
“Pay-as-you-go” Processing for Tracing Queries
in a P2P Record Exchange System

Fengrong Li1, Takuya Iida1, and Yoshiharu Ishikawa2

1 Graduate School of Information Science, Nagoya University
2 Information Technology Center, Nagoya University

Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
{lifr,iida}@db.itc.nagoya-u.ac.jp, ishikawa@itc.nagoya-u.ac.jp

Abstract. In recent years, data provenance or lineage tracing has be-
come an acute issue in the database research. Our target is the data
provenance issue in peer-to-peer (P2P) networks where duplicates and
modifications of data occur independently in autonomous peers. To en-
sure reliability among the exchanged data in P2P networks, we have
proposed a reliable record exchange framework with tracing facilities
based on database technologies in [5, 6]. The framework is based on the
“pay-as-you-go” approach in which the system maintains the minimum
amount of information for tracing with low maintenance cost and a user
pays the cost when he or she issues a tracing query to the system. This
paper focuses on its two alternative query processing strategies and com-
pare their characteristics according to the performance.

1 Traceable P2P Record Exchange System

Data provenance is a facility that helps database users to interpret database
contents and enhances the reliability of data [2, 3]. We focus on the data prove-
nance issue in information exchanges in peer-to-peer (P2P) networks. Although
there exist many P2P systems and related proposals, they do not support the
notion of data provenance. Based on this background, we proposed the concept
of a traceable P2P record exchange system in [5, 6], in which tuple-structured
records are exchanged in a P2P network. The system employs “pay-as-you-go”
approach [4] for tracing. In this paper, we show two alternative query processing
strategies and compare their properties.

As an example, assume that information about novels are shared among
peers in a P2P network and that each peer maintains a Novel record set that
has two attributes title and author. Each peer maintains its own records and
keeps its historical data related to itself. To make the tracing process easy, the
system provides an abstraction layer which virtually integrates all the distributed
relations and a datalog-like query language for writing tracing queries in an
intuitive manner. For the details, please refer to [5, 6]. In the following, we present
some examples of tracing queries.

2 F. Li, T.Iida, and Y. Ishikawa

Query 1: Suppose that peer A holds a record with title t1 and author a1 and
that peer A wants to know which peer originally created this record:

BReach(P, I1) :- Data[Novel](’t1’, ’a1’, ’A’, I2),

Exchange[Novel](P, ’A’, I1, I2,)

BReach(P1, I1) :- BReach(P2, I2), Exchange[Novel](P1, P2, I1, I2,)

Origin(P) :- BReach(P, I), NOT Exchange[Novel](, P, , I)

Query(P) :- Origin(P)

Relation Data[Novel] is used to represent the user-level record set Novel in
the underlying system level (it is called the logical layer). A Novel record is
embedded as the first two attribute values of a Data[Novel] tuple. The third
attribute of Data[Novel] contains the peer name which actually manages the
record, and the fourth attribute represents the record id, which is unique among
the P2P network. Relation Exchange[Novel] represents the record exchange his-
tory. For example, a Exchange[Novel] tuple (’B’, ’A’, ’#B001’, ’#A001’,
’3/2/08’) means that peer A copied a record from peer B, where it had the
id value #B001, and peer A assigned a new id #A001 for the record when it was
registered at peer A. The last attribute value 3/2/08 represents the timestamp
of the exchange.

Query 2: This query detects whether peer C copied the record (t1, a1) owned
by peer B or not:

Reach(P, I1) :- Data[Novel](’t1’, ’a1’, ’B’, I2),

Exchange[Novel](’B’, P, I2, I1,)

Reach(P, I1) :- Reach(P1, I2), Exchange[Novel](P1, P, I2, I1,)

Query(I) :- Reach(’C’, I)

Note that Queries 1 and 2 perform backward and forward traversals of prove-
nance information, respectively.

2 Query Processing

Although we have decided to take the “pay-as-you-go” approach and pay the
cost when we perform tracing queries, the efficiency of query processing is still
a quite important factor. Query 1 can be easily executed using the seminaive
strategy [5]; we omit the details here. In the following, we use Query 2 to compare
the performance of the seminaive method and the magic set method .

2.1 Query Evaluation Based on Seminaive Method

The seminaive method is based on simple iterative processing, but ensures no
redundant evaluations are performed to process a recursive datalog query [1]. A
tracing query in our P2P record exchange framework is executed by the cooper-
ation of distributed peers using query forwarding.

Consider Query 2 is issued at peer B. At first, we need to translate it
into a query in the physical layer . In the physical layer, two virtual relations

“Pay-as-you-go” Processing for Tracing Queries 3

Data[Novel] and Exchange[Novel] in the logical layer are stored as actual re-
lations in a distributed manner. Each peer only stores its corresponding parts of
the logical relations. For example, Data[Novel]’B’ relation of the physical layer
maintains a subset of Data[Novel] relation in the logical layer which corresponds
to peer B. Relation Exchange[Novel] in the logical layer is represented as two
physical relations To[Novel] and From[Novel]. For example, To[Novel]@’B’
(From[Novel]@’B’) represents the information of the records provided (copied)
by peer B. In the above query, we used the notation like To[Novel]@P, in which
P is a peer variable. The transformation result is as follows.

Reach(P, I1) :- Data[Novel]@’B’(’t1’, ’a1’, I2),

To[Novel]@’B’(I2, P, I1,)

Reach(P, I1) :- Reach(P1, I2), To[Novel]@P1(I2, P, I1,)

Query(I) :- Reach(’C’, I)

After the transformation, the query is executed using the extension of the
seminaive method. For Query 2, the seminaive method generally visits all the
peers which copied the record (t1, a1) offered by peer B. Since record provided
by a certain peer often copied by multiple peers, it should visit a number of peers.
If we assume that the target record provided by a peer is copied by n peers and
m forwarding are performed along every path started from peer B, the process
should visit nm peers in total.

