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Abstract

With the recent progress of spatial information technolo-
gies and communication technologies, it has become easier
to track positions of a large number of moving objects in
real-time. Mobility statistics plays an important role in the
interactive analysis of a large collection of moving objects
trajectories and its use of movement pattern prediction. The
development of an effective mobility statistics measure and
its efficient computation method are critical issues. Thus,
we propose an approach for constructing a mobility his-
togram to summarize a number of moving object trajecto-
ries. The histogram is based on a mobility statistics model
called the Markov chain model. To facilitate an interactive
analysis performed by a user, we provide a mobility his-
togram data cube-like logical representation and support
an OLAP-style analysis. Since trajectory data is often re-
ceived continuously as a trajectory stream, we have to sup-
port dynamic histogram construction and maintenance. We
introduce a tree structure as the physical representation of a
histogram and present histogram construction and mainte-
nance methods that work efficiently within the given upper-
bound size. We evaluate the performance and the precision
of the proposed method by means of experiments.

1. Introduction

Owing to the development of mobile computing tech-
nologies, GPS and positioning devices, and wireless net-
work facilities, tracking the positions of moving objects
[10] has become relatively easier today. The collected tra-
jectory data can be used to monitor the behavior of moving
objects and to analyze their movement patterns. The latter
activity is often called mobility analysis [27]. By analyzing
movement patterns, we can observe an overall movement
tendency and predict future movement patterns.

Analysis of movement patterns are also important for
query processing in spatio-temporal databases that store tra-
jectories of moving objects [10, 15, 16]. One of the top-
ics relevant to our study is selectivity estimation for spatio-
temporal databases. There exist some approaches for esti-
mating selectivities of queries on spatio-temporal databases
[6, 7, 25].

∗ Current affiliation: Hitachi Information Systems, Ltd.

In this paper, we focus on the summarization of a large
number of moving object trajectories for the efficient cal-
culation of mobility statistics [27], which in turn is based
on the Markov chain model. In context to spatio-temporal
data analysis, the Markov chain model is used to describe
a spatio-temporal movement tendency between spatial ar-
eas under the assumption that the movement patterns can be
described by the Markov chain model. The model has been
used in the analysis of various kinds of movement data such
as car traffic and demographic transition (i.e., how people
travel from one area to another within a specified period).

In our approach, summarized trajectory data is repre-
sented as a special kind of histogram called mobility his-
togram. For the logical representation of the mobility his-
togram, we employ data cube-like representation so that the
user can perform an OLAP-style interactive data analysis
on the trajectory data. In mobility analysis, moving objects
are monitored and tracked in real-time. Since the positions
of moving objects are obtained continuously as a trajec-
tory stream in such a situation, a dynamic histogram con-
struction and maintenance facility is required. Considering
this requirement, we propose a tree-based physical repre-
sentation of a mobility histogram that supports efficient and
adaptive maintainance. In addition, a histogram requires a
compact data structure that fits in a limited memory space.
The proposed physical histogram representation is designed
to growth within the given upper-bound size.

The remaining part of the paper is organized as fol-
lows. Section 2 describes the related work. Section 3 intro-
duces the notion of mobility statistics based on the Markov
chain model. Section 4 introduces the logical histogram
representation that is based on the data cube concept and
Section 5 presents its physical structure and the construc-
tion/maintenance method. Section 6 shows the experimen-
tal results based on the proposed approach. Finally, Sec-
tion 7 concludes the paper.

2. Related work

2.1. Aggregation in spatio-temporal databases

Aggregate computation in spatio-temporal databases has
recently gained much interest. [17] surveys the techniques
to evaluate aggregate queries on spatial, temporal, and
spatio-temporal datasets, but moving objects are beyond its
scope.
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Database query optimization often requires statistical
information such as selectivity estimates of the target
database. For spatial databases, there exist several ap-
proaches for the estimation of query selectivities (e.g., [2]).
For spatio-temporal databases, however, there are only a
few proposals. [6, 7] present an approach to selectivity es-
timation for spatial queries on a spatio-temporal database
that stores moving points. The approach in [25] calculates
selectivities for spatio-temporal queries that change their
query ranges with respect to time. In contrast to the above
approaches, which aim to estimate query selectivities on
spatio-temporal databases, our method focuses on summa-
rizing a large number of moving objects using the Markov
chain model. The summarized statistics can be used for the
description and prediction of the overall trend of moving
objects.

[24] proposes an approach of incrementally updatable
multi-dimensional histogram. Their method, adaptive
multi-dimensional histogram (AMH), is used to approxi-
mate the processing of present-time spatial queries. In
addition to the incremental histogram maintance method,
a method to archive old histogram buckets for historical
queries and a smoothing method for future queries are pro-
posed.

