Spatial Range Querying for Gaussian-Based Imprecise Query Objects

Yoshiharu Ishikawa, Yuichi lijima Nagoya University
Jeffrey Xu Yu
The Chinese University of Hong Kong

Outline

- Background and Problem Formulation
- Related Work
- Query Processing Strategies
- Experimental Results
- Conclusions

Imprecise Location Information

- Sensor Environments
- Frequent updates may not be possible
- GPS-based positioning consumes batteries
- Robotics
- Localization using sensing and movement histories
- Probabilistic approach has vagueness
- Privacy
- Location Anonymity

Location-based Range Queries

- Location-based Range Queries
- Example: Find hotels located within 2 km from Yuyuan Garden
- Traditional problem in spatial databases
- Efficient query processing using spatial indices
- Extensible to multi-dimensional cases (e.g., image retrieval)
- What happen if the location of query object is uncertain?

Probabilistic Range Query (PRQ) (1)

- Assumptions
- Location of query object q is specified as a Gaussian distribution
- Target data: static points

- Gaussian Distribution

B

$$
p_{q}(\boldsymbol{x})=\frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left[-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{q})^{t} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{q})\right]
$$

$-\boldsymbol{\Sigma}$: Covariance matrix

Probabilistic Range Query (PRQ) (2)

- Probabilistic Range Query (PRQ)

$$
\operatorname{PRQ}(q, \delta, \theta)=\left\{o \mid o \in O, \operatorname{Pr}\left(\|\boldsymbol{x}-\boldsymbol{o}\|^{2} \leq \delta^{2}\right) \geq \theta\right\}
$$

- Find objects such that the probabilities that their distances from q are less than δ are greater than θ

Probabilistic Range Query (PRQ) (3)

- Is distance between q and p within δ ? pdf of q (Gaussian distribution)

Numerical integraiton is required

Naïve Approach for Query Processing

- Exchanging roles
$-\operatorname{Pr}[p$ is within δ from $q]=\operatorname{Pr}[q$ is within δ from $p]$
- Naïve approach
- For each object p, integrate pdf for sphere region R
$-R$: sphere with center p and radius δ
- If the result $\geq \theta$, it is qualified
- Quite costly!

Outline

- Background and Problem Formulation
- Related Work
- Query Processing Strategies
- Experimental Results
- Conclusions

Related Work

- Query processing methods for uncertain (location) data
- Cheng, Prabhakar, et al. (SIGMOD'03, VLDB'04, ...)
- Tao et al. (VLDB'05, TODS'07)
- Parker, Subrahmanian, et al. (TKDE’07, ‘09)
- Consider arbitrary PDFs or uniform PDFs
- Target objects may be uncertain
- Research related to Gaussian distribution
- Gauss-tree [Böhm et al., ICDE'06]
- Target objects are based on Gaussian distributions

Outline

- Background and Problem Formulation
- Related Work
- Query Processing Strategies
- Experimental Results
- Conclusions

Outline of Query Processing

- Generic query processing strategy consists of three phases

1. Index-Based Search: Retrieve all candidate objects using spatial index (R-tree)
2. Filtering: Using several conditions, some candidates are pruned
3. Probability Computation: Perform numerical integration (Monte Carlo method) to evaluate exact probability

- Phase 3 dominates processing cost
- Filtering (phase 2) is important for efficiency

Query Processing Strategies

- Three strategies

1. Rectilinear-Region-Based Approach (RR)
2. Oblique-Region-Based Approach (OR)
3. Bounding-Function-Based Approach (BF)

- Combination of strategies is also possible

Rectilinear-Region-Based (RR) (1)

- Use the concept of θ-region
- Similar concepts are used in query processing for uncertain spatial databases
- θ-region: Ellipsoidal region for which the result of the integration becomes $1-2 \theta$:

$$
\int_{(x-q)^{t} \Sigma^{-1}(x-q) \leq r_{\theta}^{2}} p_{q}(\boldsymbol{x}) d \boldsymbol{x}=1-2 \theta
$$

