymbol{o}\|^2 \le \delta^2) \ge \theta \}$$

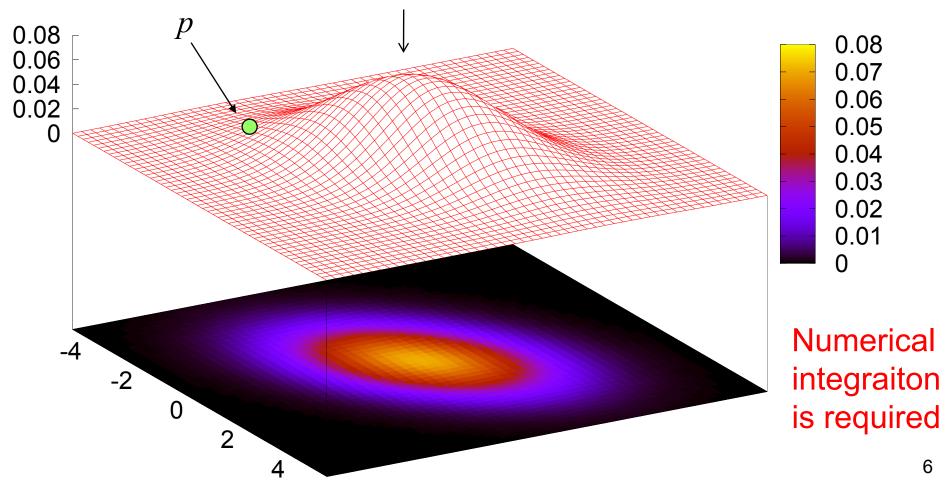
 Find objects such that the probabilities that their distances from q are less than δ are greater than θ



# Probabilistic Range Query (PRQ) (3)

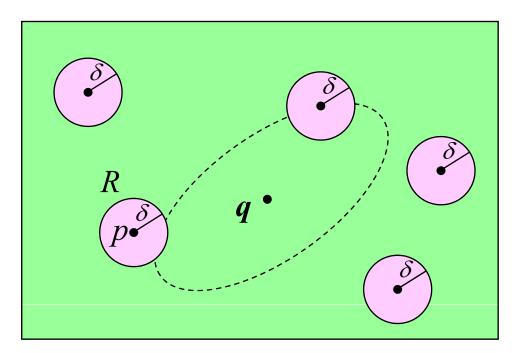
• Is distance between q and p within  $\delta$ ?

pdf of q (Gaussian distribution)



### Naïve Approach for Query Processing

- Exchanging roles
  - $-\Pr[p \text{ is within } \delta \text{ from } q] = \Pr[q \text{ is within } \delta \text{ from } p]$
- Naïve approach
  - For each object *p*,
     integrate pdf for
     sphere region *R*
  - -R : sphere with center p and radius  $\delta$
  - If the result  $\geq \theta$ , it is qualified
- Quite costly!



# Outline

- Background and Problem Formulation
- Related Work
- Query Processing Strategies
- Experimental Results
- Conclusions

#### **Related Work**

- Query processing methods for uncertain (location) data
  - Cheng, Prabhakar, et al. (SIGMOD'03, VLDB'04, ...)
  - Tao et al. (VLDB'05, TODS'07)
  - Parker, Subrahmanian, et al. (TKDE'07, '09)
  - Consider arbitrary PDFs or uniform PDFs
  - Target objects may be uncertain
- Research related to Gaussian distribution
  - Gauss-tree [Böhm et al., ICDE'06]
  - Target objects are based on Gaussian distributions

# Outline

- Background and Problem Formulation
- Related Work
- Query Processing Strategies
- Experimental Results
- Conclusions

### **Outline of Query Processing**

- Generic query processing strategy consists of three phases
  - 1. Index-Based Search: Retrieve all candidate objects using spatial index (R-tree)
  - 2. Filtering: Using several conditions, some candidates are pruned
  - 3. Probability Computation: Perform numerical integration (Monte Carlo method) to evaluate exact probability
- Phase 3 dominates processing cost
  - Filtering (phase 2) is important for efficiency