For the extraction of statistics from a spatio-temporal
database, we have already proposed a method to compute
Markov chain-based mobility statistics from an indexed
spatio-temporal database [14]. The approach assumes that
trajectories of moving objects are stored in a spatial index
R-tree. We proposed an efficient method for the calcula-
tion of mobility statistics using an index. In contrast to this
approach, the method proposed in this paper focuses on a
dynamic environment in which trajectory data is delivered
in a streamed fashion, thus, a completely different approach
is required.

2.2. Multi-dimensional and dynamic histograms

A histogram is an important concept in database query
planning and optimization to approximate data distributions
in a database [13]. So far, various histogram construction
techniques have been proposed, but most of them treat one-
dimensional cases. There exist several approaches to treat
multi-dimensional cases involving spatial databases (e.g.,
[2, 4, 22]). It is known that the construction of a multi-
dimensional histogram is NP-hard [20]; thus, most the tech-
niques alleviate the problems using heuristics and/or greedy
approaches.

Besides the treatment of multi-dimensional cases, dy-
namic histogram construction and maintenance methods
are proposed (e.g., [4, 9, 19, 26]). Among them, multi-
dimensional cases are treated in [4, 26], but spatio-temporal
databases are not considered.

The problem we tackle here can be classified into a dy-
namic and multi-dimensional case. However, in contrast to
the previous approaches, our approach handles highly cor-
related data appearances due to the nature of moving objects
and the Markov chain model (i.e., moving objects in the
real world cannot move to an arbitrary area within a limited

time). In addition, to support an exploratory mobility anal-
ysis performed by a user, we provide histograms withmulti-
ple granularities, namely, histograms with multiple spatio-
temporal coarseness. By using mobility histograms with
different spatio-temporal granularities, a user would be able
to achieve a detailed analysis of the movement patterns.

3. Markov chain-based mobility statistics

In this section, we introduce the notion of Markov chain
model with reference to the spatio-temporal mobility anal-
ysis. Table 1 shows the symbols and their definitions.

Suppose that a target two-dimensional space is parti-
tioned into spatial regions as shown in Fig. 1. Each dimen-
sion is equally divided in 2P ranges such that R = 22P

regions in total. The figure shows the case of P = 2. We
call a partitioning shown in the figure as level-P partition-
ing. For each region, a 2P bit region number that obeys the
Z-ordering method [21] is assigned.∗ The figure shows that
object A located in region 9 at t = τ moves to region 12 at
t = τ + 1 and then moves to region 6 at t = τ + 2.

Table 1. Symbols and their definitions
Symbol Definitions

P parameter to specify partitioning per dimension
R total number of spatial regions
n order of Markov chains
M maximal partitioning level
N maximal number of histogram nodes
W window length

t = � t = ��� t = ���

A

region 9 region 12 region 6

A

A

10 54

32 76

8 1312

1110 1514

10 54

32 76

8 139

1110 1514

10 54

32 7

8 139

1110 1514

12

Figure 1. Notion of Markov chain model

Suppose that another moving object B located in region 9
moves to region 12 in unit time later. Consider that we want
to know the probability that object B moves to region 6 next;
we denote the probability by Pr(6|9, 12). If we assume the
transition between spatial regions obeys the Markov chain
model [27], we can say that the probability is a second-order
Markov transition probability.

In order to generalize the above definition, we
denote an order-n Markov transition probability by

∗We can use other numberling schemes that have better clustering prop-
erties, but the Z-ordering method is used since it can be implemented using
relatively simple algorithms.
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Pr(rn|r0, . . . , rn−1). That is, the probability of an ob-
ject, that traveled to regions r0, r1, . . . , rn−1 in this order at
unit time will next visit region rn. Note that r0, r1, . . . , rn

(ri ∈ {0, . . . , R − 1}, 0 ≤ i ≤ n) can contain duplicates.
Consider that there is a dataset of moving object tra-

jectories. Let the start time of recording the moving tra-
jectories be t = 0, and let the current time be t = T .
If we know the objects contained in each region at each
unit time t = 0, 1, . . . , T , we can estimate the probability
Pr(rn|r0, . . . , rn−1) as follows:

Pr(rn|r0, . . . , rn−1) =
∑T−n

t=0 |⋂n
i=0 objs(ri, t + i)|∑T−n

t=0 |⋂n−1
i=0 objs(ri, t + i)|

, (1)

where objs(ri, t) is a function that returns the set of ob-
jects contained in region ri at time t. We could regard this
probability as a special kind of an association rule [12].

The simplest probability estimation method would be to
store all the trajectories in the database, and upon estimation
request, we compute the probability using Eq. (1). Although
the method is simple and clear, the database is required to
store large volume of trajectory data, and the computational
overhead is prohibitively large for an interactive analysis.

To tackle this problem, we propose a mobility histogram
that approximately represents the distribution of movement
patterns to reduce the data size and the computational cost
in the analysis. In the next section, we describe its logical
representation.

