
“Pay-as-you-go” Processing for Tracing Queries
in a P2P Record Exchange System

Fengrong Li1, Takuya Iida1, and Yoshiharu Ishikawa2

1 Graduate School of Information Science, Nagoya University
2 Information Technology Center, Nagoya University

Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
{lifr,iida}@db.itc.nagoya-u.ac.jp, ishikawa@itc.nagoya-u.ac.jp

Abstract. In recent years, data provenance or lineage tracing which
refers to the process of tracing the sources of data, data movement be-
tween databases, and annotations written for data has become an issue
of acute importance in database research. Our research concerns the data
provenance issue in peer-to-peer (P2P) networks where duplicates and
modifications of data occur independently in autonomous peers. To en-
sure reliability among the data exchanged in P2P networks, we have pro-
posed a reliable record exchange framework with tracing facilities based
on database technologies [14, 15]. Tracing operations in the system are
executed as distributed recursive queries among cooperating peers in a
P2P network. The framework is based on the “pay-as-you-go” approach
in which the system maintains a minimum amount of information for
tracing with a low maintenance cost and the user pays the cost when he
or she issues a tracing query to the system. This paper focuses on the
query processing strategies used in the system. We propose two alterna-
tive query processing strategies and compare their characteristics on the
basis of performance.

1 Introduction

Data provenance is a facility or an activity that helps database users to inter-
pret database contents and it enhances the reliability of the data stored[6, 7,
19]. Typical questions addressed by data provenance include, “Why is this data
located in the database?” and “Where did this data originate from?” The notion
of data provenance is important, especially in the sharing and exchange of scien-
tific data, and practical and theoretical methodologies for describing, querying,
and maintaining provenance information have been proposed.

In our research, we focus on the data provenance issue in relation to infor-
mation exchanges in peer-to-peer networks. Peer-to-peer (P2P) networks are
widely used in various applications such as file exchange, user communication,
and content distribution. A P2P network provides a flexible and scalable solu-
tion for data exchange, but it also brings with it a critical problem; since the
copying and modification of data are performed independently by autonomous
peers without specific central server control, it is difficult to determine how data

2 F. Li, T. Iida, and Y. Ishikawa

is exchanged among the peers and why the data is located in a particular peer.
This results in a lack of reliability in the data exchanged.

In [14, 15], we proposed the concept of a reliable P2P record exchange system,
where a record means a tuple-structured data item that obeys a predefined
schema globally shared in a P2P network. An important feature of the P2P
record exchange system is that it is based on the database technologies that are
utilized to support the notion of traceability . Records are exchanged between
peers, and peers can modify, store, and delete their records independently. To
ensure the reliability of the exchanged data, we assume that each peer maintains
its own relational tables for storing record exchange and modification histories
to facilitate traceability. To make the tracing process easy, the system provides
an abstraction layer which virtually integrates all distributed relations and a
datalog-like query language for writing tracing queries in an intuitive manner.
The system employs a “pay-as-you-go” approach [12] for tracing; the system
performs the minimum tasks required to maintain information for tracing and
the user pays the cost when he or she issues a tracing query.

In this paper, we focus on the issue of query processing strategies, which was
not fully covered in our earlier papers [14, 15]. We show two alternative query
processing strategies and compare their properties. The remainder of this paper
is organized as follows. Section 2 describes the fundamental framework of the P2P
record exchange system. Section 3 presents our “pay-as-you-go” query processing
strategies. Section 4 shows the experimental results for two query processing
strategies. Section 5 reviews related work. Finally, Section 6 summarizes the
conclusions of the paper and addresses future work.

2 P2P Record Exchange

2.1 Background and Motivation

Rapid progress in many specialized areas such as molecular biology and com-
putational science leads to a vast and constantly increasing amount of data
sharing. For example, in the field of molecular biology, there exist a number of
huge databases that are exchanged and shared on a network. One of the prob-
lems in this situation is that the users (research laboratories and institutes) copy
and modify the original data and provide the resulting data to other users. The
process may include the activity of curation [6], in which the data is corrected
and/or annotated based on professional knowledge, new experimental results,
and so forth. Due to the copying, modification, and exchange of data performed
by autonomous users, it becomes difficult to know the original source of the
data and the reason why the data is located in a particular database. This is a
problem of data provenance.