#### **Query Processing Strategies**

- Three strategies
  - 1. Rectilinear-Region-Based Approach (RR)
  - 2. Oblique-Region-Based Approach (OR)
  - 3. Bounding-Function-Based Approach (BF)
- Combination of strategies is also possible

# Rectilinear-Region-Based (RR) (1)

- Use the concept of  $\theta$ -region
  - Similar concepts are used in query processing for uncertain spatial databases
- $\theta$ -region: Ellipsoidal region for which the result of the integration becomes  $1 2\theta$ :

$$\int_{(\boldsymbol{x}-\boldsymbol{q})^t \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{q}) \leq r_{\theta}^2} p_q(\boldsymbol{x}) d\boldsymbol{x} = 1 - 2\theta$$

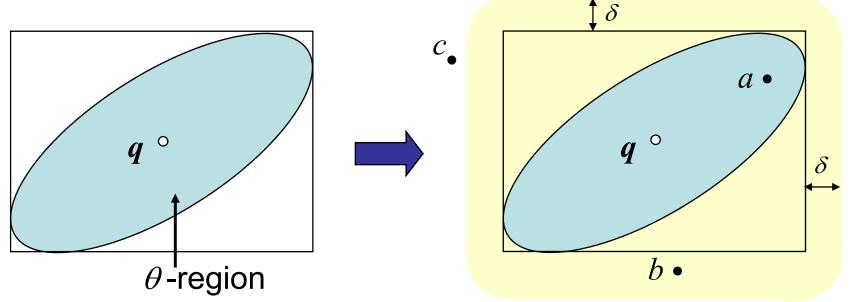
• The ellipsoidal region

$$(\boldsymbol{x} - \boldsymbol{q})^{t} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{q}) \leq r_{\theta}^{2}$$

is the  $\theta$ -region

## Rectilinear-Region-Based (RR) (2)

- Query processing
  - Given a query,  $\theta$ -region is computed: it is suffice if we have  $r_{\theta}$ -table for "normal" Gaussian pdf
    - "Normal" Gaussian:  $\Sigma = I, q = 0$
    - Given  $\theta$ , it returns appropriate  $r_{\theta}$
  - Derive MBR for  $\theta$ -region and perform Minkowski Sum
  - Retrieve candidates then perform numerical integration

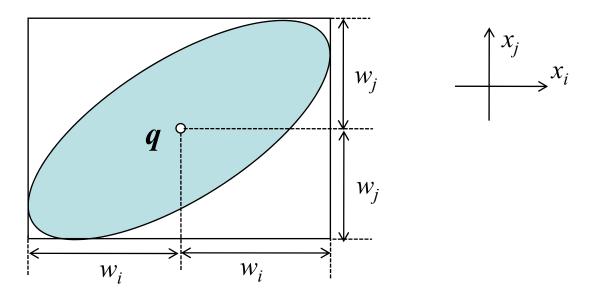


#### Rectilinear-Region-Based (RR) (3)

• Geometry of bounding box

 $w_i = \sigma_i r_{\theta}$  $\sigma_i = \sqrt{(\Sigma)_{ii}}$ 

where  $(\Sigma)_{ii}$  is the (i, i) entry of  $\Sigma$ 



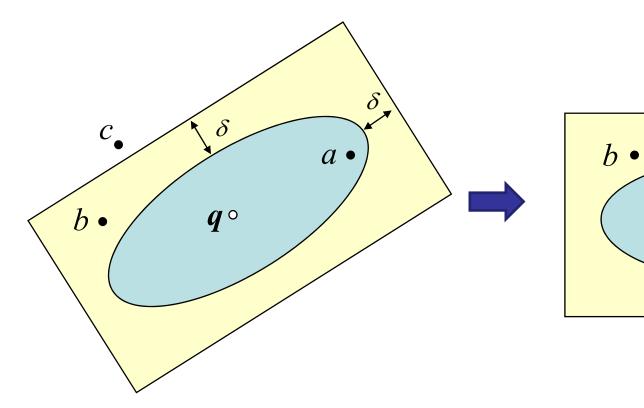
# Oblique-Region-Based (OR) (1)