4. Logical histogram representation

4.1.Accumulating transition sequences in data cube

We assume that the incoming trajectory stream contains
tuples with the form 〈id, x, y, t〉, where id is the id of an ob-
ject, and x and y are the x and y coordinate values at time
t. Given such stream data, we can easily transform it into
an order-n Markov transition stream for a user-specified n.
Each entry of the stream is an order-n transition sequence
such as 9 → 12 → 6 for n = 2. Here forth, we assume that
order-n Markov transition sequences are continuously ar-
riving from the stream. A mobility histogram is constructed
for the stream to accumulate and summarize transition se-
quences. We employ a data cube as the logical representa-
tion of a mobility histogram.

To represent order-n Markov chain-based statistics, a
histogram is constructed as an (n + 1)-dimensional data
cube. Figure 2 shows a sample of a data cube for n = 2.
The data cube corresponds to the level-1 space partitioning
(P = 1). Since the two-dimensional target space is parti-
tioned into R = 22P = 4 spatial regions, the data cube con-
tains Rn+1 = 64 cells. For each dimension of the data cube,
steps 0, 1, and 2 corresponds to each step of a second-order
Markov chain. For instance, when the sequence 1 → 1 → 2
is received from the transition sequence stream, the corre-
sponding cell value is incremented. The row entitled Sum
represents the total for each dimension.

In [5], a data cube is also used for spatio-temporal
databases. However, they used a data cube as an index

Step 0

Step 1

Step 2

0
1

2
3

0 1 2 3 Sum

Sum

0

1

2

3

Sum

Figure 2. Logical histogram representation

structure for moving objects and their cube consists of three
dimensions (two spatial axes and a temporal axis).

In general, object movement patterns change as time
passes so that a histogram constructed for a long time span
may not be able to appropriately represent dynamically
changing mobility statistics. Therefore, we construct a his-
togram for each set of W consecutive transition sequences,
where W is called the window length. Old histograms are
written in files and later utilized for further analyses. This
approach to save old statistics for historical queries is in-
spired from [24].

4.2. Query processing using data cube

Consider a data cube for order-2 Markov chains. The
probability that an object that has moved from region
1 to region 2 and then moves to region 4 is calcu-
lated as Pr(4|1, 2) = val(1, 2, 4)/val(1, 2, ∗), where
val(1, 2, 4) is the value of the cube cell (1, 2, 4) and

val(1, 2, ∗) =
∑2P −1

i=0 val(1, 2, i).
If we have a data cube for order-n Markov chains, we

can also calculate the probabilities for order 1 to n − 1
transitions. For example, the probability that an object
in region 1 subsequently goes to region 2 is calculated as
Pr(2|1) = val(1, 2, ∗)/val(1, ∗, ∗) using an order-2 data
cube. In addition, a data cube can be used for various types
of queries such as

• the probability that an object in region 1 at t = τ and
in region 3 at t = τ + 2 is in region 2 at t = τ + 1 (τ
is an arbitrary time): val(1, 2, 3)/val(1, ∗, 3), and

• the probability that an object which is in region 2 at
t = τ + 1 and in region 3 at t = τ + 2 is in region 1 at
t = τ : val(1, 2, 3)/val(∗, 2, 3).

Using the data cube representation, we can support other
kinds of queries. For example, density queries [11], which
discover dense areas from spatio-temporal databases, can be
supported by a data cube using aggregation and selection.

4.3. Roll-up and drill-down operations

When we analyze object movement patterns, we some-
times need to see the underlying data in different granulari-
ties. For example, a user analyzing trajectories using a his-
togram constructed for one minute unit time basis may want
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to see a rough overview of the patterns using a histogram for
30 seconds unit time. This situation is similar to the drill-
down operation [12] for temporal dimension. Of course,
the opposite operation to use a coarser histogram (e.g., two
minutes unit time) corresponds to the roll-up operation. To
support drill-downs and roll-ups in our approach, we sim-
ply create multiple data cubes based on different unit times,
e.g., one minute, two minutes, etc. If the histogram con-
struction cost is low, the construction of multiple histograms
is not critical.

We describe how to represent roll-up and drill-down op-
erations in a spatial sense using Fig. 3, where first-order
Markov chains are considered. The figure on the left-hand
side shows the level-1 spatial partitioning and that on the
right-hand side shows the level-2 partitioning. We can re-
gard the data cube constructed from the level-1 (level-2)
partitioning as the “roll-up” (“drill-down”) version of the
level-2 (level-1) data cube.

step 0 step 1

10

32

step 0 step 1

12

10 54

32 76

8 1312

1110 1514

10 54

32 76

8 139

1110 1514

9

10

32

level-2level-1

Figure 3. Roll-up and drill-down

In practice, we do not construct multiple histograms for
different spatial resolutions but create only one histogram.
As described in the next section, we represent a histogram
physically as a compact approximated tree structure. Dif-
ferent spatial resolutions are adaptively handled by partial
tree expansion.