A peer-to-peer (P2P) network is a technology for supporting flexible and
efficient data sharing among autonomous peers, and many systems and proposals
exist [1, 3] but they do not support the notion of data provenance. For reliable
data sharing in a P2P network, we want to know, for example, the original

“Pay-as-you-go” Processing for Tracing Queries 3

creator of the given data and the path of the data in circulation before reaching
the current peer. The current P2P data exchange systems, however, do not
provide such information to users, which means that the users cannot fully rely
on the exchanged data.

With this background, we proposed the concept of a traceable P2P record
exchange system [14, 15] in which tuple-structured records are exchanged in a
P2P network3. We assume that each peer corresponds to a user and maintains
the records owned by the user. Each record has the same structure, which is
defined by a predefined schema and is globally shared within the network.

As an example, assume that information about novels is shared among peers
in a P2P network. Figure 1 shows an example record set Novel owned by some
peer that consists of four attributes: title, author, language, and year. Other
peers also maintain their Novel records with the same structure, but their con-
tents are not the same.

title author language year

Pride and Prejudice Jane Austen English 1813
Madame Bovary Gustave Flaubert French 1857
War and Peace Leo Tolstoy Russian 1865

Fig. 1. Example record set Novel

For ease of presentation, we simplify the example shown in Fig. 1 and assume
that each peer maintains a Novel record set that has two attributes title and
author. Figure 2 shows three record sets maintained by peers A to C. Each peer
maintains its own records and wishes to incorporate new records from other
peers in order to enhance its own record set.

Peer A
title author

t1 a1
t3 a3

Peer B
title author

t1 a1
t4 a4

Peer C
title author

t1 a1

Fig. 2. Record sets in three peers

In our record exchange framework, every peer can act as a provider and a
searcher. A peer can find desired records in other peers by issuing a query. In
addition, a peer can register the retrieved or created records into the local record
management system if it wants, and can modify and delete records in the local
system. For example, the record (t1, a1) in peer A in Fig. 2 may have been
copied from peer B and registered in peer A’s local record management system.

A traceability problem occurs, for instance, when peer A wishes to ask the
question: “Was the novel t1 actually written by the author a1?” Peer A must
check the correctness of the record (t1, a1) in Fig. 2 and try to find evidence
3 We use the term “Record exchange” differently from that of data exchange [13]; the

latter is the problem of taking data that obeys a source schema and creating data
under a target schema that reflects the source data as accurately as possible.

4 F. Li, T. Iida, and Y. Ishikawa

supporting its validity. However, finding such evidence from a P2P network is
quite difficult. In the next subsection, we introduce our framework of a traceable
P2P record exchange system.

2.2 Traceable P2P Record Exchange System

The Design Strategy In our traceable record exchange framework, peers can
behave autonomously and exchange information when required. Peers are highly
distributed and there is no central server that can answer tracing queries using
the complete histories of all the records in the network. To provide a traceability
facility in our system, we have adopted the following strategies:

– All the information required for tracing is maintained in distributed peers;
each peer maintains its own historical information, which consists of creation
(registration), modification, deletion, and exchange histories, related to the
peer itself.

– When a tracing query is issued, the query is processed by coordinating re-
lated peers in a distributed and recursive manner. Historical information
stored in related peers is collected for answering the query.

– To help users write queries, we provide an abstraction layer (the logical layer)
in which all the data in a P2P network is integrated in global virtual views
(in contrast, the underlying layer mentioned above is called the physical
layer). User queries are written with a modified version of the datalog query
language [2].

The underlying idea behind this design strategy is the notion of “pay-as-you-
go” data integration [12]. Since copies and updates are performed everywhere
in a distributed autonomous P2P network, it is quite costly to maintain the
historical information in a central server or several hub servers. Instead, each peer
in our framework maintains only minimal historical information related to the
peer. This means that we need to aggregate the required historical information
from the distributed peers when a tracing query is issued from a user; the user
should pay the cost when he or she traces information. Although the tracing
cost becomes high, the strategy makes sense for the following reasons:

– It is natural to assume that tracing queries are not issued often when com-
pared to the total maintenance operations. In particular, if a peer does not
have a requirement for tracing, our approach ensures that the total cost for
the peer is relatively small.

– In a P2P network, each peer acts autonomously and a peer may not be
interested in all the information in the network. For example, a group of
peers may copy records only from the group members. In that case, local
historical information alone would be sufficient for tracing.