- The ellipsoidal region

$$
(\boldsymbol{x}-\boldsymbol{q})^{t} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{q}) \leq r_{\theta}^{2}
$$

is the θ-region

Rectilinear-Region-Based (RR) (2)

- Query processing
- Given a query, θ-region is computed: it is suffice if we have r_{θ}-table for "normal" Gaussian pdf
- "Normal" Gaussian: $\Sigma=\mathbf{I}, q=0$
- Given θ, it returns appropriate r_{θ}
- Derive MBR for θ-region and perform Minkowski Sum
- Retrieve candidates then perform numerical intearation

Rectilinear-Region-Based (RR) (3)

- Geometry of bounding box

$$
\begin{aligned}
& w_{i}=\sigma_{i} r_{\theta} \\
& \sigma_{i}=\sqrt{(\boldsymbol{\Sigma})_{i i}}
\end{aligned}
$$

where $(\boldsymbol{\Sigma})_{i i}$ is the (i, i) entry of $\boldsymbol{\Sigma}$

Oblique-Region-Based (OR) (1)

- Use of oblique rectangle
- Query processing based on axis transformation
- Not effective for phase 1 (index-based search): Only used for filtering (phase 2)

Oblique-Region-Based (OR) (2)

- Step 1: Rotate candidate objects
- Based on the result of eigenvalue decomposition of Σ^{-1}
- Step 2: Check whether each object is inside of the rectangle

$-\lambda_{i}$: Eigenvalue of $\boldsymbol{\Sigma}^{-1}$ for i-th dimension

Bounding-Function-Based (BF) (1)

- Basic idea
- Covariance matrix $\Sigma=\mathbf{I}$ ("normal" Gaussian pdf)
- Isosurface of pdf has a spherical shape
- Approach
- Let α be the radius for which the integration result is θ
- If $\operatorname{dist}(q, p) \leq \alpha$ then p satisfies the condition
- Construct a table that gives $(\delta, \theta) \rightarrow \alpha$ beforehand

Bounding-Function-Based (BF) (2)

- General case
- isosurface has an ellipsoidal shape
- Approach
- Use of upper- and lower-bounding functions for pdf
- They have sphererical isosurfaces
- Derived from covariance matrix

Bounding Functions

- Original Gaussian pdf

$$
p_{q}(\boldsymbol{x})=\frac{1}{(2 \pi)^{d / 2}|\Sigma|^{1 / 2}} \exp \left[-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{q})^{t} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{q})\right]
$$

- Upper- and lower-bounding functions

$$
\begin{array}{ll}
p_{q}^{\top}(\boldsymbol{x})=\frac{1}{(2 \pi)^{d / 2}|\Sigma|^{1 / 2}} \exp \left[-\frac{\lambda^{\top}}{2}\|\boldsymbol{x}-\boldsymbol{q}\|^{2}\right] & \begin{array}{l}
\text { Isosurface } \\
\text { has a }
\end{array} \\
p_{q}^{\perp}(\boldsymbol{x})=\frac{1}{(2 \pi)^{d / 2}|\Sigma|^{1 / 2}} \exp \left[-\frac{\lambda^{\perp}}{2}\|\boldsymbol{x}-\boldsymbol{q}\|^{2}\right] & \begin{array}{l}
\text { spherical } \\
\text { shape }
\end{array}
\end{array}
$$

$$
p_{q}^{\perp}(\boldsymbol{x}) \leq p_{q}(\boldsymbol{x}) \leq p_{q}^{\top}(\boldsymbol{x}) \text { holds }
$$

Note: $\lambda^{\top}=\min \left\{\lambda_{i}\right\}$

$$
\lambda^{\perp}=\max \left\{\lambda_{i}\right\}
$$

Bounding-Function-Based (BF) (3)

- $\alpha^{\top}\left(\alpha^{\perp}\right)$: Radius with which the integration result of upper- (lower-) bounding function is θ

Bounding-Function-Based (BF) (4)

- Theoretical result
- Let S^{\top} be a spherical region with radius $\sqrt{\lambda^{\top}} \delta$ and its center relative to the origin is β^{\top}, and assume that S^{\top} satisfies the following equation:

$$
\int_{\boldsymbol{x} \in S^{\top}} p_{\text {norm }}(\boldsymbol{x}) d \boldsymbol{x}=\left(\lambda^{\top}\right)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2} \theta
$$