5. Physical histogram representation

The direct implementation of the logical data cube rep-
resentation has a huge overhead. As shown before, the to-
tal number of spatial regions is R = 22P , and a data cube
for order-n Markov chains has Rn+1 cells. When P = 5
and n = 2, for example, we have approximately one bil-
lion cells since Rn+1 = 10243. Even if we represent each
cell with two bytes, it requires 2 GB of memory. To reduce
the size and enable dynamic maintenance of the histogram
structure, we propose a tree-based physical representation.

5.1. Histogram structure and its construction

5.1.1 Basic structure

A physical histogram is represented as a tree structure that
is a combination of a quad-tree and a k-d tree [23]. In this
subsection, we describe the basic structure. The concrete
structure is shown in the next subsection.

Suppose that input transition sequences are based on
level-M partitioning such as 2(M) → 10(M) → 12(M),
where the notation r(M) is used to specify the partitioning

level of region r explicitly. Here, M is called the maximal
partitioning level since we cannot represent more accurate
statistics beyond this level.

Each node in a histogram tree has zero to four child
nodes each node containing a counter for the correspond-
ing transition sequences. For example, consider an order-2
transition sequence r

(M)
0 → r

(M)
1 → r

(M)
2 is inserted in a

tree, where r
(M)
0 , r

(M)
1 , and r

(M)
2 are region numbers. We

call r
(M)
0 , r

(M)
1 , and r

(M)
2 step-0 region, step-1 region, and

step-2 region, respectively. The sequence is processed as
follows:

1. Start from the root of the tree.

2. Translate r
(M)
0 into a binary number, then extract its

first two-bits. Depending on the value, that is, 00 (=
0(1)), 01 (= 1(1)), 10 (= 2(1)), or 11 (= 3(1)), follow
the corresponding edge and then visit the child node.
If the child node is not instantiated, create the node and
an edge from the parent (root) to the node.

3. Extract the first two bits from r
(M)
1 and follow the cor-

responding edge. A non-instantiated node is treated as
in Step 2.

4. Process r
(M)
2 in a similar manner. Steps 2 to 4 corre-

spond to transitions in level-1 coarse resolution.

5. Use the next two bits from r
(M)
0 , r

(M)
1 , and r

(M)
2 , re-

spectively, to traverse following each edge. This step
corresponds to level-2 partitioning.

6. Repeat these steps until a leaf node where all bits are
consumed.

Note that there is a counter in each node; when we visit a
node we increment its count. The idea of alternative expan-
sion for each transition step is borrowed from k-d trees. The
approach of iterative four-way decomposition of the space
is inspired from quad-trees.

Figure 4 shows an example to add a transition sequence
3(2) → 6(2) → 12(2) for a tree with M = 2. A dotted edge
indicates that a corresponding transition sequence has not
yet arrived so that the edge is not allocated.

Figure 4. Physical histogram structure
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5.1.2 Approximated representation

The physical histogram structure shown in the previous sub-
section is accurate but requires a large amount of storage
space. Therefore, we propose its approximated representa-
tion. Under the given upper bound of the number of nodes
N , we construct an approximated tree structure.

The idea is to expand the tree adaptively considering the
statistical uniformity the nodes. Figure 5 is used as an ex-
ample. It shows an image of an order-2 histogram tree after
hundreds of insertions of transition sequences. Consider the
black node, which is a leaf node. It corresponds to the tran-
sition sequence 1(1) → 3(1) → ∗ since it has 01 for the first
two bits of step 0 and 11 for those of step 1. This node has
its own buffer that contains all the transition sequences with
the transition sequence pattern shown above.

Figure 5. Examination for node expansion

Now, suppose that the buffer contains 100 transition se-
quences. We classify these sequences depending on their
first two bits in step 2, which are 00, 01, 10, or 11, and
then count their numbers. Assume that the counts are 25,
24, 26, and 24, respectively. This implies that an object
which was in 1(1) in step 0 and 3(1) in step 1 goes to one
of the four regions (0(1), 1(1), 2(1), and 3(1)) in step 2 with
almost equal probabilities. In contrast, suppose that the
counts are 55, 5, 40, and 0. In this case, the count distri-
bution is skewed. Our approach to this situation is to “ex-
pand” this node and create four child nodes. The transition
sequences contained in the current buffer are distributed to
the child nodes and stored in their buffers. Using this ap-
proach, the tree can grow adaptively depending on the dis-
tribution of mobility patterns.

A histogram tree continues to expand until the number
of nodes reaches N , the limit of the node numbers. We then
count the number of transition sequences contained in each
leaf node buffer. The counts are stored in the leaf nodes and
then the buffers are finally deleted. In contrast to the ba-
sic method described above, the approximated tree contains
counts only in the leaf nodes. After this point, the struc-
ture of the tree is fixed. When a new transition sequence
arrives, we only increment the counter in the corresponding
leaf node. When the number of arrived transition sequence
becomes W , the window length, we store the histogram tree
in a file and then start to create a new histogram. The ap-
proach to expand a tree adaptively is also found in decision
tree construction [8]. The paper proposes the VFDT method

that constructs a decision tree from stream data.