As an alternative strategy, we may be able to take the approach that every record
brings its historical information when it is copied among peers. This approach
simplifies tracing for some cases, but 1) historical information could be large

“Pay-as-you-go” Processing for Tracing Queries 5

for some records, and 2) some types of tracing queries (e.g., “Who copied my
records?”) cannot be processed. In contrast, our approach is flexible and as such
it supports various types of tracing queries.

In the following, we briefly summarize the notions of physical and logical
layers.

The Physical Layer In the physical layer, each peer maintains the minimum
amount of information that is required to represent its own record set and local
tracing information. It consists of four relations. For example, peer A shown in
Fig. 2 contains the following relations:

– Data[Novel]: It maintains records owned by peer A. Figure 3 shows an ex-
ample. Every record has its own record id for maintenance purposes. Each
record id should be unique in the entire P2P network. Note that there are ad-
ditional records compared to Fig. 2; they are deleted records and are usually
hidden from the user. They are maintained for data provenance.

title author id

t1 a1 #A001
t2 a2 #A002
t3 a3 #A003

Fig. 3. Data[Novel] of peer A

from id to id time

− #A002 4/10/08
#A002 #A003 8/10/08

Fig. 4. Change[Novel] of peer A

– Change[Novel]: used to hold the creation, modification, and deletion histo-
ries. Figure 4 shows an example for peer A. Attributes from id and to id
express the record ids before/after a modification. Attribute time represents
the modification timestamp. When the value of the from id attribute is a
null value (−), it means that the record has been created at the peer. Simi-
larly, when the value of the to id attribute is a null value, it means that the
record has been deleted.

– From[Novel]: records which records were copied from other peers. When a
record is copied from another peer, attribute from peer contains the peer
name and attribute from id has its record id at the original peer. Attribute
time stores the timestamp information. The first tuple in Fig. 5 shows the
record with id #A001 is a copy of the record with id #B001 at peer B.

id from peer from id time

#A001 B #B001 3/2/08

Fig. 5. From[Novel] of peer A

id to peer to id time

#A001 C #C001 9/16/08

Fig. 6. To[Novel] of peer A

– To[Novel]: plays an opposite role to that of From[Novel] and stores infor-
mation about which records were sent from peer A to other peers. Fig. 6
shows the To[Novel] relation of peer A.

Although From[Novel] and To[Novel] contain duplicated information, the du-
plicates are stored in different peers. For example, for the tuple of From[Novel] in

6 F. Li, T. Iida, and Y. Ishikawa

Fig. 5, a corresponding tuple (#B001, A, #A001, 3/2/08) exists in To[Novel]
at peer B. When the record is registered at peer A, From[Novel] at peer A and
To[Novel] at peer B are updated cooperatively to preserve the consistency.

In our framework, every peer maintains the four relations in its local record
management system which is implemented using an RDBMS. Since historical
information is distributed among peers, it is not easy to aggregate related in-
formation when a user needs to trace based on his or her requirement. For ease
of understanding and writing tracing queries, we provide an abstraction layer
called the logical layer , which is described next.

The Logical Layer In the logical layer, three relational views are constructed
by unifying all the relations in the peers. Relation Data[Novel] in Fig. 7 ex-
presses a view that unifies all the Data[Novel] relations in peers A to C shown
in Fig. 2. The peer attribute stores peer names. Relation Change[Novel] shown
in Fig. 8 is also a global view which unifies all Change[Novel] relations in a
similar manner.

title author peer id

t1 a1 A #A011
t2 a2 A #A002
t3 a3 A #A003
t1 a1 B #B001
t2 a2 B #B002
t1 a1 C #C001

Fig. 7. View Data[Novel]

peer from id to id time

A − #A002 4/10/08
A #A002 #A003 8/10/08
B − #B001 2/15/08
...

...
...

...

Fig. 8. View Change[Novel]

Exchange[Novel] shown in Fig. 9 unifies all the underlying From[Novel]
and To[Novel] relations in a global view. Attributes from peer and to peer
express the origin and the destination of record exchanges, respectively. At-
tributes from id and to id contain the logical ids of the exchanged records in
both peers.

from peer to peer from id to id time

B A #B001 #A001 3/2/08
A C #A001 #C001 9/16/08

Fig. 9. View Exchange[Novel]

2.3 Query Specification

When a tracing requirement occurs, we need to aggregate the related historical
information stored in the distributed peers. Since recursive processing is required
to collect historical information, our framework provides a modified version of
datalog query language [2]. We now present some examples of tracing queries.