- Use of oblique rectangle
  - Query processing based on axis transformation
  - Not effective for phase 1 (index-based search): Only used for filtering (phase 2)

 $C \bullet$ 

 $\delta$ 

 $q^{\circ}$ 

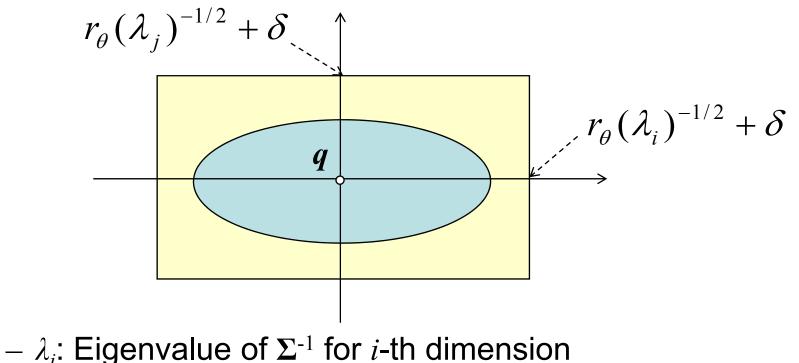


 $\delta$ 

a

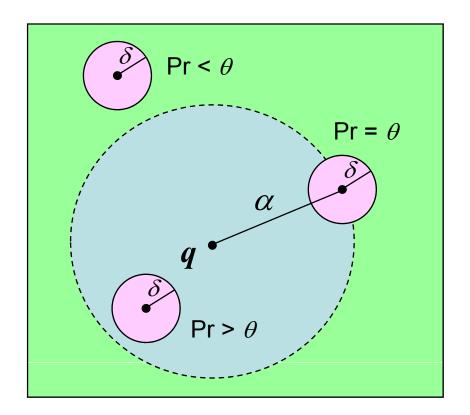
# Oblique-Region-Based (OR) (2)

- Step 1: Rotate candidate objects
  - Based on the result of eigenvalue decomposition of  $\Sigma^{\text{-1}}$
- Step 2: Check whether each object is inside of the rectangle



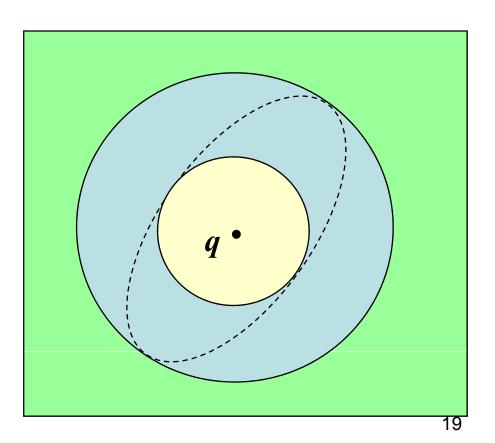
# Bounding-Function-Based (BF) (1)

- Basic idea
  - Covariance matrix  $\Sigma = I$  ("normal" Gaussian pdf)
  - Isosurface of pdf has a spherical shape
- Approach
  - Let  $\alpha$  be the radius for which the integration result is  $\theta$
  - If  $dist(q, p) \le \alpha$  then p satisfies the condition
  - Construct a table that gives  $(\delta, \theta) \rightarrow \alpha$ beforehand



# Bounding-Function-Based (BF) (2)

- General case
  - isosurface has an ellipsoidal shape
- Approach
  - Use of upper- and lower-bounding functions for pdf
    - They have sphererical isosurfaces
    - Derived from covariance matrix



#### **Bounding Functions**

Original Gaussian pdf

$$p_{q}(\boldsymbol{x}) = \frac{1}{(2\pi)^{d/2}} \exp\left[-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{q})^{t}\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{q})\right]$$