5.1.3 Checking non-uniformity

The problem faced by the approximated tree described
above is how to detect skewness in count values. We need
an appropriate method such that

• it is based on a statistically clear criteria, and

• it has efficient implementation.

The latter is quite important for dynamic environments re-
quired for stream data processing. For this purpose, we uti-
lize the χ2 test for goodness of fit [28]. Let the counts of
00, 01, 10, and 11 during tree expansion be x00, x01, x10,
and x11, respectively. The null hypothesis H0 here is that
the distribution of transition sequences is uniform and the
probability that a transition sequence is classified into one
of the four regions is 1/4. The χ2 value is calculated as
follows:

x̄ =
x00 + x01 + x10 + x11

4
(2)

χ2 =
∑

c∈{00,01,10,11}

(xc − x̄)2

x̄
. (3)

It obeys the χ2 distribution with 4 − 1 = 3 degrees of free-
dom. When the significance level is 5%, we can assume
that the distribution is non-uniform if χ2 > 7.815 holds;
the constant is taken from the χ2 statistics table.

When we utilize the χ2 test for goodness of fit, we
must consider the case when one or more values of xc

(c ∈ {00, 01, 10, 11}) in Eq. (3) are too small. The situ-
ation is common in our situation since transition sequences
arrive in a streamed fashion and we first encounter small
occurrence numbers. To solve this problem, we utilize the
nonparametric statistical test instead of the χ2 test when the
total number of transition sequences is small. The method is
an extended version of the binomial test [28], a well-known
robust nonparametric method. The detail is shown in the
appendix.

5.2. Query processing

We describe the query processing method to estimate the
count of a given transition sequence using a histogram. For
example, if we use a histogram for order-2 (n = 2) Markov
chains, a generic query is given as follows:

Estimate the count of the transition sequence
r
(m0)
0 → r

(m1)
1 → r

(m2)
2 .

Queries to a logical histogram, namely a data cube, can be
processed by the combination of queries in this form. We il-
lustrate the overview of the process using simple examples.

Suppose that a query 3(2) → 6(2) → 9(2) is given. Since
it can be translated into a binary representation 0011 →
0110 → 1001, we try to traverse the tree as

00
(1, 0)

→ 01
(1, 1)

→ 10
(1, 2)

→ 11
(2, 0)

→ 10
(2, 1)

→ 01
(2, 2)
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from its root, where 00, 01, 10, and 11 represent the la-
bels of the edges to be followed. The notation (l, s) means
that the move corresponds to the partition level l and step s.
The actual query processing depends on the situation and is
performed as follows:

1. If the node visited by the final move 01 (2, 2) is a leaf
node, we return the count contained in the node.

2. When the final move 01 (2, 2) still visits a non-leaf
node, we traverse the descendants of this node, accu-
mulate the counts in the leaf nodes, and then return the
summation of the counts.

3. When we meet a leaf node in the middle of the traver-
sal, it means that the histogram only contains coarse
statistics about the transition sequence. Therefore, we
return an approximated result. For example, if we
reach a leaf node when we move as

00
(1, 0)

→ 01
(1, 1)

→ 10
(1, 2)

→ 11
(2, 0)

,

we estimate the count as C/42 = C/16, where C is
the count contained in the leaf node.

We can process a query in which the resolutions
of query regions are not equal. Consider the query
3(2) → 1(1) → 9(2) as an example: it uses a coarse reso-
lution only for step 1. The query can be represented in a
binary format as 0011(2) → 01(1) → 1001(2), but note that
we can expand it as 0011(2) → 01 ∗ ∗(2) → 1001(2), where
“**” represents any of 00, 01, 10, and 11. Therefore, we
can simply issue four queries then take their summation to
answer the given query.

A more complex query can be solved using a similar
approach; we decompose a query into simpler queries and
then integrate their query results. Since a query can be pro-
cessed quite efficiently as shown later, the execution of mul-
tiple queries is not really an overhead. Of course, we can
develop a sophisticated algorithm that can traverse a tree
with a smaller number of queries; however, this will result
in a complex algorithm.

5.3. Use of a bitmap

The approximated tree is compact, but it has an error.
We propose an extended method for the approximated rep-
resentation to improve its accuracy using a bitmap. The ba-
sic idea is to construct an additional data cube in a coarse
resolution, but each cube cell contains a binary value. If
there is one or more transition sequences, the value is one,
otherwise it is zero. For example, if the order of Markov
chains is n = 2 and the partitioning parameter is P = 3,
since R = 22×3 = 64, the size of the bitmap becomes
Rn+1 = R3 = 262, 144 bits = 32 KB.