“Pay-as-you-go” Processing for Tracing Queries 7

Query 1: Suppose that peer A holds a record with title t1 and author a1 and
that peer A wants to know which peer originally created the record:

BReach(P, I1) :- Data[Novel](’t1’, ’a1’, ’A’, I2),

Exchange[Novel](P, ’A’, I1, I2,)

BReach(P1, I1) :- BReach(P2, I2), Exchange[Novel](P1, P2, I1, I2,)

Origin(P) :- BReach(P, I), NOT Exchange[Novel](, P, , I)

Query(P) :- Origin(P)

P and I1 are variables and ‘ ’ indicates an anonymous variable. Relation BReach
defined by the first two rules means “Backward Reachable”. It recursively tra-
verses the arriving path of tuple (t1, a1) until it reaches the origin. The third
rule is used for finally determining the originating peer name; it should be reach-
able from peer A and should not have received the record from any other peer.
The last rule represents the final result expected by the user. Note that the query
is written using the three views in the logical layer. The user does not need to
consider how the actual data is distributed among the peers.

Query 2: This query detects whether peer C copied the record (t1, a1) owned
by peer B or not:

Reach(P, I1) :- Data[Novel](’t1’, ’a1’, ’B’, I2),

Exchange[Novel](’B’, P, I2, I1,)

Reach(P, I1) :- Reach(P1, I2), Exchange[Novel](P1, P, I2, I1,)

Query(I) :- Reach(’C’, I)

Relation Reach means “Reachable”. After the execution, it will contain all of
the peer names which copied the target record of peer B. If Reach contains peer
name C, its corresponding record id is returned. Otherwise, an empty relation
is returned to the user and it means that peer C did not copy the record offered
by peer B.

Note that Query 1 and 2 perform backward and forward traversals of the
provenance information, respectively. Datalog is so flexible that we can specify
various queries types. Refer to [14, 15] for details of the various tracing queries
available.[[Was this the intended meaning?]]

3 Query Processing

Although we decided to adopt the “pay-as-you-go” approach where the user pays
the cost when performing tracing queries, the efficiency of query processing is
still quite an important factor. In this paper, we consider applying two major
strategies for datalog query execution, the seminaive method and the magic set
method , to our context. We have outlined the query processing approach based
on the seminaive method in [14], but the details were not discussed. In the
following, we use Query 2 shown above as an example query for purposes of
illustration. Query 1 can be easily executed using the seminaive strategy shown
below; we omit the details here.

8 F. Li, T. Iida, and Y. Ishikawa

3.1 Evaluation Based on Seminaive Method

The seminaive method is based on simple iterative processing, but ensures that
no redundant evaluations are performed to process a recursive datalog query.
It modifies a given datalog program using delta relations, which will contain
the difference of tuples between previous and current iterations. Only the new
tuples computed in the previous iteration are used as input in the next iteration.
The process is repeated until it reaches the fixpoint at which no new tuples are
produced. For the details of this method, refer to [2]. A datalog query is executed
within a single database system in the traditional context of deductive databases.
In contrast, a tracing query in our P2P record exchange framework is executed
by the cooperation of distributed peers using query forwarding.

Consider that Query 2 is issued at peer B. Since the query is described in
datalog using virtual views in the logical layer, it is necessary to transform it
while considering the organization of the physical layer. Query 2 is translated
into the following physical layer query :

Reach(P, I1) :- Data[Novel]@’B’(’t1’, ’a1’, I2),

To[Novel]@’B’(I2, P, I1,)

Reach(P, I1) :- Reach(P1, I2), To[Novel]@P1(I2, P, I1,)

Query(I) :- Reach(’C’, I)

The transformation method is not so difficult and is omitted here. A notation
such as Data[Novel]@’B’ indicates a physical relation at a specific peer, in
this case it means the relation Data[Novel] at peer B. Similarly, To[Novel]@P
represents the relation To[Novel] at peer P. Note that P is a variable peer name.
Resolution from a peer variable to the corresponding exact peer name is resolved
at query execution time.