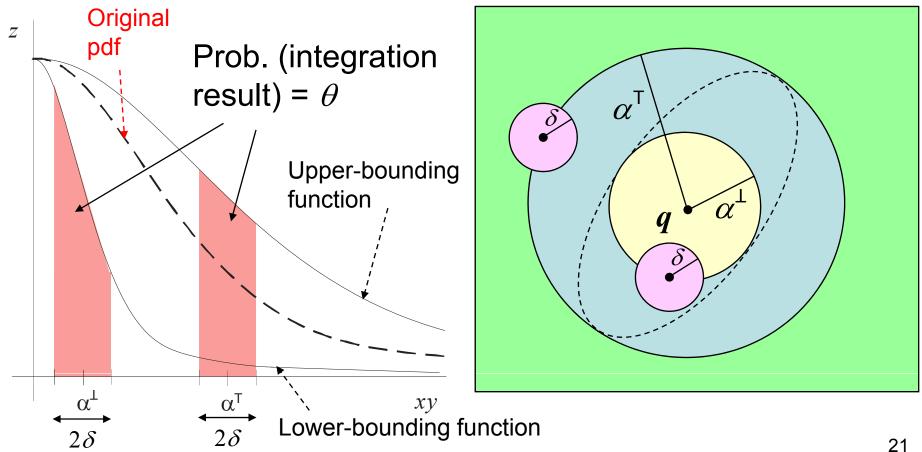
Upper- and lower-bounding functions

$$p_{q}^{\mathsf{T}}(\boldsymbol{x}) = \frac{1}{(2\pi)^{d/2}} \sum_{|\boldsymbol{\Sigma}|^{1/2}} \exp\left[-\frac{\lambda^{\mathsf{T}}}{2} \|\boldsymbol{x}-\boldsymbol{q}\|^{2}\right] \qquad \begin{array}{l} \text{Isosurface} \\ \text{has a} \\ \text{spherical} \\ \text{spherical} \\ \text{shape} \end{array}$$

 $p_q^{\perp}(\boldsymbol{x}) \le p_q(\boldsymbol{x}) \le p_q^{\mathsf{T}}(\boldsymbol{x}) \quad \text{holds} \quad \begin{array}{l} \text{Note: } \lambda^{\mathsf{T}} = \min\{\lambda_i\} \\ \lambda^{\perp} = \max\{\lambda_i\} \\ 20 \end{array}$ 

# Bounding-Function-Based (BF) (3)

•  $\alpha^{T}(\alpha^{\perp})$ : Radius with which the integration result of upper- (lower-) bounding function is  $\theta$ 



# Bounding-Function-Based (BF) (4)

- Theoretical result
  - Let  $S^{\mathsf{T}}$  be a spherical region with radius  $\sqrt{\lambda^{\mathsf{T}}}\delta$  and its center relative to the origin is  $\beta^{\mathsf{T}}$ , and assume that  $S^{\mathsf{T}}$  satisfies the following equation:

$$\int_{\boldsymbol{x}\in S^{\mathsf{T}}} p_{\text{norm}}(\boldsymbol{x}) d\boldsymbol{x} = (\lambda^{\mathsf{T}})^{d/2} |\boldsymbol{\Sigma}|^{1/2} \boldsymbol{\theta}$$

– Using table that gives  $(\delta, \theta) \rightarrow \alpha$ , we can get  $\beta^{T}$ :

$$(\sqrt{\lambda^{\mathsf{T}}}\delta, (\lambda^{\mathsf{T}})^{d/2} |\Sigma|^{1/2} \theta) \rightarrow \beta^{\mathsf{T}}$$

– Then we can get

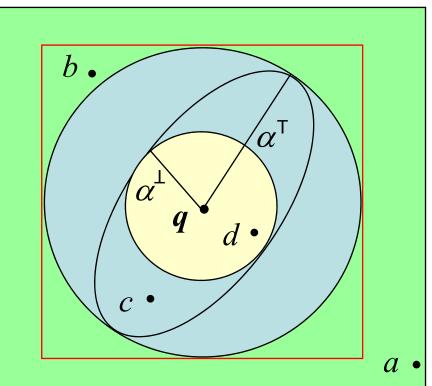
$$\alpha^{\mathsf{T}} = \frac{\beta^{\mathsf{T}}}{\sqrt{\lambda^{\mathsf{T}}}}$$