A bitmap is utilized in query processing as follows.
Given a query transition sequence, we first determine
whether the count of the sequence is zero using the bitmap.
We return zero if the bit is zero, otherwise an estimated
count is returned using the method described above. If we

use a more detailed bitmap (e.g., P = 4, 5, . . .), we can pro-
vide more accurate results; the bitmap can also be used for
queries in coarser levels. However, this requires additional
storage space and there is a tradeoff between accuracy and
efficiency.

6. Experiments

In this section, we evaluate the proposed methods based
on the experiments. We compare three methods, the ba-
sic naive method (BASE), the approximated method (APR),
and the approximated method enhanced with a bitmap
(APR-BM). In Subsection 6.1, we present the experimental
settings. Subsection 6.2 compares histogram construction
costs of the three methods in terms of storage size and con-
struction time. Subsection 6.3 shows the result of the query
processing time, and Subsection 6.4 evaluates the accuracy
of the method.

6.1. Experimental settings

We perform experiments using the trajectory data gener-
ated by the moving object simulator made by Brinkoff [3].
The system simulates the traffic of moving objects on a real
city road network. The data used in the experiments is gen-
erated from the core part of Oldenburg city, Germany (about
2.5 km × 2.8 km in area). Figure 6 shows the map of the
city. The maximal partitioning is M = 10; namely, the en-
tire map is decomposed into 1, 024 × 1, 024 regions in the
most detailed resolution.

Figure 6. Simulation area

We set up the parameters such that there were 1,000
moving objects for every moment of the simulation. The
simulation time length was 50 unit times. The experiments
were performed on a 3.2 GHz Pentium 4 PC with 1 GB
memory.

6.2. Histogram construction

We extracted 50,000 order-2 (n = 2) Markov chain tra-
jectory sequences from the simulation data. We used the
top 1,000 entries and 10,000 entries in some experiments.
Although we have described the use of multiple time win-
dows in Subsection 4.1, we utilize only one time window
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and construct one histogram for each method in the follow-
ing experiments. The simulation dataset used in the exper-
iments is considered to be based on a stational process so
that it is reasonable to use one time window.

6.2.1 Histogram size

Table 2 shows the histogram sizes for three methods BASE,
APR, and APR-BM. 1K, 10K, and 50K imply that the num-
ber of the trajectory sequence is 1,000, 10,000, and 50,000,
respectively. For APR, we need to specify the upper bound
of the allocatable nodes, we have specified 1,000, 10,000,
and 50,000 for each case of 1K, 10K, and 50K. The num-
bers of actually allocated nodes are 724, 6,692, and 33,844.
That is, our approximated histogram construction algorithm
decided that full node allocatoin is not necessary for each
case. For APR-BM, the same upper bounds are specified
so that the actual numbers of nodes are the same as APR.
APR-BM also needs a bitmap; we have allocated a bitmap
with the partitioning level P = 3.

Table 2. Histogram size (MB)

Data Size BASE APR APR-BM
1K 0.35 0.01 0.04

10K 2.7 0.10 0.13
50K 9.4 0.52 0.55

As shown in the table, the naive method BASE has a
huge storage overhead because it does not use any data re-
duction. Thus, BASE is not an appropriate method for the
accumulation of mobility statistics in a compact data struc-
ture. APR-BM utilizes a bitmap of the partition level P = 3.
Although it requires 32 KB of storage, the additional cost
is relatively small compared to the histogram size of APR.
Therefore, we can say that the approximated method APR
and its extension APR-BM have good features in terms of
storage cost. Note that if we employ P = 4, the size of the
bitmap becomes 256 KB and its effect on the total histogram
size is non-negligible. Bitmap compression techniques may
be effective in solving this problem.

6.2.2 Histogram construction time

Figure 7 shows the construction time of each histogram for
different data sizes: 1K, 10K, and 50K. The data is an aver-
aged value of ten measurements. Figure 8 shows the same
data, but averaged per transition sequence insertion. We
have ommited APR-BM in these figures since its construc-
tion cost is almost same as APR. These figures also includes
the experimental results for the input trajectory data with
M = 5 to evaluate the difference in the construction cost
when the base resolution of the space is coarse.

As shown in the above figures, the construction cost of
APR is higher than BASE. This is due to the non-uniformity
checking of APR: it has to check whether the transition se-
quences in the leaf nodes were skewed in the occurrence
patterns. As shown in the appendix, we have developed
an efficient method for statistical testing, but it has a small
overhead. The reason for the increase in with the data size

Figure 7. Construction time

Figure 8. Construction time (per sequence)

is that the number of leaf nodes becomes large as the tree
grows and we have to check more leaf nodes.