After the transformation, the query is executed using the extension of the
seminaive method. The query processing steps based on the seminaive method
is summarized in Fig. 10. Query 2 is executed as follows. First, a local query, the
first rule for Query 2, is executed on the local record management system of peer
B and the result is stored in a delta relation ∆Reach. If we assume the example
shown in Fig. 9, ∆Reach will contain a tuple (A, #A001), which is a copy of the
record (t1, a1) at peer B. Next, the given query is compiled into a seminaive
evaluation program:

tempReach(P, I1) :- ∆Reach(P1, I2), To[Novel]@P1(I2, P, I1, _)

tempQuery(I) :- ∆Reach(’C’, I)

Reach := Reach ∪ ∆Reach

Query := Query ∪ ∆Query

∆Reach := tempReach - Reach

∆Query := tempQuery - Query

Then peer A tries to execute this program until it reaches the fixpoint. How-
ever, the program cannot be executed further since the execution needs to access
To[Novel] relation at peer A for the computation. Therefore, the program is
forwarded to peer A with the current temporal results (Reach, Query, ∆Reach, and
∆Query). Next, peer A continues execution based on the given program and data
then forwards the query and the partial data (i.e., {(A, #A001), (C, #C001)})

“Pay-as-you-go” Processing for Tracing Queries 9

to peer C. Since peer C cannot forward the query further, the execution is fin-
ished and the result is finally returned to peer B.

1. /* Initial Peer */
2. Execute local queries to obtain initial results for target relations.
3. Compile the given query into a seminaive evaluation program.
4. Initialize each ∆ relation by an empty relation.
5. Forward the query to related peers with partial evaluation results.
6. /* Succeeding Peer */
7. Execute the given program and data using the local database.
8. If next peers exist, forward the query to them.
9. Otherwise, continue the evaluation until it reaches the fixpoint.

10. If it reaches the fixpoint, the result is returned to the former peer.

Fig. 10. Query evaluation based on the seminaive method

Although this example only forwards twice, the seminaive method generally
visits all the peers which copied the record (t1, a1) offered by peer B for Query
2. Since records provided by a certain peer are often copied by multiple peers,
it should visit a number of peers. If we assume that the target record provided
by a peer is copied by n peers and m forwards are performed along every path
started from peer B, the process should contain nm peers in total. This situation
is illustrated in Fig. 11(a).

B

．．．．．．
C ．．．．．．．．．．．． ．．．．．． ．．．．．．

(a) Seminaive

C

B

(b) Magic set

Fig. 11. Processing Query 2 based on two strategies

3.2 Evaluation Based on Magic Set Method

The magic set technique is a well-known strategy for the efficient execution
of datalog programs [2]. By modifying a given program, it simulates “selection
pushdown” for the top-down evaluation approach within the bottom-up evalua-
tion approach. We describe the query processing approach using Query 2 as an
example.

10 F. Li, T. Iida, and Y. Ishikawa

First, we transform Query 2 into the following query according to the magic
set rewriting rules. Magic set rewriting is a two-step transformation in which
the first phase consists of constructing an adorned rule set that is derived from
the original database with respect to the binding pattern of the query, and the
second phase is the actual magic set rewriting. Due to space constraints, we
refrain from presenting the magic set approach in detail and instead present the
translated result of the query.

Reach(P, I1) :- magic Reach(P, I1), Data[Novel]@’B’(’t1’, ’a1’, I2),

From[Novel]@P(I1, ’B’, I2,)

Reach(P, I1) :- magic Reach(P, I1), Reach(P1, I2),

From[Novel]@P(I1, P1, I2,)

magic Reach(P1, I2) :- magic Reach(P, I1), From[Novel]@P(I1, P1, I2,)

magic Reach(’C’, I):-
Query(I) :- Reach(’C’, I)

Once a program is modified by the magic set-based rewriting, we can execute
the program using the seminaive method. The behavior of the modified program
is, however, quite different from the normal seminaive method. In this case, the
fourth rule above defines the actual starting point; it first triggers the evaluation
of the third rule. This means that we need to evaluate From[Novel]@’C’ since
the tuple obtained by the fourth rule assigns peer name ‘C’ to variable P in
the third rule. As the third rule cannot be executed in peer B, peer B forwards
the program to peer C. Given the forwarded program, peer C starts execution,
but it requires From[Novel]@’A’ during the evaluation of the third rule; this is
due to the fact that peer C copies a record from peer A as shown in Fig. 9. In
summary, the additional magic predicate magic Reach requires the following: for
each record in peer C, we should traverse the path from peer C to the origin of
the record. Note that the forwarding direction is opposite to that in the case of
the normal seminaive method. When each forwarding process reaches the origin,
the process will return along the same path to peer C. The contents of relation
Reach are fulfilled during this returning phase. This magic set-based evaluation
approach is illustrated in Fig. 11(b). The entry that satisfies the given query
corresponds to the path from peer C to peer B; the other paths finally fail.