# Bounding-Function-Based (BF) (5)

- Step 1: Use of R-tree
  - $\{b, c, d\}$  are retrieved as candidates
- Step 2: Filtering using  $\alpha^{T}$ - *b* is deleted
- Step 2': Filtering using  $\alpha^{\perp}$ 
  - We can determine *d* as an answer without numerical integration



– Performed on  $\{c\}$ 

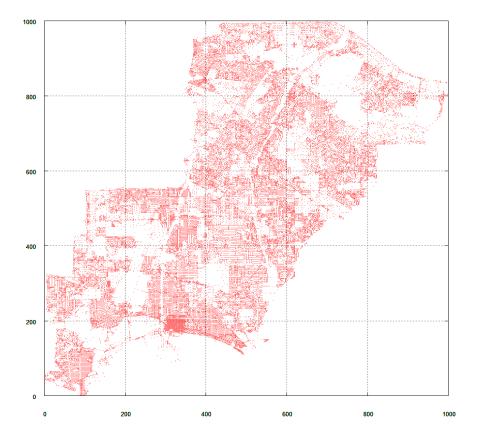


# Outline

- Background and Problem Formulation
- Related Work
- Query Processing Strategies
- Experimental Results
- and Conclusions

### Experiments on 2D Data (1)

Map of Long Beach, CA
– Normalized into [0, 1000] × [0, 1000]



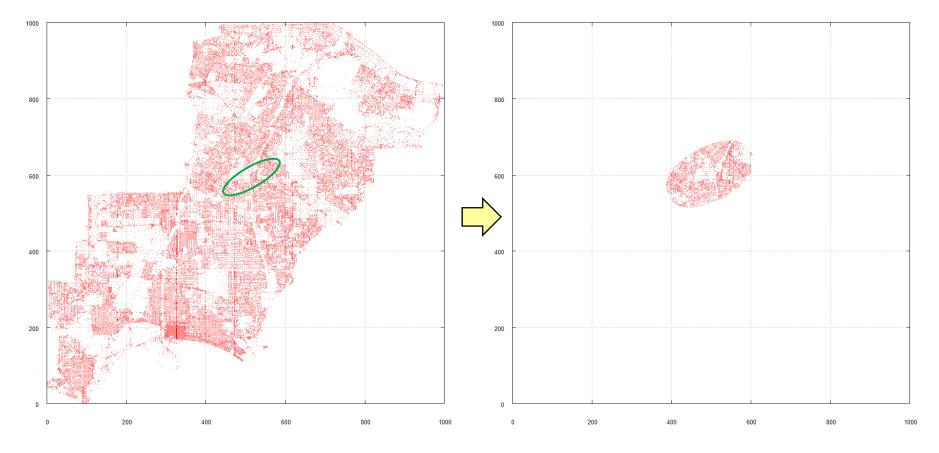
- 50,747 entries
- Indexed by R-tree
- Covariance matrix

$$\Sigma = \gamma \begin{bmatrix} 7 & 2\sqrt{3} \\ 2\sqrt{3} & 7 \end{bmatrix}$$

- γ : Scaling parameter
  - Default:  $\gamma = 10$

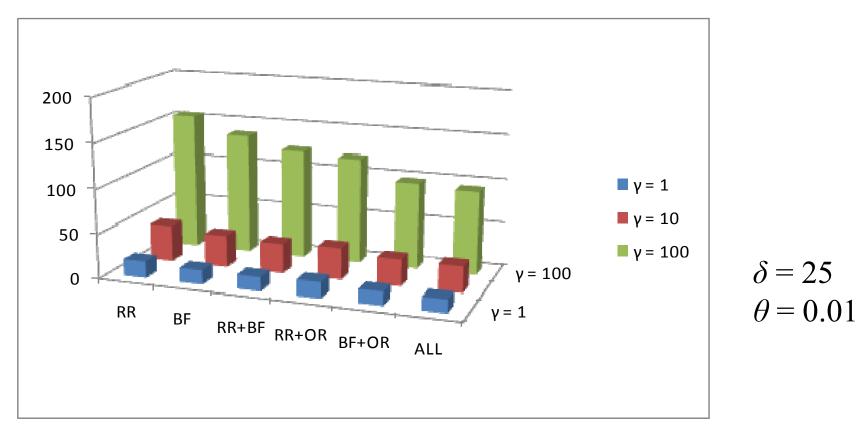
#### **Example Query**

• Find objects within distance  $\delta = 50$  with probability threshold  $\theta = 1\%$ 