- Using table that gives $(\delta, \theta) \rightarrow \alpha$, we can get β^{\top} :

$$
\left(\sqrt{\lambda^{\top}} \delta,\left(\lambda^{\top}\right)^{d / 2}|\Sigma|^{1 / 2} \theta\right) \rightarrow \beta^{\top}
$$

- Then we can get

$$
\alpha^{\top}=\frac{\beta^{\top}}{\sqrt{\lambda^{\top}}}
$$

Bounding-Function-Based (BF) (5)

- Step 1: Use of R-tree
- $\{b, c, d\}$ are retrieved as candidates
- Step 2: Filtering using α^{\top}
$-b$ is deleted
- Step 2': Filtering using α^{\perp}
- We can determine d as an answer without numerical integration

- Step 3: Numerical integration
- Performed on $\{c\}$

Outline

- Background and Problem Formulation
- Related Work
- Query Processing Strategies
- Experimental Results
- and Conclusions

Experiments on 2D Data (1)

- Map of Long Beach, CA
- Normalized into [0, 1000] $\times[0,1000]$

- 50,747 entries
- Indexed by R-tree
- Covariance matrix

$$
\boldsymbol{\Sigma}=\gamma\left[\begin{array}{cc}
7 & 2 \sqrt{3} \\
2 \sqrt{3} & 7
\end{array}\right]
$$

- γ : Scaling parameter
- Default: $\gamma=10$

Example Query

- Find objects within distance $\delta=50$ with probability threshold $\theta=1 \%$

Experiments on 2D Data (2)

- Numerical integration dominates the total cost
- R-tree-based search is negligible
- ALL is the most effective strategy

Experiments on 2D Data (3)

- Filtering regions ($\delta=25, \theta=0.01, \gamma=10$)

Integration region for ALL

Experiments on 2D Data (4)

- Filtering regions for different uncertainty setting ($\delta=25, \theta=0.01$)

Experiments on 9D Data (1)

- Motivating Scenario:

Example-Based Image Retrieval

- User specifies sample images
- Image retrieval system estimates his
 interest as a Gaussian distribution

Experiments on 9D Data (2)

- Data set: Corel Image Features data set
- From UCI KDD Archive
- Color Moments data
-68,040 9D vectors
- Euclidean-distance based similarity
- Experimental Scenario: Pseudo-Feedback
- Select a random query object, then retrieve k NN query ($k=20$) as sample images
- Derive the covariance matrix from samples

$$
\boldsymbol{\Sigma}=\tilde{\boldsymbol{\Sigma}}+\kappa \mathbf{I}
$$

$\widetilde{\boldsymbol{\Sigma}}$: Sample covariance matrix
κ : Normalization parameter

Experiments on 9D Data (3)

- Parameters

$$
\begin{aligned}
& -\delta=0.7 \text { : For exact case, it retrieves } 15.3 \text { objects } \\
& -\theta=40 \%
\end{aligned}
$$

- Number of candidates (ANS: answer objs)

Too many candidates to retrieve only 3.9 objects!

Experiments on 9D Data (4)

- Reason: Curse of dimensionality
- Plot shows existence probability for $p_{\text {norm }}$ for different radii and dimensions

Location of query
 object is too vague: In medium dimension, it is quite apart from its distribution center on average
Example: For 9D case, the probability that query object is within distance two is only 9%

Outline

- Background and Problem Formulation
- Related Work
- Query Processing Strategies
- Experimental Results
- Conclusions

Conclusions

- Spatial range query processing methods for imprecise query objects
- Location of query object is represented by Gaussian distribution
- Three strategies and their combinations
- Reduction of numerical integration is important
- Problem is difficult for medium- and highdimensional data
- Our related work
- Probabilistic Nearest Neighbor Queries (MDM'09)

Spatial Range Querying for Gaussian-Based Imprecise Query Objects

Yoshiharu Ishikawa, Yuichi lijma Nagoya University Jeffrey Xu Yu
The Chinese University of Hong Kong