We roughly estimate the cost of the query. Assume that peer C has l records.
For each record in peer C, we need to traverse its path to the source. Since we
follow the path towards the ancestor, the path does not contain branches. If
we assume that the path length is a constant value on average, then the total
fowarding cost would be O(l). This simple analysis shows that the magic set-
based strategy would be a promising method for Query 2. In the next section,
we check whether this assumption holds by comparing the performance of two
strategies.

4 Experimental Results

The purpose of the experiments is to observe the behaviors of two query process-
ing strategies using a simple P2P record exchange model. We assume that Query

“Pay-as-you-go” Processing for Tracing Queries 11

2 is given and executed based on the strategies shown in the previous section.
The simulation model is summarized as follows. We first create N = 100 peers
and M = 500 records; each record is randomly assigned to one of the peers.
We assume that records consist of two classes: “hot” records (20%) and normal
records (80%). Hot records are more likely to be exchanged; when a peer wants
to get a record from other peer, a hot record is selected with 80% probability. We
perform random record exchanges until each peer exchanges L = 50 records on
average. This means that we perform 5,000 record exchanges for this parameter
setting. Figure 12 shows the results. In this figure, we added the experimental
results for N = 500 and N = 1000. Their experimental parameters are same
except for N .

020406080100120140

100 500 1000Number of fo
rwarding

Number of peers

seminaivemagic set

(a) Average case

050100150200250300350400450

100 500 1000Number of fo
rwarding

Number of peers

seminaivemagic set

(b) Maximum case

Fig. 12. Query forwarding cost for Query 2

Figure 12(a) shows the average numbers of query forwarding. As shown in the
figure, the behavior of the magic set approach is worse when compared to that
of the seminaive approach. This is not well suited to our analysis in the previous
section. The main reason is that the average number of branches is not high in
our simulation model. Although Fig. 11(a) illustrates the exponential growth of
query forwarding, the actual number does not increase exponentially. In contrast
to the seminaive method, the magic set method needs to follow multiple paths
starting from the initiating peer (peer C in our example). That is the main factor
behind the high query cost.

Figure 12(b) shows the same experimental results, but with the highest num-
bers of query forwarding shown. As can be seen, the cost of the magic set method
improves for N = 1000. The reason is that N = 1000 represents the case of fre-
quent record exchanges. In this case, a hot record is copied by a large number of
peers so that the number of branches of forwarding paths becomes quite large.
This makes the performance of the seminaive method worse.

Although the magic set has poor performance for the above experiment, it is
quite effective in some situations. See the following Query 3, which is a modified
version of Query 2. It checks whether the record (t1, a1) in peer C actually
came from peer B.

12 F. Li, T. Iida, and Y. Ishikawa

Query 3 Is the record (t1, a1) in peer C a copy of (t1, a1) in peer B?

Reach(P, I1) :- Data[Novel](’t1’, ’a1’, ’B’, I2),

Exchange[Novel](’B’, P, I2, I1,)

Reach(P, I1) :- Reach(P1, I2), Exchange[Novel](P1, P, I2, I1,)

Dup(I) :- Reach(’C’, I), Data[Novel](’t1’, ’a1’, ’C’, I)

Query(I) :- Dup(I)

We can process this query using the magic set-based approach as in Query
2, but the behavior is different. As in Query 2, first the query is sent to peer
C and peer C then forwards the query to the ancestor. In contrast to Query 2,
there is only one forwarding path because the additional constraint of the third
rule is used for determining the start record.

Figure 13 shows the experimental results. The cost for the seminaive method
is same as in Query 2. On the other hand, the cost of magic set method for
Query 3 is rather small, especially in the case of the maximum number of query
forwarding.