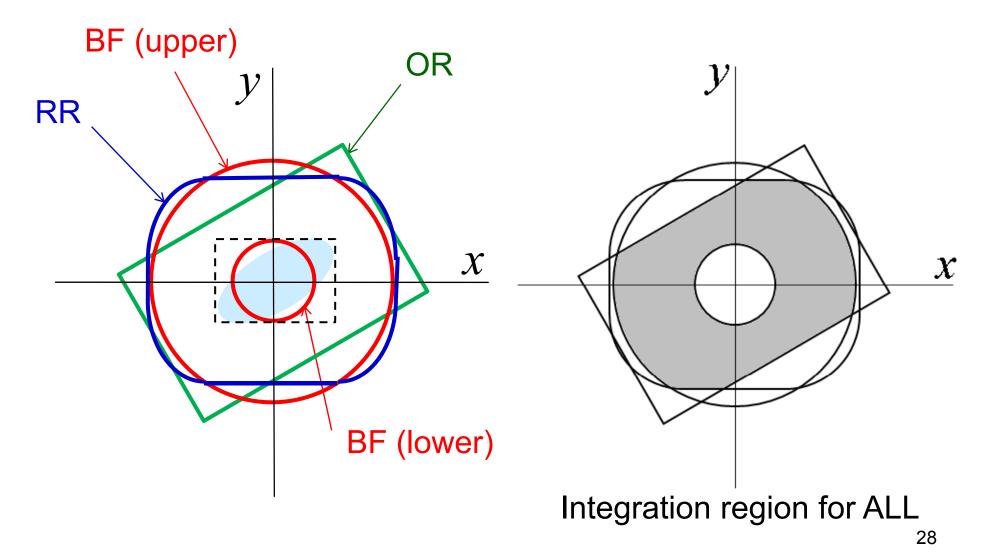
### Experiments on 2D Data (2)

- Numerical integration dominates the total cost
- R-tree-based search is negligible
- ALL is the most effective strategy



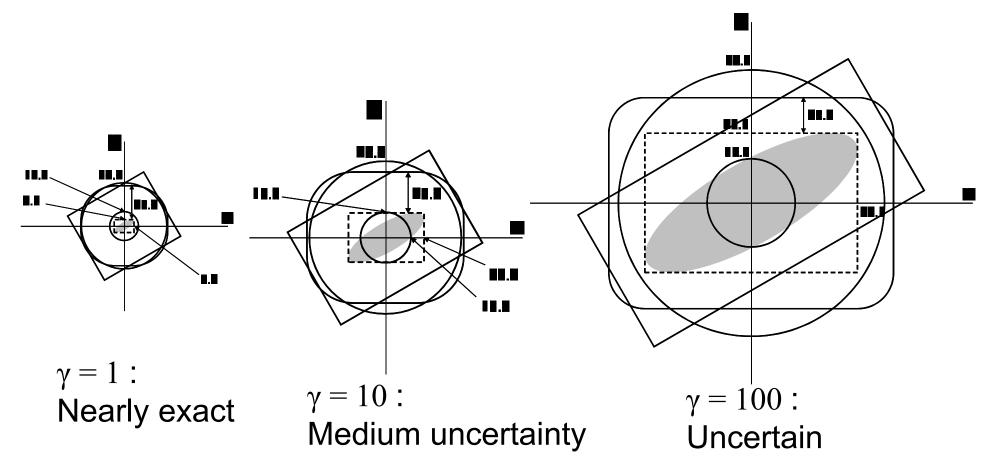
#### Experiments on 2D Data (3)