2.2 Query Evaluation Based on Magic Set Method

The magic set technique is a well-known strategy for the efficient execution
of datalog programs [1]. By modifying a given program, it simulates “selection
pushdown” for the top-down evaluation approach within the bottom-up evalua-
tion approach.

First, we transform Query 2 into the following query according to the magic
set rewriting rules.

Reach(P, I1) :- magic Reach(P, I1), Data[Novel]@’B’(’t1’, ’a1’, I2),

From[Novel]@P(I1, ’B’, I2,)

Reach(P, I1) :- magic Reach(P, I1), Reach(P1, I2),

From[Novel]@P(I1, P1, I2,)

magic Reach(P1, I2) :- magic Reach(P, I1), From[Novel]@P(I1, P1, I2,)

magic Reach(’C’, I):-
Query(I) :- Reach(’C’, I)

Once a program is modified by the magic set-based rewriting, we can execute
the program using the seminaive method. The behavior of the modified program
is, however, quite different from the normal seminaive method. In this case, the
fourth rule above defines the actual start point; it first triggers the evaluation of
the third rule. The additional magic predicate magic Reach requires the follow-
ing: for each record in peer C, we should traverse the path from peer C to the
origin of the record.

We roughly estimate the cost of the query. Assume that peer C has l records.
For each record in peer C, we need to traverse its path to the source. Since

4 F. Li, T.Iida, and Y. Ishikawa

we follow the path towards the ancestor, the path does not contain branches.
If we assume that the path length is a constant value on average, the total
fowarding cost would be O(l). This simple analysis appeals that the magic set-
based strategy would be a promising method for Query 2.

3 Experimental Results

The purpose of the experiments is to observe the behaviors of two query process-
ing strategies using a simple P2P record exchange model. The simulation model
is summarized as follows. We first create N = 100 peers and M = 500 records;
each record is randomly assigned to one of the peers. We assume that records
are consists of two classes — “hot” records (20%) and normal records (80%).
Hot records are more likely to be exchanged; when a peer wants to get a record
from other peer, a hot record is selected with the chance of 80%. We perform
random record exchanges until each peer exchanges L = 50 records on average.

Figure 1 shows the result. In this figure, we added the experimental results
for N = 500 and N = 1000. Their parameters are same except for N .

020406080100120140

100 500 1000Number of fo
rwarding

Number of peers

seminaivemagic set

(a) Average case

050100150200250300350400450

100 500 1000Number of fo
rwarding

Number of peers

seminaivemagic set

(b) Maximum case

Fig. 1. Query forwarding cost for Query 2

Figure 1(a) and Figure 1(b) shows the same experimental results, the magic
set has the high cost. The main reason is that the average number of branches is
not high in our simulation model. But the cost of the magic set method becomes
better for N = 1000. In this case, a hot record is copied by a large number of
peers so that the number of branches of forwarding paths become quite large.

Although the magic set has poor performance for the above experiment, it is
quite effective for some situations. See the following Query 3, which is a modified
version of Query 2.

Query 3: Is the record (t1, a1) in peer C a copy of (t1, a1) in peer B?

Reach(P, I1) :- Data[Novel](’t1’, ’a1’, ’B’, I2),

Exchange[Novel](’B’, P, I2, I1,)

Reach(P, I1) :- Reach(P1, I2), Exchange[Novel](P1, P, I2, I1,)

Dup(I) :- Reach(’C’, I), Data[Novel](’t1’, ’a1’, ’C’, I)

Query(I) :- Dup(I)

“Pay-as-you-go” Processing for Tracing Queries 5

Figure 2 shows the results. The cost of the seminaive method is same as Query
2. On the other hand, the cost of magic set method becomes quite low, especially
in the case of the maximal number of query forwarding. This is because, in
contrast to Query 2, the number of forwarding path is only one due to the
additional constraint of the third rule used for specifying the start record.

00.511.522.533.544.5

100 500 1000Number of fo
rwarding

Number of peers

seminaivemagic set

(a) Average case

050100150200250300350400450

100 500 1000Number of fo
rwarding

Number of peers

seminaivemagic set

(b) Maximum case

Fig. 2. Query forwarding cost for Query 3

The experimental results indicate that we need to select an appropriate ex-
ecution strategy depending on the situation.

4 Conclusions

In this paper, we compared two popular query processing methods, the seminaive
method and the magic set method for our P2P record exchange framework by ex-
periments: both methods have pros and cons; an appropriate execution strategy
depends on the given query, the P2P network organization, the record exchange
behaviors, etc. For the long version of this paper, please visit our homepage
http://www.db.itc.nagoya-u.ac.jp/.

This research was partly supported by the Grant-in-Aid for Scientific Re-
search (19300027, 19024037, 18200005) from MEXT and JSPS.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. P. Buneman, J. Cheney, W.-C. Tan, and S. Vansummeren. Curated databases. In
Proc. ACM PODS, pp. 1–12, 2008.

3. P. Buneman and W.-C. Tan. Provenance in databases (tutorial). In Proc. ACM
SIGMOD, pp. 1171–1173, 2007.

4. A. Halevy, M. Franklin, and D. Maier. Principles of dataspace systems. In Proc.
ACM PODS, pp. 1–9, 2006.

5. F. Li, T. Iida, and Y. Ishikawa. Traceable P2P record exchange: A database-oriented
approach. Frontiers of Computer Science in China, 2(3):257–267, 2008.

6. F. Li and Y. Ishikawa. Traceable P2P record exchange based on database technolo-
gies. In Proc. APWeb, Vol. 4976 of LNCS, pp. 475–486, 2008.