00.511.522.533.544.5

100 500 1000Number of fo
rwarding

Number of peers

seminaivemagic set

(a) Average case

050100150200250300350400450

100 500 1000Number of fo
rwarding

Number of peers

seminaivemagic set

(b) Maximum case

Fig. 13. Query forwarding cost for Query 3

From the experiments above, we can say that the choice of query strategy
should depend on the query, the record exchange history, the organization of
the P2P network, and so forth. Each of the two query processing strategies,
the seminaive method and the magic set method, works well in some situations,
but neither is an all round player. For an efficient query evaluation, we need to
develop effective cost evaluation and optimization methods.

5 Related Work

The data provenance field is quite wide and covers data warehousing [9, 10],
uncertain data management [4, 20], curated databases [6], and other scientific
fields such as bioinformatics [5]. In this area, one of the well-known projects is
the Trio project at Stanford University which considers both uncertainty and
lineage issues [20]. This paper is devoted to the data provenance issue in P2P

“Pay-as-you-go” Processing for Tracing Queries 13

information exchange where data provenance is important, and there are as yet
few proposals for this topic.

There are a variety of research topics regarding P2P databases, such as coping
with heterogeneities, query processing, and indexing methods [1]. One related
project that deals with our problem is the Orchestra project [11, 13, 17], which
aims at the collaborative sharing of evolving data in a P2P network. In contrast
to their approach, our research focuses on a simple record exchange scenario and
does not consider schema heterogeneity. One of the features of our framework is
to employ database technologies as the underlying foundation to support reliable
P2P record exchange. Our approach allows users to write various types of tracing
queries using datalog, and the queries can be executed in a P2P network.

Another related field is dataspace management [12]. This is an emerging new
research field in the area of databases and focuses on more flexible informa-
tion integration over the network in an incremental, “pay-as-you-go” fashion.
Many application contexts involving multiple heterogeneous data sources (e.g.,
personal information management) do not necessarily require full integration of
information sources; it may be reasonable to perform information integration
dynamically when a user request is issued. Such a concept motivates the “pay-
as-you-go” approach to information integration. Since our approach focuses on
the integration of historical information stored in distributed peers, the “pay-as-
you-go” approach will work well because it does not interfere with the autonomy
of the peers and the tracing requests do not occur so often. The approach has
an additional benefit in that it allows flexible tracing query representation using
the datalog query language.

Finally, we mention the query execution strategies. The seminaive method
and the magic set method are well-known query processing strategies for deduc-
tive databases [2]. Query processing based on the deductive database approach
has not been a hot topic in recent years, but the situation is now changing.
As proven in the declarative networking project [8, 16, 18], declarative recursive
queries are very powerful in writing network-oriented database applications such
as sensor data aggregation. In contrast to this approach, our focus is on compact
and understandable tracing query specifications. Since our framework shares the
requirement of efficient query processing with the declarative networking project
approach, it will be possible to extend our query processing method by consid-
ering that project ’s proposals.

6 Discussion and Conclusions

In this paper, we discussed the query processing methods for our P2P record
exchange framework. The approach is based on the concept of “pay-as-you-go”
style data integration where we aggregate historical information distributed in
autonomous peers when a tracing query is issued from a user. The approach has
the benefits of a low maintenance cost of historical information, full autonomy
of peers, and flexible query specifications. The datalog-based query specification
allows us to write tracing queries in a compact manner. A tracing query writ-

14 F. Li, T. Iida, and Y. Ishikawa

ten in datalog is evaluated by cooperating peers using query forwarding. The
recursive nature of tracing is well suited to the deductive approach.

In this paper, we compared two popular query-processing methods in our
context: the seminaive method and the magic set method. The experimental
results show that both methods have pros and cons. For example, an appropriate
execution strategy depends on the given query, the P2P network organization,
the record exchange behaviors, and so forth. Query cost estimation and query
optimization are important future research issues to address in order to enhance
our framework.

Since this paper focused on the query processing issue, we have omitted
other important problems in our framework. Several future research issues are
summarized as follows.

– Full specification of complete query processing strategies: Although this pa-
per showed the query processing strategies and their experimental evalua-
tions, we need to enhance the strategies to handle more complex tracing
queries. This will make the effectiveness and limitation of the declarative
language-based approach clearer.

– Enhancement of the query language for practical tracing: Considering the
practical requirements of tracing, we need to incorporate additional features
and constructs into our language. This means that the query processing
strategies should also be enhanced.