Figure 8 shows that the averaged construction time per
transition sequence is only 0.16 ms even for 50K data and
M = 10. Although APR (also APR-BM) is slower than
BASE, the construction overhead is quite small. For ex-
ample, consider an application for car traffic monitoring.
The speed of a vehicle is relatively slow compared to the
histogram construction speed so that a 10 second or more
interval for the monitoring would suffice. Of course, mon-
itoring a large number of vehicles would be a problem, but
we would be able to employ sampling and/or load shedding
[1] for the problem.

6.3. Query processing time

We present the results on query processing time. The tar-
get histograms are based on the same parameters in the pre-
vious subsection and M = 10. We randomly constructed
100 transition sequences as queries, and measured the aver-
age query processing time. Two types of queries are con-
sidered:

1. fine-level query: The partition level of each region of
a transition sequence is equal to the maximal partition
level M = 10 (e.g., 909876(10) → 397555(10) →
399468(10)).

2. mixed-level query: The target level of a query is se-
lected randomly between 1 and 9 (e.g., 2(2) → 2(2) →
2(2), 53662(9) → 66816(9) → 109748(9)).
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Figure 9 shows the query processing time for each query
type per query. The result is an average of the same 10
experiments. 1K, 10K, and 50K are the sizes of the input
data. We omit the data for APR-BM because the cost is
almost the same as APR.

Figure 9. Query processing time

As shown in the figure, the query processing cost does
not depend on the target data size and the type of a his-
togram. One dominant factor is the resolution level of a
query, a fine-level query takes more time than a mixed-level
query. However, the execution of a query is quite fast and
less than 1 ms in any case. Therefore, we can say that any
types of histogram can achieve fast query processing.

6.4. Accuracy of histograms

6.4.1 Intuitive example

In order to obtain an intuition for the accuracy of the con-
structed histograms, we present some plots of histograms.
Figure 10 shows a constructed histogram for 10K transition
sequences using the BASE method. The order of Markov
chains is n = 1 and the space partition level is P = 2. Fig-
ure 11 is an APR histgoram for the same dataset. As shown
in the figures, their trends are quite similar. The diagonal
cells take high scores; the reason is that a moving object in
a region will either stay at the region or move to neighboring
regions—it cannot move to distant regions.

Figure 10. BASE histogram (n = 1, P = 2)

Figure 12 shows their absolute difference. As we can
observe, the difference is quite small compared to the counts
in the original histograms.

Figure 11. APR histogram (n = 1, P = 2)

Figure 12. Absolute histogram difference

6.4.2 Evaluation measures

We evaluate the accuracy of approximated histograms by
the following two evaluation measures:

Dist =

√√√√Rn+1∑
i=1

(ACTi − ESTi)2 (4)

RelErr =

√√√√ 1
Rn+1

Rn+1∑
i=1

(
ACTi − ESTi

ACTi

)2

(5)

where R = 22P and Rn+1 is the total number of cube cells.
Cube cells are numbered from 1 to Rn+1. ACTi represents
the actual value of cube cell i, which is taken from a cube
of the BASE method. ESTi is the estimated value of cell
i in an approximated histogram. The measure Dist is the
conventional Euclidean distance and RelErr is the relative
error.

The computation of a relative error value has a problem:
ESTi may take zero so that “division by zero” occurs in
Eq. (5). To solve this problem, we employ the Laplace esti-
mator to compute Eq. (5):

Ĉi =
Ci + 1
S + B

× S, (6)

where Ci is the original value (ACTi or ESTi) and Ĉi is its
corrected value. B is the number of bins and S is the total
number of instances; they are defined as follows:

B = Rn+1 (7)

S =
B∑

i=1

Ci (8)
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See [18] for details of the Laplace estimator.

6.4.3 Evaluation result

We present the evaluation result for a typical parameter set-
ting. Figure 13 shows the comparison of APR and APR-BM
based on the Euclidean distance Dist in Eq. (4). We
used order-2 histograms for 50K transition sequences. The
bitmap of APR-BM is constructed for the partition level
P = 3. For the calculation using Eq. (4), we set the par-
tition level P = 3; that is, we enumerate all the transition
sequences at the level P = 3 (e.g., 1(3) → 2(3) → 3(3)) and
then estimate the corresponding cube cell values and use
them to compute a distance. 10K, 20K, 30K, and 34K in the
x-axis are the number of allocated histogram nodes. We no-
tice that the allocation of the nodes improves the accuracy,
but its effect decreases gradually. In this figure, we cannot
observed clear difference between APR and APR-BM.

Figure 13. Euclidean distance

Figure 14 shows the result based on the relative error
RelErr (Eq. (5)) for the same histograms. It is clear that
APR-BM has a good accuracy. The reason is that APR-BM
can provide accurate estimates for cube cells that actually
take zero values. In the case of the Euclidean distance, the
cells that take large values dominate the distance score and
the cells with small values have little effect. On the other
hand, it is critical that the relative error estimates the values
of the cells that take small values.

Figure 14. Relative error

Therefore, the use of a bitmap is quite effective with a
little storage overhead when the relative error is important.