• Filtering regions ( $\delta = 25, \theta = 0.01, \gamma = 10$ )



#### Experiments on 2D Data (4)

• Filtering regions for different uncertainty setting  $(\delta = 25, \theta = 0.01)$ 



### Experiments on 9D Data (1)

- Motivating Scenario: Example-Based Image Retrieval
  - User specifies
     sample images
  - Image retrieval system estimates his interest as a Gaussian distribution





### Experiments on 9D Data (2)

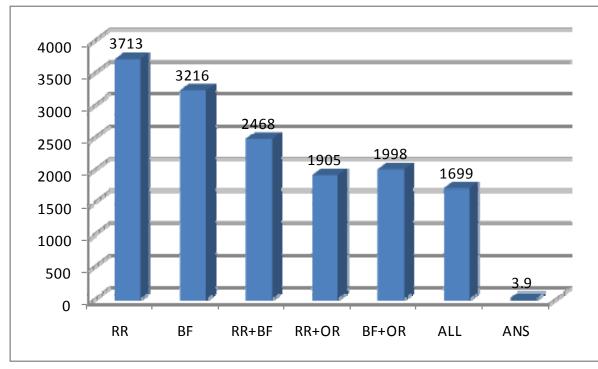
- Data set: Corel Image Features data set
  - From UCI KDD Archive
  - Color Moments data
  - 68,040 9D vectors
  - Euclidean-distance based similarity
- Experimental Scenario: Pseudo-Feedback
  - Select a random query object, then retrieve k-NN query (k = 20) as sample images
  - Derive the covariance matrix from samples

$$\boldsymbol{\Sigma} = \widetilde{\boldsymbol{\Sigma}} + \boldsymbol{\kappa} \mathbf{I}$$

 $\widetilde{\Sigma}$ : Sample covariance matrix

#### Experiments on 9D Data (3)

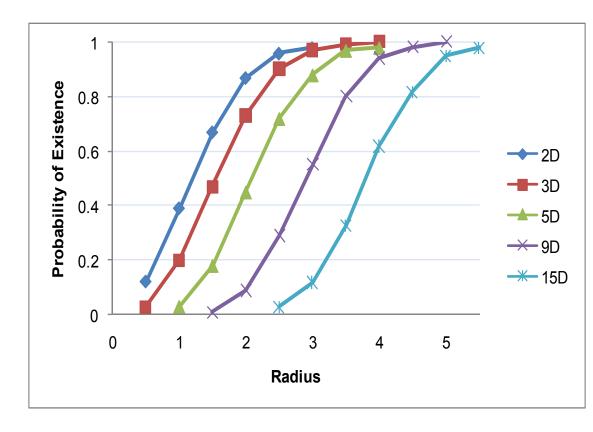
- Parameters
  - $-\delta = 0.7$ : For exact case, it retrieves 15.3 objects
  - $-\theta = 40\%$
- Number of candidates (ANS: answer objs)



Too many candidates to retrieve only 3.9 objects!

### Experiments on 9D Data (4)

- Reason: Curse of dimensionality
- Plot shows existence probability for  $p_{\rm norm}$  for different radii and dimensions



Location of query object is too vague: In medium dimension, it is quite apart from its distribution center on average

**Example**: For 9D case, the probability that query object is within distance two is only 9%

# Outline

- Background and Problem Formulation
- Related Work
- Query Processing Strategies
- Experimental Results
- Conclusions

### Conclusions

- Spatial range query processing methods for imprecise query objects
  - Location of query object is represented by Gaussian distribution
  - Three strategies and their combinations
  - Reduction of numerical integration is important
  - Problem is difficult for medium- and highdimensional data
- Our related work
  - Probabilistic Nearest Neighbor Queries (MDM'09)

Spatial Range Querying for Gaussian-Based Imprecise Query Objects

Yoshiharu Ishikawa, Yuichi Iijima Nagoya University Jeffrey Xu Yu The Chinese University of Hong Kong