– Efficient coupling with DBMSs: In implementing our framework, we assume
that a local record management system in each peer is implemented using
a conventional RDBMS. We would like to effectively use the powerful and
robust DBMS functionalities based on the tight coupling of the record man-
agement system and the underlying RDBMS.

– Efficient implementation using replication and caching: Data replication and
caching are popular techniques for efficient query processing. In our case,
the data used for tracing queries was historical information which can be
replicated among peers. This will reduce the query processing cost, but the
storage and maintenance cost will increase. We need to consider how to
handle the trade-off considering the total cost reduction.

– Fault-tolerance: In this paper we omitted the issue of fault tolerance; how-
ever, fault tolerance is important when supporting P2P networks in which
failure occurs frequently. Replication will effectively resolve the problem, but
we need to consider it in detail.

– Prototype system implementation and experiments: We are currently devel-
oping a prototype system of our P2P record exchange framework. We also
started to construct a P2P network simulator that can be used for simulat-
ing our prototype system in a virtual P2P network. These developments will
play a positive role in the improvement of our fundamental framework.

Acknowledgments

This research was partially supported by a Grant-in-Aid for Scientific Research
(19300027) from the Japan Society for the Promotion of Science (JSPS).

“Pay-as-you-go” Processing for Tracing Queries 15

References

1. K. Aberer and P. Cudre-Mauroux. Semantic overlay networks. In VLDB, 2005.
(tutorial notes).

2. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

3. S. Androutsellis-Theotokis and D. Spinellis. A survey of peer-to-peer content dis-
tribution technologies. ACM Computing Surveys, 36(4):335–371, 2004.

4. O. Benjelloun, A. Das Sarma, A. Halevy, and J. Widom. ULDBs: Databases with
uncertainty and lineage. In Proc. VLDB, pp. 953–964, 2006.

5. D. Bhagwat, L. Chiticariu, W.-C. Tan, and G. Vijayvargiya. An annotation man-
agement system for relational databases. In Proc. VLDB, pp. 900–911, 2004.

6. P. Buneman, J. Cheney, W.-C. Tan, and S. Vansummeren. Curated databases. In
Proc. ACM PODS, pp. 1–12, 2008.

7. P. Buneman and W.-C. Tan. Provenance in databases (tutorial). In Proc. ACM
SIGMOD, pp. 1171–1173, 2007.

8. T. Condie, D. Chu, J. M. Hellerstein, and P. Maniatis. Evita raced: Metacompila-
tion for declarative networks. In VLDB, pp. 1153–1165, 2008.

9. Y. Cui and J. Widom. Lineage tracing for general data warehouse transformations.
In Proc. VLDB, pp. 471–480, 2001.

10. Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of view data in a ware-
housing environment. ACM TODS, 25(2):179–227, 2000.

11. T. J. Green, G. Karvounarakis, N. E. Taylor, O. Biton, Z. G. Ives, and V. Tannen.
Orchestra: Facilitating collaborative data sharing. In Proc. ACM SIGMOD, pp.
1131–1133, 2007.

12. A. Halevy, M. Franklin, and D. Maier. Principles of dataspace systems. In Proc.
ACM PODS, pp. 1–9, 2006.

13. Z. Ives, N. Khandelwal, A. Kapur, and M. Cakir. Orchestra: Rapid, collaborative
sharing of dynamic data. In Proc. CIDR, pp. 107–118, 2005.

14. F. Li, T. Iida, and Y. Ishikawa. Traceable P2P record exchange: A database-
oriented approach. Frontiers of Computer Science in China, 2(3):257–267, 2008.

15. F. Li and Y. Ishikawa. Traceable P2P record exchange based on database tech-
nologies. In Proc. APWeb, Vol. 4976 of LNCS, pp. 475–486, 2008.

16. B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis,
R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative networking: Language,
execution and optimization. In Proc. SIGMOD, pp. 97–108, 2006.

17. Orchestra: Managing the collaborative sharing of evolving data.
http://www.csi.upenn.edu/˜zives/orchestra/.

18. P2: Declarative networking. http://p2.berkeley.intel-research.net/.
19. W.-C. Tan. Research problems in data provenance. IEEE Data Engineering Bul-

letin, 27(4):45–52, 2004.
20. J. Widom. Trio: A system for integrated management of data, accuracy, and

lineage. In Proc. CIDR, pp. 262–276, 2005.