7. Conclusions and future work

In this paper, we proposed a method to construct a his-
togram to represent mobility statistics based on the Markov

chain model to represent movement patterns of a large num-
ber of moving objects. We described an OLAP-like mobil-
ity analysis approach and showed the logical data cube rep-
resentation for the analysis. Then, we introduced the physi-
cal histogram with a tree structure.

To reduce the storage overhead of the histogram, we
introduced the approximated histogram representation and
presented a histogram construction algorithm that gradually
expands a tree considering the statistical property of the leaf
nodes in the tree. We also proposed the additional use of a
bitmap to enhance the accuracy of the approximated his-
togram.

As shown in the experiments, our approximated his-
togram achieved low storage cost compared to the naive tree
histogram. Although its construction cost is larger than that
of the naive method, the cost is still quite low and enables us
to use the method for monitoring the movement of a large
number of moving objects. The accuracy of the proposed
histograms were evaluated using some measures and the re-
sult shows that the approximated histogram enhanced with a
bitmap can achieve high precision with a little storage over-
head.

The work presented in this paper is ongoing in our lab-
oratory. The future work includes more complete evalua-
tion based on real-time data. Further, we aim to develop
a more sophisticated histogram construction scheme that
can achieve high precision without the increase of the pro-
cessing costs. Finally, we want to construct an application
framework that utilizes the proposed histogram technique
to support the exploratory mobility analyses performed by
users.
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Appendix: Non-uniformity checking using
nonparametric statistics

The binomial test [28] is one of the nonparametric sta-
tistical tests. A typical null hypothesis H0 is that the head
and the tail probabilities of a coin are 1/2. Consider per-
forming t trials and let the smaller number of occurrence of
head or tail be k. For example, when t = 10, the proba-
bility for k = 0 is Pr(k = 0) = 2 · (10

0

) · ( 1
2 )10 = 0.002,

and Pr(k = 1) = 2 · (
10
1

) · ( 1
2 )10 = 0.020. Similarly,

we get Pr(k = 2) = 0.088,Pr(k = 3) = 0.234, etc.
Therefore, the rejection regions for the confidence level
5% are [0, 1] since

∑1
i=0 Pr(10, i) = 0.021 < 0.05 and∑2

i=0 Pr(10, i) = 0.109 > 0.05. That is, we can reject H0

when k = 0 or 1.
We generalize the idea to multinomial cases. Suppose

that we have a four-face dice. The null hypothesis H0 is
that the occurrence probability of each face is 1/4. Con-
sider, for example, that we have the occurrence pattern
(6, 1, 1, 0) after t = 8 trials, where an occurrence pat-
tern is a sequence of four occurrence numbers with the de-
scending order. The probability that we get the pattern is
Pr(6, 1, 1, 0) = 4 · 3 · 8!

6!1!1!0! (
1
4 )8 = 0.0103. Note that

patterns rarer than this one are (6, 2, 0, 0), (7, 1, 0, 0),
and (8, 0, 0, 0), and their probabilities are Pr(6, 2, 0, 0) =
0.00513, Pr(7, 1, 0, 0) = 0.00146, and Pr(8, 0, 0, 0) =
0.0000610 respectively. Since the sum of these proba-
bilities is Pr(6, 1, 1, 0) + Pr(6, 2, 0, 0) + Pr(7, 1, 0, 0) +
Pr(8, 0, 0, 0) = 0.0169 < 0.05, the pattern (6, 1, 1, 0) is in
the rejection region for the confidence level 5%.

Based on similar analyses for the patterns of t =
1, 2, . . ., the patterns that can be rejected are derived as fol-
lows:

• t = 1, . . . , 3 : no patterns

• t = 4: (4, 0, 0, 0)

• t = 5: (5, 0, 0, 0)

• t = 6: (6, 0, 0, 0), (5, 1, 0, 0)

• t = 7: (7, 0, 0, 0), (6, 1, 0, 0), (5, 2, 0, 0)

• . . .

In our implementation, we have derived these patterns until
t = 52. After the t-value, the χ2 test for goodness of fit can
be safely used.

In the histogram construction module, precomputed re-
jection patterns are stored in a table and then used for the
non-uniformity check as described in Fig. 5. Since the non-
uniformity check is performed every time when a new tran-
sition sequence is inserted into a buffer, we can reduce the
size of the table. For instance, the rejection pattern (5, 0, 0,
0) for t = 5 does not happen in reality because it requires
(4, 0, 0, 0) as the preceding pattern, but this pattern (4, 0,
0, 0) triggers tree expansion so that we cannot reach (5, 0,
0, 0). Based on the reduction, the table in our experiments
only contains 465 entries of the rejection patterns.

Proceedings of the 18th International Conference on Scientific and Statistical Database Management (SSDBM’06) 
0-7695-2590-3/06 $20.00 © 2006 IEEE 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


